Lightweight environment sensing algorithm for intelligent driving based on improved YOLOv7

Accurately and quickly detecting obstacles ahead is a prerequisite for intelligent driving. The combined detection scheme of light detection and ranging (LiDAR) and the camera is far more capable of coping with complex road conditions than a single sensor. However, immediately afterward, ensuring th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET control theory & applications Ročník 18; číslo 18; s. 2872 - 2885
Hlavní autoři: Qian, Guoyong, Xie, Dongbo, Bi, Dawei, Wang, Qi, Chen, Liqing, Wang, Hai
Médium: Journal Article
Jazyk:angličtina
Vydáno: Stevenage John Wiley & Sons, Inc 01.12.2024
Témata:
ISSN:1751-8644, 1751-8652
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurately and quickly detecting obstacles ahead is a prerequisite for intelligent driving. The combined detection scheme of light detection and ranging (LiDAR) and the camera is far more capable of coping with complex road conditions than a single sensor. However, immediately afterward, ensuring the real‐time performance of the sensing algorithms through a significantly increased amount of computation has become a new challenge. For this purpose, the paper introduces an improved dynamic obstacle detection algorithm based on YOLOv7 (You Only Look Once version 7) to overcome the drawbacks of slow and unstable detection of traditional methods. Concretely, Mobilenetv3 supplants the backbone network utilized in the original YOLOv7 architecture, thereby achieving a reduction in computational overhead. It integrates a specialized layer for the detection of small‐scale targets and incorporates a convolutional block attention module to enhance detection efficacy for diminutive obstacles. Furthermore, the framework adopts the Efficient Intersection over Union Loss function, which is specifically designed to mitigate the issue of mutual occlusion among detected objects. On a dataset consisting of 27,362 labelled KITTI data samples, the improved YOLOv7 algorithm achieves 92.6% mean average precision and 82 frames per second, which reduces the Model_size by 85.9% and loses only 1.5% accuracy compared with the traditional YOLOv7 algorithm. In addition, this paper builds a virtual scene to test the improved algorithm and fuses LiDAR and camera data. Experimental results conducted on a test vehicle equipped with a camera and LiDAR sensor demonstrate the effectiveness and significant performance of the method. The improved obstacle detection algorithm proposed in this research can significantly reduce the computational cost of the environment perception task, meet the requirements of real‐world applications, and is crucial for achieving safer and smarter driving. Here, a LiDAR (light detection and ranging) and visual information fusion intelligent driving vehicle based on the improved YOLOv7 (You Only Look Once version 7) algorithm is proposed, and virtual simulation and real vehicle tests are conducted. The challenges of baseline YOLOv7 application in target detection are being addressed.
AbstractList Accurately and quickly detecting obstacles ahead is a prerequisite for intelligent driving. The combined detection scheme of light detection and ranging (LiDAR) and the camera is far more capable of coping with complex road conditions than a single sensor. However, immediately afterward, ensuring the real‐time performance of the sensing algorithms through a significantly increased amount of computation has become a new challenge. For this purpose, the paper introduces an improved dynamic obstacle detection algorithm based on YOLOv7 (You Only Look Once version 7) to overcome the drawbacks of slow and unstable detection of traditional methods. Concretely, Mobilenetv3 supplants the backbone network utilized in the original YOLOv7 architecture, thereby achieving a reduction in computational overhead. It integrates a specialized layer for the detection of small‐scale targets and incorporates a convolutional block attention module to enhance detection efficacy for diminutive obstacles. Furthermore, the framework adopts the Efficient Intersection over Union Loss function, which is specifically designed to mitigate the issue of mutual occlusion among detected objects. On a dataset consisting of 27,362 labelled KITTI data samples, the improved YOLOv7 algorithm achieves 92.6% mean average precision and 82 frames per second, which reduces the Model_size by 85.9% and loses only 1.5% accuracy compared with the traditional YOLOv7 algorithm. In addition, this paper builds a virtual scene to test the improved algorithm and fuses LiDAR and camera data. Experimental results conducted on a test vehicle equipped with a camera and LiDAR sensor demonstrate the effectiveness and significant performance of the method. The improved obstacle detection algorithm proposed in this research can significantly reduce the computational cost of the environment perception task, meet the requirements of real‐world applications, and is crucial for achieving safer and smarter driving.
Accurately and quickly detecting obstacles ahead is a prerequisite for intelligent driving. The combined detection scheme of light detection and ranging (LiDAR) and the camera is far more capable of coping with complex road conditions than a single sensor. However, immediately afterward, ensuring the real‐time performance of the sensing algorithms through a significantly increased amount of computation has become a new challenge. For this purpose, the paper introduces an improved dynamic obstacle detection algorithm based on YOLOv7 (You Only Look Once version 7) to overcome the drawbacks of slow and unstable detection of traditional methods. Concretely, Mobilenetv3 supplants the backbone network utilized in the original YOLOv7 architecture, thereby achieving a reduction in computational overhead. It integrates a specialized layer for the detection of small‐scale targets and incorporates a convolutional block attention module to enhance detection efficacy for diminutive obstacles. Furthermore, the framework adopts the Efficient Intersection over Union Loss function, which is specifically designed to mitigate the issue of mutual occlusion among detected objects. On a dataset consisting of 27,362 labelled KITTI data samples, the improved YOLOv7 algorithm achieves 92.6% mean average precision and 82 frames per second, which reduces the Model_size by 85.9% and loses only 1.5% accuracy compared with the traditional YOLOv7 algorithm. In addition, this paper builds a virtual scene to test the improved algorithm and fuses LiDAR and camera data. Experimental results conducted on a test vehicle equipped with a camera and LiDAR sensor demonstrate the effectiveness and significant performance of the method. The improved obstacle detection algorithm proposed in this research can significantly reduce the computational cost of the environment perception task, meet the requirements of real‐world applications, and is crucial for achieving safer and smarter driving. Here, a LiDAR (light detection and ranging) and visual information fusion intelligent driving vehicle based on the improved YOLOv7 (You Only Look Once version 7) algorithm is proposed, and virtual simulation and real vehicle tests are conducted. The challenges of baseline YOLOv7 application in target detection are being addressed.
Author Qian, Guoyong
Chen, Liqing
Xie, Dongbo
Wang, Qi
Wang, Hai
Bi, Dawei
Author_xml – sequence: 1
  givenname: Guoyong
  orcidid: 0009-0009-3947-9470
  surname: Qian
  fullname: Qian, Guoyong
  organization: Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery
– sequence: 2
  givenname: Dongbo
  surname: Xie
  fullname: Xie, Dongbo
  organization: Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery
– sequence: 3
  givenname: Dawei
  surname: Bi
  fullname: Bi, Dawei
  organization: Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery
– sequence: 4
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
  organization: Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery
– sequence: 5
  givenname: Liqing
  surname: Chen
  fullname: Chen, Liqing
  organization: Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery
– sequence: 6
  givenname: Hai
  orcidid: 0000-0003-2789-9530
  surname: Wang
  fullname: Wang, Hai
  email: hai.wang@murdoch.edu.au
  organization: Murdoch University
BookMark eNp9kL1OwzAURi1UJNrCwhNEYkNK8W-cjKgCihSpSxlgsZzYSV0ldrFDqr49CUGMLPd-w7n3k84CzKyzGoBbBFcI0uyh7PZ4hTCH9ALMEWcoThOGZ3-Z0iuwCOEAIWMJZXPwkZt63530OCNte-OdbbXtoqBtMLaOZFM7b7p9G1XOR8Z2umlMPRLKm34kChm0ipyNTHv0rh_y-zbf9vwaXFayCfrmdy_B2_PTbr2J8-3L6_oxj0ucJTQuUVIkqsKK8KrAskgVgorQQlU01SmsCFEpRVlaSM5JWipJsWKcYM0ZzpjEZAnupr9D--eXDp04uC9vh0pBMGcJ4hQmA3U_UaV3IXhdiaM3rfRngaAY3YnRnfhxN8Bogk-m0ed_SLHebfB08w3GXHN0
Cites_doi 10.1109/ICRA.2014.6906929
10.3390/act10090228
10.1109/34.888718
10.1109/TITS.2012.2188630
10.1145/602259.602266
10.1109/TPAMI.2016.2577031
10.1109/IROS45743.2020.9341791
10.1109/ICCV.2017.322
10.1007/978-3-030-01234-2_1
10.1609/aaai.v24i1.7728
10.3390/sym12020324
10.3390/machines10100913
10.1177/0278364913491297
10.1109/CVPR.2018.00798
10.1007/978-3-319-63309-1_65
10.1109/CVPR.2016.91
10.1016/j.eswa.2022.118826
10.1117/12.2634878
10.1109/STA56120.2022.10019137
10.3390/act11100272
10.1109/CVPR.2018.00442
10.1007/978-3-319-46448-0_2
10.1016/j.neucom.2022.07.042
10.1109/CVPR.2019.00086
10.1109/ICCV.2015.169
10.1109/CVPR52729.2023.00721
10.1109/ICCV.2019.00140
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7XB
8AL
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1049/cth2.12704
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8652
EndPage 2885
ExternalDocumentID 10_1049_cth2_12704
CTH212704
Genre article
GrantInformation_xml – fundername: Anhui Province University Collaborative Innovation Program
  funderid: GXXT‐2020‐011
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
3V.
4.4
4IJ
5GY
6IK
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ABUWG
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADEYR
AEEZP
AEGXH
AENEX
AEQDE
AFAZI
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
CS3
DU5
DWQXO
EBS
EJD
ESX
F8P
GNUQQ
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
K1G
K6V
K7-
L6V
LAI
M0N
M43
M7S
MCNEO
MS~
NADUK
NXXTH
O9-
OCL
OK1
P62
PQQKQ
PROAC
PTHSS
QWB
RIE
RNS
ROL
RUI
U5U
UNMZH
ZL0
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
IGS
PHGZM
PHGZT
PQGLB
WIN
7XB
8AL
8FK
JQ2
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2964-c16b6df2d37fb2ab8d10d34bdf48e80f33d84198ba7738cda42d5732e75295a23
IEDL.DBID 24P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001241151200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8644
IngestDate Fri Nov 28 08:11:46 EST 2025
Wed Oct 29 21:15:06 EDT 2025
Wed Jan 22 17:11:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2964-c16b6df2d37fb2ab8d10d34bdf48e80f33d84198ba7738cda42d5732e75295a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2789-9530
0009-0009-3947-9470
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcth2.12704
PQID 3275617406
PQPubID 1936359
PageCount 14
ParticipantIDs proquest_journals_3275617406
crossref_primary_10_1049_cth2_12704
wiley_primary_10_1049_cth2_12704_CTH212704
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace Stevenage
PublicationPlace_xml – name: Stevenage
PublicationTitle IET control theory & applications
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2021; 10
2010; 24
2023
2022
2013; 32
2020
2000; 22
2019
2018
2023; 213
2017
1984
2022; 12173
2016
2015
2020; 12
2022; 10
2014
2022; 506
2022; 11
2012; 13
2016; 39
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – start-page: 652
  year: 2017
  end-page: 660
  article-title: Pointnet: deep learning on point sets for 3d classification and segmentation
– start-page: 15
  year: 2019
  end-page: 20
  article-title: 3d object proposal generation and detection from point cloud
– start-page: 779
  year: 2016
  end-page: 788
  article-title: You only look once: unified, real‐time object detection
– start-page: 691
  year: 2014
  end-page: 696
  article-title: Robust vehicle detection using 3D LiDAR under complex urban environment
– volume: 22
  start-page: 1330
  issue: 11
  year: 2000
  end-page: 1334
  article-title: A flexible new technique for camera calibration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 32
  start-page: 1231
  issue: 11
  year: 2013
  end-page: 1237
  article-title: Vision meets robotics: The kitti dataset
  publication-title: Int. J. Rob. Res.
– volume: 39
  start-page: 1137
  issue: 6
  year: 2016
  end-page: 1149
  article-title: Faster R‐CNN: Towards real‐time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 10
  start-page: 228
  issue: 9
  year: 2021
  article-title: Intelligent vehicle lateral control method based on feedforward+ predictive LQR algorithm
  publication-title: Actuators
– volume: 12173
  start-page: 304
  year: 2022
  end-page: 309
  article-title: Research on vehicle target recognition based on infrared image processing
– volume: 13
  start-page: 1243
  issue: 3
  year: 2012
  end-page: 1252
  article-title: Vision‐based vehicle detection system with consideration of the detecting location
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 47
  year: 1984
  end-page: 57
  article-title: R‐trees: a dynamic index structure for spatial searching
– start-page: 10386
  year: 2020
  end-page: 10393
  article-title: CLOCs: camera‐LiDAR object candidates fusion for 3D object detection
– start-page: 21
  year: 2016
  end-page: 37
  article-title: Ssd: single shot multibox detector
– volume: 10
  start-page: 913
  issue: 10
  year: 2022
  article-title: Actuators and sensors for application in agricultural robots: a review
  publication-title: Machines
– start-page: 735
  year: 2017
  end-page: 746
  article-title: Pedestrian detection based on fast R‐CNN and batch normalization
– start-page: 7652
  year: 2018
  end-page: 7660
  article-title: Pixor: real‐time 3d object detection from point clouds
– start-page: 1440
  year: 2015
  end-page: 1448
  article-title: Fast r‐cnn
– start-page: 2961
  year: 2017
  end-page: 2969
  article-title: Mask r‐cnn
– volume: 506
  start-page: 146
  year: 2022
  end-page: 157
  article-title: Focal and efficient IOU loss for accurate bounding box regression
  publication-title: Neurocomputing
– volume: 24
  start-page: 1625
  issue: 1
  year: 2010
  end-page: 1630
  article-title: A layered approach to people detection in 3d range data
– start-page: 3
  year: 2018
  end-page: 19
  article-title: Cbam: convolutional block attention module
– start-page: 84
  year: 2022
  end-page: 88
  article-title: Algorithmic optimization of vehicle detection system based on hybrid metaheuristic with machine learning
– volume: 12
  start-page: 324
  issue: 2
  year: 2020
  article-title: LiDAR and camera fusion approach for object distance estimation in self‐driving vehicles
  publication-title: Symmetry
– start-page: 1314
  year: 2019
  end-page: 1324
  article-title: Searching for Mobilenetv3
– volume: 213
  year: 2023
  article-title: Real‐time detection of crop rows in maize fields based on autonomous extraction of ROI
  publication-title: Expert Syst. Appl.
– start-page: 4203
  year: 2018
  end-page: 4212
  article-title: Single‐shot refinement neural network for object detection
– start-page: 7464
  year: 2023
  end-page: 7475
  article-title: YOLOv7: trainable bag‐of‐freebies sets new state‐of‐the‐art for real‐time object detectors
– volume: 11
  start-page: 272
  issue: 10
  year: 2022
  article-title: Intelligent driving vehicle object detection based on improved AVOD algorithm for the fusion of LiDAR and visual information
  publication-title: Actuators
– ident: e_1_2_10_13_1
  doi: 10.1109/ICRA.2014.6906929
– ident: e_1_2_10_3_1
  doi: 10.3390/act10090228
– ident: e_1_2_10_28_1
  doi: 10.1109/34.888718
– ident: e_1_2_10_5_1
  doi: 10.1109/TITS.2012.2188630
– ident: e_1_2_10_22_1
  doi: 10.1145/602259.602266
– ident: e_1_2_10_9_1
  doi: 10.1109/TPAMI.2016.2577031
– ident: e_1_2_10_20_1
  doi: 10.1109/IROS45743.2020.9341791
– ident: e_1_2_10_21_1
  doi: 10.1109/ICCV.2017.322
– ident: e_1_2_10_26_1
  doi: 10.1007/978-3-030-01234-2_1
– ident: e_1_2_10_14_1
  doi: 10.1609/aaai.v24i1.7728
– ident: e_1_2_10_18_1
  doi: 10.3390/sym12020324
– ident: e_1_2_10_4_1
  doi: 10.3390/machines10100913
– ident: e_1_2_10_29_1
  doi: 10.1177/0278364913491297
– ident: e_1_2_10_16_1
  doi: 10.1109/CVPR.2018.00798
– ident: e_1_2_10_12_1
  doi: 10.1007/978-3-319-63309-1_65
– ident: e_1_2_10_11_1
  doi: 10.1109/CVPR.2016.91
– ident: e_1_2_10_2_1
  doi: 10.1016/j.eswa.2022.118826
– ident: e_1_2_10_7_1
  doi: 10.1117/12.2634878
– ident: e_1_2_10_6_1
  doi: 10.1109/STA56120.2022.10019137
– ident: e_1_2_10_23_1
  doi: 10.3390/act11100272
– ident: e_1_2_10_19_1
  doi: 10.1109/CVPR.2018.00442
– ident: e_1_2_10_10_1
  doi: 10.1007/978-3-319-46448-0_2
– ident: e_1_2_10_27_1
  doi: 10.1016/j.neucom.2022.07.042
– ident: e_1_2_10_15_1
– ident: e_1_2_10_17_1
  doi: 10.1109/CVPR.2019.00086
– ident: e_1_2_10_8_1
  doi: 10.1109/ICCV.2015.169
– ident: e_1_2_10_24_1
  doi: 10.1109/CVPR52729.2023.00721
– ident: e_1_2_10_25_1
  doi: 10.1109/ICCV.2019.00140
SSID ssj0055645
Score 2.4272573
Snippet Accurately and quickly detecting obstacles ahead is a prerequisite for intelligent driving. The combined detection scheme of light detection and ranging...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 2872
SubjectTerms Accuracy
Algorithms
Cameras
Classification
Computing costs
Deep learning
Effectiveness
image processing
intelligent actuators
intelligent control
intelligent sensors
learning (artificial intelligence)
Lidar
Localization
Machine learning
Obstacle avoidance
Occlusion
Real time
Road conditions
Semantics
Sensors
Target detection
Test vehicles
Vehicles
Virtual reality
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4UPejBtxFF00RPJitst7vtnowhEg4EOGCCXDZ9wia6IKz4923LruDFi7eeJs1MO_N1ZvoNAHeCaQM7EPGiWHAPyyj0qDDXnTk2cR1zX2k3bIJ0u3Q4jPtFwm1RtFWWPtE5ajkVNkdeDyxPuYHPjehx9uHZqVG2ulqM0NgGO5YlwY5u6Iej0hOHlinFfYgMfY-awF_Sk-K4LvIJerBVV_w7IK1R5iZWdcGmdfjfbR6BgwJmwqfVuTgGWyo7Afsb5IOnYNSx7_IvlxqFG__d4ML2tGdjyN7GRnI-eYcG2ML0h7szh3Ke2jwEtCFQwmkGU5eaMOvXXqe3JGfgpfU8aLa9YtKCJ2zZ1RN-xCOpkQyI5ohxKv2GDDCXGlNFGzoIJMV-TDkjJKBCMoxkSAKkiK0TMhScg0o2zdQFgFIrTRRnnDeYeZtyrnCEBTLiEYmIiKvgtlR3MlsRaiSuEI7jxBolcUapglqp3qS4VItkrdsquHfW-UNC0hy0kVtd_i3rCuwhA1RWLSo1UMnnn-oa7Iplni7mN-5AfQObg9Sb
  priority: 102
  providerName: ProQuest
Title Lightweight environment sensing algorithm for intelligent driving based on improved YOLOv7
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcth2.12704
https://www.proquest.com/docview/3275617406
Volume 18
WOSCitedRecordID wos001241151200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-8652
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0055645
  issn: 1751-8644
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1751-8652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055645
  issn: 1751-8644
  databaseCode: P5Z
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1751-8652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055645
  issn: 1751-8644
  databaseCode: K7-
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1751-8652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055645
  issn: 1751-8644
  databaseCode: M7S
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1751-8652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055645
  issn: 1751-8644
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-8652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055645
  issn: 1751-8644
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055645
  issn: 1751-8644
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH_qKIftMD42tG6lssROkzIa24kdaZetKgKBSrUVUbhE_oRIkE5t1v37s50GygUJ7WL5EFvRs5_f7334Z4DPSlgHOzCL0kzJiOo0ibhy6i4Cm7jNZGxseGyCjUZ8Os3GLfjW3IWp-SEeAm5eM8J57RVcyPoVEgdq3SKq6hZ_9XlT-gracUyY39OYjptzOPE8KeE6ZBJH3Jn9hpyUZoePY5-ao0eMuY5Ug6k52vq_n9yGtyuIib7Xe2IHWqbchTdrxIPv4PrM--R_Q1gUrd11Qwtfz17eIHF3M5sX1e09cqAWFQ-8nRXS88LHIJA3fxrNSlSEsITrX52fnS_Ze7g4Gk4Gx9HqlYVI-ZRrpOJUptpiTZiVWEiu474mVGpLueF9S4jmNM64FIwRrrSgWCeMYMN8jlBgsgcb5aw0HwBpaywzUkjZF84vldLQlCrspscsZSrrwEEj7Px3TaaRhyQ4zXIvqTxIqgPdZh3ylUItcuJp6p331E878CVI_JkZ8sHkGIfex5d8_AleYwdZ6mKVLmxU8z9mHzbVsioW817YXD1o_xiOxj97wXd37SmLer5e9Jdrx8m1ay9PRv8AHJvY-A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07TyMxEB4hQDooeBwgwvGwBNcg-Ui8ztpbIIR4KCghXBEkuGbxk0SCTUgW0P0pfiO2k4XQ0FHQubLknW9nPs-MvwHYUcI62kEYjhMlMdVxFXPlfncR1MRtIivGhmETrNnkV1fJ3wl4Kd7C-LbKwicGR627yufI9yKvU-7oczk-6D1gPzXKV1eLERpDWNTN_2d3ZRvsnx07-_4m5PSkdVTDo6kCWPkSI1aVWMbaEh0xK4mQXFfKOqJSW8oNL9so0py6q7gUjEVcaUGJrrKIGOZrYsILHTiXP0UjHvsWsjrDheevemWW8ACzWsHcEY1CDpUmeypvkz--yks_BsB3VjvOjUNwO53_bp9lAeZGNBodDnG_CBMm-wmzY-KKS_Cv4fMOzyH1i8be86GB79nPbpG4u3Unydv3yBF31HnTJs2R7nd8ngX5EK9RN0OdkHpx6-uLxsUTW4bLLzncCkxm3cysAtLWWGakkLIs3N1bSkNjqojbnrCYqaQE24V5095QMCQNhX6apB4EaQBBCdYLc6YjpzFI321Zgt2Ahk92SI9aNRJWa5_vtQU_aq3zRto4a9Z_wQxxpGzYjrMOk3n_0WzAtHrKO4P-ZgAzgpuvhskru08w3A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBt1ifC3oSos1mm90cRS2Kpe2hgnoJ-6wBTaWN9e-7u2ltvQjibQ_JEiYzO9-8vgU4ldxY2IFpECdSBETF9YBJa-7cs4mbRITa-MsmaKvFHh-Tzrg3x83ClPwQ3wk3Zxn-vHYGrt-VKQNO4kgyZfGCz13hlMzDAomt7rqBkrvW5CCuO6IUPw9ZDwNm_f6EnZQkF9N3f_qjKcichare1zTW_vmV67A6BpnostSKDZjT-SaszFAPbsFz00Xlnz4ximam3dDQdbTnPcRfe_1BVry8IQtrUfbN3FkgNchcFgI5B6hQP0eZT0zY9VO72R7RbXho3HSvboPxPQuBdEXXQIaxiJXBKqJGYC6YCmsqIkIZwjSrmShSjIQJE5zSiEnFCVZ1GmFNXZWQ42gHKnk_17uAlNGGasGFqHEbmQqhSUwktttjGlOZVOFkIu30vaTTSH0ZnCSpk1TqJVWFg8mPSMcmNUwjR1Rv46daXIUzL_JfdkivurfYr_b-8vAxLHWuG2nzrnW_D8vY4peyc-UAKsXgQx_CohwV2XBw5BXtCzfQ1mA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightweight+environment+sensing+algorithm+for+intelligent+driving+based+on+improved+YOLOv7&rft.jtitle=IET+control+theory+%26+applications&rft.au=Qian%2C+Guoyong&rft.au=Xie%2C+Dongbo&rft.au=Bi%2C+Dawei&rft.au=Wang%2C+Qi&rft.date=2024-12-01&rft.issn=1751-8644&rft.eissn=1751-8652&rft.volume=18&rft.issue=18&rft.spage=2872&rft.epage=2885&rft_id=info:doi/10.1049%2Fcth2.12704&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_cth2_12704
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8644&client=summon