A study of silicon p-n structures with mono- and multifacial photosensitive surfaces
Increase in the efficiency and reduction of silicon consumption in production of solar cells are relevant problems. Designing two and three facial solar cells can be seen as a solution for such tasks. Compared to usual SC, the output power of two and three facial solar cells exceeds by 1.72 times by...
Uložené v:
| Vydané v: | Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki Ročník 22; číslo 1; s. 25 - 32 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
ITMO University
01.12.2024
|
| Predmet: | |
| ISSN: | 2226-1494, 2500-0373 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Increase in the efficiency and reduction of silicon consumption in production of solar cells are relevant problems. Designing two and three facial solar cells can be seen as a solution for such tasks. Compared to usual SC, the output power of two and three facial solar cells exceeds by 1.72 times by 2.81 times, respectively. Illumination of solar cells with high intensity light makes the temperature of its heating an important characteristic. Therefore, the paper investigates the influence of temperature on properties of multifacial solar cells. We defined the nature of change of temperature coefficients for the main photovoltaic parameters that are inherent to silicon solar cells under various (one, two and three facial) conditions of lighting. Temperature coefficients of three facial solar cells are 2.52·10–3 V/K for open circuit voltage and 1.8·10–3 K–1 for fill factor of I-V. At temperature change of SC from 300 K to 350 K, the density of short circuit current decreases only by 4 %. |
|---|---|
| ISSN: | 2226-1494 2500-0373 |
| DOI: | 10.17586/2226-1494-2022-22-1-25-32 |