Lightweight environment sensing algorithm for intelligent driving based on improved YOLOv7
Accurately and quickly detecting obstacles ahead is a prerequisite for intelligent driving. The combined detection scheme of light detection and ranging (LiDAR) and the camera is far more capable of coping with complex road conditions than a single sensor. However, immediately afterward, ensuring th...
Uloženo v:
| Vydáno v: | IET control theory & applications Ročník 18; číslo 18; s. 2872 - 2885 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Stevenage
John Wiley & Sons, Inc
01.12.2024
|
| Témata: | |
| ISSN: | 1751-8644, 1751-8652 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Accurately and quickly detecting obstacles ahead is a prerequisite for intelligent driving. The combined detection scheme of light detection and ranging (LiDAR) and the camera is far more capable of coping with complex road conditions than a single sensor. However, immediately afterward, ensuring the real‐time performance of the sensing algorithms through a significantly increased amount of computation has become a new challenge. For this purpose, the paper introduces an improved dynamic obstacle detection algorithm based on YOLOv7 (You Only Look Once version 7) to overcome the drawbacks of slow and unstable detection of traditional methods. Concretely, Mobilenetv3 supplants the backbone network utilized in the original YOLOv7 architecture, thereby achieving a reduction in computational overhead. It integrates a specialized layer for the detection of small‐scale targets and incorporates a convolutional block attention module to enhance detection efficacy for diminutive obstacles. Furthermore, the framework adopts the Efficient Intersection over Union Loss function, which is specifically designed to mitigate the issue of mutual occlusion among detected objects. On a dataset consisting of 27,362 labelled KITTI data samples, the improved YOLOv7 algorithm achieves 92.6% mean average precision and 82 frames per second, which reduces the Model_size by 85.9% and loses only 1.5% accuracy compared with the traditional YOLOv7 algorithm. In addition, this paper builds a virtual scene to test the improved algorithm and fuses LiDAR and camera data. Experimental results conducted on a test vehicle equipped with a camera and LiDAR sensor demonstrate the effectiveness and significant performance of the method. The improved obstacle detection algorithm proposed in this research can significantly reduce the computational cost of the environment perception task, meet the requirements of real‐world applications, and is crucial for achieving safer and smarter driving.
Here, a LiDAR (light detection and ranging) and visual information fusion intelligent driving vehicle based on the improved YOLOv7 (You Only Look Once version 7) algorithm is proposed, and virtual simulation and real vehicle tests are conducted. The challenges of baseline YOLOv7 application in target detection are being addressed. |
|---|---|
| AbstractList | Accurately and quickly detecting obstacles ahead is a prerequisite for intelligent driving. The combined detection scheme of light detection and ranging (LiDAR) and the camera is far more capable of coping with complex road conditions than a single sensor. However, immediately afterward, ensuring the real‐time performance of the sensing algorithms through a significantly increased amount of computation has become a new challenge. For this purpose, the paper introduces an improved dynamic obstacle detection algorithm based on YOLOv7 (You Only Look Once version 7) to overcome the drawbacks of slow and unstable detection of traditional methods. Concretely, Mobilenetv3 supplants the backbone network utilized in the original YOLOv7 architecture, thereby achieving a reduction in computational overhead. It integrates a specialized layer for the detection of small‐scale targets and incorporates a convolutional block attention module to enhance detection efficacy for diminutive obstacles. Furthermore, the framework adopts the Efficient Intersection over Union Loss function, which is specifically designed to mitigate the issue of mutual occlusion among detected objects. On a dataset consisting of 27,362 labelled KITTI data samples, the improved YOLOv7 algorithm achieves 92.6% mean average precision and 82 frames per second, which reduces the Model_size by 85.9% and loses only 1.5% accuracy compared with the traditional YOLOv7 algorithm. In addition, this paper builds a virtual scene to test the improved algorithm and fuses LiDAR and camera data. Experimental results conducted on a test vehicle equipped with a camera and LiDAR sensor demonstrate the effectiveness and significant performance of the method. The improved obstacle detection algorithm proposed in this research can significantly reduce the computational cost of the environment perception task, meet the requirements of real‐world applications, and is crucial for achieving safer and smarter driving. Accurately and quickly detecting obstacles ahead is a prerequisite for intelligent driving. The combined detection scheme of light detection and ranging (LiDAR) and the camera is far more capable of coping with complex road conditions than a single sensor. However, immediately afterward, ensuring the real‐time performance of the sensing algorithms through a significantly increased amount of computation has become a new challenge. For this purpose, the paper introduces an improved dynamic obstacle detection algorithm based on YOLOv7 (You Only Look Once version 7) to overcome the drawbacks of slow and unstable detection of traditional methods. Concretely, Mobilenetv3 supplants the backbone network utilized in the original YOLOv7 architecture, thereby achieving a reduction in computational overhead. It integrates a specialized layer for the detection of small‐scale targets and incorporates a convolutional block attention module to enhance detection efficacy for diminutive obstacles. Furthermore, the framework adopts the Efficient Intersection over Union Loss function, which is specifically designed to mitigate the issue of mutual occlusion among detected objects. On a dataset consisting of 27,362 labelled KITTI data samples, the improved YOLOv7 algorithm achieves 92.6% mean average precision and 82 frames per second, which reduces the Model_size by 85.9% and loses only 1.5% accuracy compared with the traditional YOLOv7 algorithm. In addition, this paper builds a virtual scene to test the improved algorithm and fuses LiDAR and camera data. Experimental results conducted on a test vehicle equipped with a camera and LiDAR sensor demonstrate the effectiveness and significant performance of the method. The improved obstacle detection algorithm proposed in this research can significantly reduce the computational cost of the environment perception task, meet the requirements of real‐world applications, and is crucial for achieving safer and smarter driving. Here, a LiDAR (light detection and ranging) and visual information fusion intelligent driving vehicle based on the improved YOLOv7 (You Only Look Once version 7) algorithm is proposed, and virtual simulation and real vehicle tests are conducted. The challenges of baseline YOLOv7 application in target detection are being addressed. |
| Author | Qian, Guoyong Chen, Liqing Xie, Dongbo Wang, Qi Wang, Hai Bi, Dawei |
| Author_xml | – sequence: 1 givenname: Guoyong orcidid: 0009-0009-3947-9470 surname: Qian fullname: Qian, Guoyong organization: Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery – sequence: 2 givenname: Dongbo surname: Xie fullname: Xie, Dongbo organization: Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery – sequence: 3 givenname: Dawei surname: Bi fullname: Bi, Dawei organization: Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery – sequence: 4 givenname: Qi surname: Wang fullname: Wang, Qi organization: Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery – sequence: 5 givenname: Liqing surname: Chen fullname: Chen, Liqing organization: Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery – sequence: 6 givenname: Hai orcidid: 0000-0003-2789-9530 surname: Wang fullname: Wang, Hai email: hai.wang@murdoch.edu.au organization: Murdoch University |
| BookMark | eNp9kL1OwzAURi1UJNrCwhNEYkNK8W-cjKgCihSpSxlgsZzYSV0ldrFDqr49CUGMLPd-w7n3k84CzKyzGoBbBFcI0uyh7PZ4hTCH9ALMEWcoThOGZ3-Z0iuwCOEAIWMJZXPwkZt63530OCNte-OdbbXtoqBtMLaOZFM7b7p9G1XOR8Z2umlMPRLKm34kChm0ipyNTHv0rh_y-zbf9vwaXFayCfrmdy_B2_PTbr2J8-3L6_oxj0ucJTQuUVIkqsKK8KrAskgVgorQQlU01SmsCFEpRVlaSM5JWipJsWKcYM0ZzpjEZAnupr9D--eXDp04uC9vh0pBMGcJ4hQmA3U_UaV3IXhdiaM3rfRngaAY3YnRnfhxN8Bogk-m0ed_SLHebfB08w3GXHN0 |
| Cites_doi | 10.1109/ICRA.2014.6906929 10.3390/act10090228 10.1109/34.888718 10.1109/TITS.2012.2188630 10.1145/602259.602266 10.1109/TPAMI.2016.2577031 10.1109/IROS45743.2020.9341791 10.1109/ICCV.2017.322 10.1007/978-3-030-01234-2_1 10.1609/aaai.v24i1.7728 10.3390/sym12020324 10.3390/machines10100913 10.1177/0278364913491297 10.1109/CVPR.2018.00798 10.1007/978-3-319-63309-1_65 10.1109/CVPR.2016.91 10.1016/j.eswa.2022.118826 10.1117/12.2634878 10.1109/STA56120.2022.10019137 10.3390/act11100272 10.1109/CVPR.2018.00442 10.1007/978-3-319-46448-0_2 10.1016/j.neucom.2022.07.042 10.1109/CVPR.2019.00086 10.1109/ICCV.2015.169 10.1109/CVPR52729.2023.00721 10.1109/ICCV.2019.00140 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. – notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 3V. 7XB 8AL 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1049/cth2.12704 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-8652 |
| EndPage | 2885 |
| ExternalDocumentID | 10_1049_cth2_12704 CTH212704 |
| Genre | article |
| GrantInformation_xml | – fundername: Anhui Province University Collaborative Innovation Program funderid: GXXT‐2020‐011 |
| GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 3V. 4.4 4IJ 5GY 6IK 8FE 8FG 8VB 96U AAHHS AAHJG AAJGR ABJCF ABQXS ABUWG ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADEYR AEEZP AEGXH AENEX AEQDE AFAZI AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU AZQEC BENPR BGLVJ BPHCQ CCPQU CS3 DU5 DWQXO EBS EJD ESX F8P GNUQQ GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFIPE IPLJI ITC JAVBF K1G K6V K7- L6V LAI M0N M43 M7S MCNEO MS~ NADUK NXXTH O9- OCL OK1 P62 PQQKQ PROAC PTHSS QWB RIE RNS ROL RUI U5U UNMZH ZL0 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA IGS PHGZM PHGZT PQGLB WIN 7XB 8AL 8FK JQ2 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c2964-c16b6df2d37fb2ab8d10d34bdf48e80f33d84198ba7738cda42d5732e75295a23 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001241151200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-8644 |
| IngestDate | Fri Nov 28 08:11:46 EST 2025 Wed Oct 29 21:15:06 EDT 2025 Wed Jan 22 17:11:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2964-c16b6df2d37fb2ab8d10d34bdf48e80f33d84198ba7738cda42d5732e75295a23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2789-9530 0009-0009-3947-9470 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcth2.12704 |
| PQID | 3275617406 |
| PQPubID | 1936359 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_3275617406 crossref_primary_10_1049_cth2_12704 wiley_primary_10_1049_cth2_12704_CTH212704 |
| PublicationCentury | 2000 |
| PublicationDate | December 2024 2024-12-00 20241201 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Stevenage |
| PublicationPlace_xml | – name: Stevenage |
| PublicationTitle | IET control theory & applications |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2021; 10 2010; 24 2023 2022 2013; 32 2020 2000; 22 2019 2018 2023; 213 2017 1984 2022; 12173 2016 2015 2020; 12 2022; 10 2014 2022; 506 2022; 11 2012; 13 2016; 39 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_10_1 e_1_2_10_11_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
| References_xml | – start-page: 652 year: 2017 end-page: 660 article-title: Pointnet: deep learning on point sets for 3d classification and segmentation – start-page: 15 year: 2019 end-page: 20 article-title: 3d object proposal generation and detection from point cloud – start-page: 779 year: 2016 end-page: 788 article-title: You only look once: unified, real‐time object detection – start-page: 691 year: 2014 end-page: 696 article-title: Robust vehicle detection using 3D LiDAR under complex urban environment – volume: 22 start-page: 1330 issue: 11 year: 2000 end-page: 1334 article-title: A flexible new technique for camera calibration publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 32 start-page: 1231 issue: 11 year: 2013 end-page: 1237 article-title: Vision meets robotics: The kitti dataset publication-title: Int. J. Rob. Res. – volume: 39 start-page: 1137 issue: 6 year: 2016 end-page: 1149 article-title: Faster R‐CNN: Towards real‐time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 10 start-page: 228 issue: 9 year: 2021 article-title: Intelligent vehicle lateral control method based on feedforward+ predictive LQR algorithm publication-title: Actuators – volume: 12173 start-page: 304 year: 2022 end-page: 309 article-title: Research on vehicle target recognition based on infrared image processing – volume: 13 start-page: 1243 issue: 3 year: 2012 end-page: 1252 article-title: Vision‐based vehicle detection system with consideration of the detecting location publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 47 year: 1984 end-page: 57 article-title: R‐trees: a dynamic index structure for spatial searching – start-page: 10386 year: 2020 end-page: 10393 article-title: CLOCs: camera‐LiDAR object candidates fusion for 3D object detection – start-page: 21 year: 2016 end-page: 37 article-title: Ssd: single shot multibox detector – volume: 10 start-page: 913 issue: 10 year: 2022 article-title: Actuators and sensors for application in agricultural robots: a review publication-title: Machines – start-page: 735 year: 2017 end-page: 746 article-title: Pedestrian detection based on fast R‐CNN and batch normalization – start-page: 7652 year: 2018 end-page: 7660 article-title: Pixor: real‐time 3d object detection from point clouds – start-page: 1440 year: 2015 end-page: 1448 article-title: Fast r‐cnn – start-page: 2961 year: 2017 end-page: 2969 article-title: Mask r‐cnn – volume: 506 start-page: 146 year: 2022 end-page: 157 article-title: Focal and efficient IOU loss for accurate bounding box regression publication-title: Neurocomputing – volume: 24 start-page: 1625 issue: 1 year: 2010 end-page: 1630 article-title: A layered approach to people detection in 3d range data – start-page: 3 year: 2018 end-page: 19 article-title: Cbam: convolutional block attention module – start-page: 84 year: 2022 end-page: 88 article-title: Algorithmic optimization of vehicle detection system based on hybrid metaheuristic with machine learning – volume: 12 start-page: 324 issue: 2 year: 2020 article-title: LiDAR and camera fusion approach for object distance estimation in self‐driving vehicles publication-title: Symmetry – start-page: 1314 year: 2019 end-page: 1324 article-title: Searching for Mobilenetv3 – volume: 213 year: 2023 article-title: Real‐time detection of crop rows in maize fields based on autonomous extraction of ROI publication-title: Expert Syst. Appl. – start-page: 4203 year: 2018 end-page: 4212 article-title: Single‐shot refinement neural network for object detection – start-page: 7464 year: 2023 end-page: 7475 article-title: YOLOv7: trainable bag‐of‐freebies sets new state‐of‐the‐art for real‐time object detectors – volume: 11 start-page: 272 issue: 10 year: 2022 article-title: Intelligent driving vehicle object detection based on improved AVOD algorithm for the fusion of LiDAR and visual information publication-title: Actuators – ident: e_1_2_10_13_1 doi: 10.1109/ICRA.2014.6906929 – ident: e_1_2_10_3_1 doi: 10.3390/act10090228 – ident: e_1_2_10_28_1 doi: 10.1109/34.888718 – ident: e_1_2_10_5_1 doi: 10.1109/TITS.2012.2188630 – ident: e_1_2_10_22_1 doi: 10.1145/602259.602266 – ident: e_1_2_10_9_1 doi: 10.1109/TPAMI.2016.2577031 – ident: e_1_2_10_20_1 doi: 10.1109/IROS45743.2020.9341791 – ident: e_1_2_10_21_1 doi: 10.1109/ICCV.2017.322 – ident: e_1_2_10_26_1 doi: 10.1007/978-3-030-01234-2_1 – ident: e_1_2_10_14_1 doi: 10.1609/aaai.v24i1.7728 – ident: e_1_2_10_18_1 doi: 10.3390/sym12020324 – ident: e_1_2_10_4_1 doi: 10.3390/machines10100913 – ident: e_1_2_10_29_1 doi: 10.1177/0278364913491297 – ident: e_1_2_10_16_1 doi: 10.1109/CVPR.2018.00798 – ident: e_1_2_10_12_1 doi: 10.1007/978-3-319-63309-1_65 – ident: e_1_2_10_11_1 doi: 10.1109/CVPR.2016.91 – ident: e_1_2_10_2_1 doi: 10.1016/j.eswa.2022.118826 – ident: e_1_2_10_7_1 doi: 10.1117/12.2634878 – ident: e_1_2_10_6_1 doi: 10.1109/STA56120.2022.10019137 – ident: e_1_2_10_23_1 doi: 10.3390/act11100272 – ident: e_1_2_10_19_1 doi: 10.1109/CVPR.2018.00442 – ident: e_1_2_10_10_1 doi: 10.1007/978-3-319-46448-0_2 – ident: e_1_2_10_27_1 doi: 10.1016/j.neucom.2022.07.042 – ident: e_1_2_10_15_1 – ident: e_1_2_10_17_1 doi: 10.1109/CVPR.2019.00086 – ident: e_1_2_10_8_1 doi: 10.1109/ICCV.2015.169 – ident: e_1_2_10_24_1 doi: 10.1109/CVPR52729.2023.00721 – ident: e_1_2_10_25_1 doi: 10.1109/ICCV.2019.00140 |
| SSID | ssj0055645 |
| Score | 2.4272573 |
| Snippet | Accurately and quickly detecting obstacles ahead is a prerequisite for intelligent driving. The combined detection scheme of light detection and ranging... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2872 |
| SubjectTerms | Accuracy Algorithms Cameras Classification Computing costs Deep learning Effectiveness image processing intelligent actuators intelligent control intelligent sensors learning (artificial intelligence) Lidar Localization Machine learning Obstacle avoidance Occlusion Real time Road conditions Semantics Sensors Target detection Test vehicles Vehicles Virtual reality |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4UPejBtxFF00RPJitst7vtnowhEg4EOGCCXDZ9wia6IKz4923LruDFi7eeJs1MO_N1ZvoNAHeCaQM7EPGiWHAPyyj0qDDXnTk2cR1zX2k3bIJ0u3Q4jPtFwm1RtFWWPtE5ajkVNkdeDyxPuYHPjehx9uHZqVG2ulqM0NgGO5YlwY5u6Iej0hOHlinFfYgMfY-awF_Sk-K4LvIJerBVV_w7IK1R5iZWdcGmdfjfbR6BgwJmwqfVuTgGWyo7Afsb5IOnYNSx7_IvlxqFG__d4ML2tGdjyN7GRnI-eYcG2ML0h7szh3Ke2jwEtCFQwmkGU5eaMOvXXqe3JGfgpfU8aLa9YtKCJ2zZ1RN-xCOpkQyI5ohxKv2GDDCXGlNFGzoIJMV-TDkjJKBCMoxkSAKkiK0TMhScg0o2zdQFgFIrTRRnnDeYeZtyrnCEBTLiEYmIiKvgtlR3MlsRaiSuEI7jxBolcUapglqp3qS4VItkrdsquHfW-UNC0hy0kVtd_i3rCuwhA1RWLSo1UMnnn-oa7Iplni7mN-5AfQObg9Sb priority: 102 providerName: ProQuest |
| Title | Lightweight environment sensing algorithm for intelligent driving based on improved YOLOv7 |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcth2.12704 https://www.proquest.com/docview/3275617406 |
| Volume | 18 |
| WOSCitedRecordID | wos001241151200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1751-8652 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0055645 issn: 1751-8644 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1751-8652 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055645 issn: 1751-8644 databaseCode: P5Z dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1751-8652 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055645 issn: 1751-8644 databaseCode: K7- dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1751-8652 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055645 issn: 1751-8644 databaseCode: M7S dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1751-8652 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055645 issn: 1751-8644 databaseCode: BENPR dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-8652 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055645 issn: 1751-8644 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-8652 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055645 issn: 1751-8644 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH_qKIftMD42tG6lssROkzIa24kdaZetKgKBSrUVUbhE_oRIkE5t1v37s50GygUJ7WL5EFvRs5_f7334Z4DPSlgHOzCL0kzJiOo0ibhy6i4Cm7jNZGxseGyCjUZ8Os3GLfjW3IWp-SEeAm5eM8J57RVcyPoVEgdq3SKq6hZ_9XlT-gracUyY39OYjptzOPE8KeE6ZBJH3Jn9hpyUZoePY5-ao0eMuY5Ug6k52vq_n9yGtyuIib7Xe2IHWqbchTdrxIPv4PrM--R_Q1gUrd11Qwtfz17eIHF3M5sX1e09cqAWFQ-8nRXS88LHIJA3fxrNSlSEsITrX52fnS_Ze7g4Gk4Gx9HqlYVI-ZRrpOJUptpiTZiVWEiu474mVGpLueF9S4jmNM64FIwRrrSgWCeMYMN8jlBgsgcb5aw0HwBpaywzUkjZF84vldLQlCrspscsZSrrwEEj7Px3TaaRhyQ4zXIvqTxIqgPdZh3ylUItcuJp6p331E878CVI_JkZ8sHkGIfex5d8_AleYwdZ6mKVLmxU8z9mHzbVsioW817YXD1o_xiOxj97wXd37SmLer5e9Jdrx8m1ay9PRv8AHJvY-A |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07TyMxEB4hQDooeBwgwvGwBNcg-Ui8ztpbIIR4KCghXBEkuGbxk0SCTUgW0P0pfiO2k4XQ0FHQubLknW9nPs-MvwHYUcI62kEYjhMlMdVxFXPlfncR1MRtIivGhmETrNnkV1fJ3wl4Kd7C-LbKwicGR627yufI9yKvU-7oczk-6D1gPzXKV1eLERpDWNTN_2d3ZRvsnx07-_4m5PSkdVTDo6kCWPkSI1aVWMbaEh0xK4mQXFfKOqJSW8oNL9so0py6q7gUjEVcaUGJrrKIGOZrYsILHTiXP0UjHvsWsjrDheevemWW8ACzWsHcEY1CDpUmeypvkz--yks_BsB3VjvOjUNwO53_bp9lAeZGNBodDnG_CBMm-wmzY-KKS_Cv4fMOzyH1i8be86GB79nPbpG4u3Unydv3yBF31HnTJs2R7nd8ngX5EK9RN0OdkHpx6-uLxsUTW4bLLzncCkxm3cysAtLWWGakkLIs3N1bSkNjqojbnrCYqaQE24V5095QMCQNhX6apB4EaQBBCdYLc6YjpzFI321Zgt2Ahk92SI9aNRJWa5_vtQU_aq3zRto4a9Z_wQxxpGzYjrMOk3n_0WzAtHrKO4P-ZgAzgpuvhskru08w3A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBt1ifC3oSos1mm90cRS2Kpe2hgnoJ-6wBTaWN9e-7u2ltvQjibQ_JEiYzO9-8vgU4ldxY2IFpECdSBETF9YBJa-7cs4mbRITa-MsmaKvFHh-Tzrg3x83ClPwQ3wk3Zxn-vHYGrt-VKQNO4kgyZfGCz13hlMzDAomt7rqBkrvW5CCuO6IUPw9ZDwNm_f6EnZQkF9N3f_qjKcichare1zTW_vmV67A6BpnostSKDZjT-SaszFAPbsFz00Xlnz4ximam3dDQdbTnPcRfe_1BVry8IQtrUfbN3FkgNchcFgI5B6hQP0eZT0zY9VO72R7RbXho3HSvboPxPQuBdEXXQIaxiJXBKqJGYC6YCmsqIkIZwjSrmShSjIQJE5zSiEnFCVZ1GmFNXZWQ42gHKnk_17uAlNGGasGFqHEbmQqhSUwktttjGlOZVOFkIu30vaTTSH0ZnCSpk1TqJVWFg8mPSMcmNUwjR1Rv46daXIUzL_JfdkivurfYr_b-8vAxLHWuG2nzrnW_D8vY4peyc-UAKsXgQx_CohwV2XBw5BXtCzfQ1mA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightweight+environment+sensing+algorithm+for+intelligent+driving+based+on+improved+YOLOv7&rft.jtitle=IET+control+theory+%26+applications&rft.au=Qian%2C+Guoyong&rft.au=Xie%2C+Dongbo&rft.au=Bi%2C+Dawei&rft.au=Wang%2C+Qi&rft.date=2024-12-01&rft.issn=1751-8644&rft.eissn=1751-8652&rft.volume=18&rft.issue=18&rft.spage=2872&rft.epage=2885&rft_id=info:doi/10.1049%2Fcth2.12704&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_cth2_12704 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8644&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8644&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8644&client=summon |