Challenges on applying genetic improvement in JavaScript using a high-performance computer

Genetic Improvement is an area of Search Based Software Engineering that aims to apply evolutionary computing operators to the software source code to improve it according to one or more quality metrics. This article describes challenges related to experimental studies using Genetic Improvement in J...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of software engineering research and development Ročník 6; číslo 1; s. 1 - 19
Hlavní autoři: de Almeida Farzat, Fábio, de Oliveira Barros, Márcio, Horta Travassos, Guilherme
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 06.10.2018
Sociedade Brasileira de Computação
Témata:
ISSN:2195-1721, 2195-1721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Genetic Improvement is an area of Search Based Software Engineering that aims to apply evolutionary computing operators to the software source code to improve it according to one or more quality metrics. This article describes challenges related to experimental studies using Genetic Improvement in JavaScript (an interpreted and non-typed language). It describes our experience on performing a study with fifteen projects submitted to genetic improvement with the use of a supercomputer. The construction of specific software infrastructure to support such an experimentation environment reveals peculiarities (parallelization problems, management of threads, etc.) that must be carefully considered to avoid future research threats to validity such as dead-ends, which make it impossible to observe relevant phenomena (code transformation) to the understanding of software improvements and evolution.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2195-1721
2195-1721
DOI:10.1186/s40411-018-0056-2