Multiobjective Evolution of Fuzzy Rough Neural Network via Distributed Parallelism for Stock Prediction
Fuzzy rough theory can describe real-world situations in a mathematically effective and interpretable way, while evolutionary neural networks can be utilized to solve complex problems. Combining them with these complementary capabilities may lead to evolutionary fuzzy rough neural network with the i...
Saved in:
| Published in: | IEEE transactions on fuzzy systems Vol. 28; no. 5; pp. 939 - 952 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1063-6706, 1941-0034 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Fuzzy rough theory can describe real-world situations in a mathematically effective and interpretable way, while evolutionary neural networks can be utilized to solve complex problems. Combining them with these complementary capabilities may lead to evolutionary fuzzy rough neural network with the interpretability and prediction capability. In this article, we propose modifications to the existing models of fuzzy rough neural network and then develop a powerful evolutionary framework for fuzzy rough neural networks by inheriting the merits of both the aforementioned systems. We first introduce rough neurons and enhance the consequence nodes, and further integrate the interval type-2 fuzzy set into the existing fuzzy rough neural network model. Thus, several modified fuzzy rough neural network models are proposed. While simultaneously considering the objectives of prediction precision and network simplicity , each model is transformed into a multiobjective optimization problem by encoding the structure, membership functions, and the parameters of the network. To solve these optimization problems, distributed parallel multiobjective evolutionary algorithms are proposed. We enhance the optimization processes with several measures including optimizer replacement and parameter adaption. In the distributed parallel environment, the tedious and time-consuming neural network optimization can be alleviated by numerous computational resources, significantly reducing the computational time. Through experimental verification on complex stock time series prediction tasks, the proposed optimization algorithms and the modified fuzzy rough neural network models exhibit significant improvements the existing fuzzy rough neural network and the long short-term memory network. |
|---|---|
| AbstractList | Fuzzy rough theory can describe real-world situations in a mathematically effective and interpretable way, while evolutionary neural networks can be utilized to solve complex problems. Combining them with these complementary capabilities may lead to evolutionary fuzzy rough neural network with the interpretability and prediction capability. In this article, we propose modifications to the existing models of fuzzy rough neural network and then develop a powerful evolutionary framework for fuzzy rough neural networks by inheriting the merits of both the aforementioned systems. We first introduce rough neurons and enhance the consequence nodes, and further integrate the interval type-2 fuzzy set into the existing fuzzy rough neural network model. Thus, several modified fuzzy rough neural network models are proposed. While simultaneously considering the objectives of prediction precision and network simplicity , each model is transformed into a multiobjective optimization problem by encoding the structure, membership functions, and the parameters of the network. To solve these optimization problems, distributed parallel multiobjective evolutionary algorithms are proposed. We enhance the optimization processes with several measures including optimizer replacement and parameter adaption. In the distributed parallel environment, the tedious and time-consuming neural network optimization can be alleviated by numerous computational resources, significantly reducing the computational time. Through experimental verification on complex stock time series prediction tasks, the proposed optimization algorithms and the modified fuzzy rough neural network models exhibit significant improvements the existing fuzzy rough neural network and the long short-term memory network. |
| Author | Cao, Bin Lv, Zhihan Gu, Yu Yang, Peng Zhao, Jianwei Halgamuge, Saman K. |
| Author_xml | – sequence: 1 givenname: Bin orcidid: 0000-0003-4558-9501 surname: Cao fullname: Cao, Bin email: caobin@scse.hebut.edu.cn organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China – sequence: 2 givenname: Jianwei orcidid: 0000-0003-0424-4056 surname: Zhao fullname: Zhao, Jianwei email: 201422102003@stu.hebut.edu.cn organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China – sequence: 3 givenname: Zhihan orcidid: 0000-0003-2525-3074 surname: Lv fullname: Lv, Zhihan email: lvzhihan@gmail.com organization: School of Data Science and Software Engineering, Qingdao University, Qingdao, China – sequence: 4 givenname: Yu orcidid: 0000-0003-0073-1383 surname: Gu fullname: Gu, Yu email: guyu@mail.buct.edu.cn organization: Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China – sequence: 5 givenname: Peng orcidid: 0000-0002-1129-8485 surname: Yang fullname: Yang, Peng email: yangp@hebut.edu.cn organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China – sequence: 6 givenname: Saman K. orcidid: 0000-0002-2536-4930 surname: Halgamuge fullname: Halgamuge, Saman K. email: saman@unimelb.edu.au organization: School of Electronics and Information Engineering, Hebei University of Technology, Tianjin, China |
| BookMark | eNp9UD1PwzAQtRBIQOEPwGKJOcU-x7E9okIBqXwIysISOa4NLmkNjlPU_npSihgYmN7p7n3o3j7anoe5ReiIkj6lRJ2Oh0_Pz30gQPqgBAARW2iPqpxmhLB8u5tJwbJCkGIX7TfNlBCacyr30MtNWycfqqk1yS8svliEuu0WcxwcHrar1RI_hPblFd_aNuq6g_QZ4hteeI3PfZOir9pkJ_hed9fa1r6ZYRcifkzBvOH7aCferO0O0I7TdWMPf7CHnoYX48FVNrq7vB6cjTIDiqfMWSHBKKKFhjyHSljJmTFUAnWM5pQXtOLOSa2AqsIVwIEVDHilYMKcqlgPnWx832P4aG2Tymlo47yLLIEpoYikgncs2LBMDE0TrSvfo5_puCwpKdeFlt-FlutCy59CO5H8IzI-6fVzKWpf_y893ki9tfY3SypZcJGzL_f1hn4 |
| CODEN | IEFSEV |
| CitedBy_id | crossref_primary_10_1016_j_patcog_2024_110652 crossref_primary_10_1109_TFUZZ_2020_3026140 crossref_primary_10_1520_JTE20230026 crossref_primary_10_1007_s00366_020_01277_4 crossref_primary_10_1016_j_eti_2021_101439 crossref_primary_10_1109_TITS_2021_3059455 crossref_primary_10_1108_HFF_09_2020_0555 crossref_primary_10_7717_peerj_cs_591 crossref_primary_10_1016_j_seta_2023_103414 crossref_primary_10_1016_j_neucom_2022_01_099 crossref_primary_10_1038_s41598_024_72060_4 crossref_primary_10_1007_s10489_022_03606_0 crossref_primary_10_1109_TNNLS_2022_3186671 crossref_primary_10_1016_j_micpro_2020_103817 crossref_primary_10_1016_j_oceaneng_2020_108415 crossref_primary_10_1111_jfr3_12683 crossref_primary_10_1371_journal_pone_0307381 crossref_primary_10_3233_JIFS_189441 crossref_primary_10_1007_s11432_023_4011_4 crossref_primary_10_1016_j_knosys_2024_111630 crossref_primary_10_1007_s10668_020_01053_w crossref_primary_10_1080_15567036_2021_1917730 crossref_primary_10_1016_j_ins_2023_120007 crossref_primary_10_1016_j_knosys_2020_106425 crossref_primary_10_1007_s10462_023_10601_5 crossref_primary_10_1016_j_asoc_2024_112450 crossref_primary_10_1080_00397911_2020_1856878 crossref_primary_10_3390_en14051331 crossref_primary_10_1007_s10462_024_10976_z crossref_primary_10_1016_j_measurement_2021_108967 crossref_primary_10_1016_j_egyr_2021_09_150 crossref_primary_10_1016_j_engappai_2023_106781 crossref_primary_10_1080_00397911_2020_1861301 crossref_primary_10_1080_10916466_2020_1863986 crossref_primary_10_4271_12_07_03_0022 crossref_primary_10_1016_j_egyr_2024_02_046 crossref_primary_10_1109_TFUZZ_2021_3119108 crossref_primary_10_1007_s00366_020_01140_6 crossref_primary_10_1007_s00366_020_01144_2 crossref_primary_10_1007_s11036_022_01919_5 crossref_primary_10_3390_axioms14030196 crossref_primary_10_1007_s10614_021_10130_9 crossref_primary_10_1007_s00366_020_01215_4 crossref_primary_10_1016_j_inffus_2023_02_007 crossref_primary_10_1016_j_heliyon_2024_e25107 crossref_primary_10_3390_fractalfract7010012 crossref_primary_10_1007_s11276_021_02749_1 crossref_primary_10_1109_TFUZZ_2022_3141761 crossref_primary_10_1080_03610918_2022_2116050 crossref_primary_10_1007_s00366_020_01110_y crossref_primary_10_1007_s11042_024_19054_6 crossref_primary_10_1007_s10973_020_10452_0 crossref_primary_10_1109_TFUZZ_2024_3387429 crossref_primary_10_1080_10106049_2021_1892210 crossref_primary_10_1109_ACCESS_2020_3034754 crossref_primary_10_1109_TFUZZ_2022_3190625 crossref_primary_10_1109_TII_2023_3245640 crossref_primary_10_1016_j_measurement_2020_108837 crossref_primary_10_1080_15567036_2021_1897194 crossref_primary_10_1109_TSMC_2020_3034180 crossref_primary_10_1007_s00366_021_01288_9 crossref_primary_10_1016_j_scs_2020_102681 crossref_primary_10_1080_00397911_2021_1884882 crossref_primary_10_3390_math13071156 crossref_primary_10_1007_s10462_022_10355_6 crossref_primary_10_3390_biomimetics8030268 crossref_primary_10_1016_j_eswa_2020_114369 crossref_primary_10_1007_s11269_021_02815_5 crossref_primary_10_1080_00397911_2021_1936057 crossref_primary_10_1016_j_eswa_2020_114122 crossref_primary_10_1016_j_eswa_2020_114243 crossref_primary_10_1007_s10723_024_09741_x crossref_primary_10_1109_JIOT_2023_3321889 crossref_primary_10_1007_s00500_023_09032_9 crossref_primary_10_1007_s11277_021_08446_8 crossref_primary_10_1109_TNNLS_2024_3388103 crossref_primary_10_1016_j_compstruct_2020_112990 crossref_primary_10_1016_j_jocs_2024_102515 crossref_primary_10_1088_1361_6501_adf133 crossref_primary_10_1109_TITS_2022_3232242 crossref_primary_10_1016_j_chaos_2021_111304 crossref_primary_10_1109_TFUZZ_2021_3075842 crossref_primary_10_1016_j_ins_2024_120479 crossref_primary_10_1007_s10489_022_04360_z crossref_primary_10_1109_TFUZZ_2024_3397728 crossref_primary_10_1177_10519815241295943 crossref_primary_10_3390_sym14091833 crossref_primary_10_1007_s00366_020_01210_9 crossref_primary_10_1007_s00366_020_01218_1 crossref_primary_10_1063_5_0227689 crossref_primary_10_1371_journal_pone_0301522 crossref_primary_10_1016_j_micpro_2020_103731 crossref_primary_10_1080_00397911_2021_1894578 crossref_primary_10_1109_TII_2022_3144016 crossref_primary_10_1007_s11042_023_17719_2 crossref_primary_10_1145_3502289 crossref_primary_10_1080_00397911_2021_1894450 crossref_primary_10_1145_3729531 crossref_primary_10_3390_sym13050881 crossref_primary_10_1016_j_engappai_2024_108598 crossref_primary_10_3390_en14041196 crossref_primary_10_1016_j_frl_2022_103025 crossref_primary_10_1049_rpg2_13140 crossref_primary_10_1007_s00500_024_09639_6 crossref_primary_10_1016_j_eswa_2022_118908 crossref_primary_10_1016_j_jksuci_2024_101984 crossref_primary_10_1109_TFUZZ_2024_3407739 crossref_primary_10_1007_s00366_021_01289_8 crossref_primary_10_1093_jcde_qwad073 crossref_primary_10_3390_math12131950 crossref_primary_10_3390_mi16050594 crossref_primary_10_1016_j_patcog_2023_109733 crossref_primary_10_3390_jmse11112184 crossref_primary_10_3390_w16203001 crossref_primary_10_3390_s24144716 crossref_primary_10_1016_j_egyr_2020_12_013 crossref_primary_10_1007_s10723_023_09725_3 crossref_primary_10_1371_journal_pone_0306483 crossref_primary_10_1016_j_asoc_2020_106806 crossref_primary_10_1109_TNNLS_2022_3148194 crossref_primary_10_3390_en14061649 crossref_primary_10_1007_s10910_023_01555_8 crossref_primary_10_3390_math12172656 crossref_primary_10_1007_s10973_021_10696_4 crossref_primary_10_1007_s00521_024_10214_1 crossref_primary_10_1016_j_asoc_2021_107760 crossref_primary_10_1109_ACCESS_2020_3033279 crossref_primary_10_3233_JIFS_219088 crossref_primary_10_1109_ACCESS_2022_3223352 crossref_primary_10_3390_su13063198 crossref_primary_10_1016_j_asoc_2023_111191 crossref_primary_10_1109_ACCESS_2024_3498893 crossref_primary_10_1007_s11276_021_02747_3 crossref_primary_10_1109_JIOT_2020_3033473 crossref_primary_10_1002_aisy_202300406 crossref_primary_10_32604_cmes_2023_030391 crossref_primary_10_1016_j_fss_2020_11_019 crossref_primary_10_1007_s10614_023_10464_6 crossref_primary_10_1007_s11036_022_01921_x crossref_primary_10_1080_15397734_2020_1815543 crossref_primary_10_1007_s00366_020_01130_8 crossref_primary_10_1007_s00366_020_01119_3 crossref_primary_10_1016_j_chaos_2024_115530 crossref_primary_10_1007_s42979_024_02902_5 crossref_primary_10_1080_10584587_2021_1911255 crossref_primary_10_1109_TFUZZ_2022_3163909 crossref_primary_10_3390_math11143220 crossref_primary_10_1109_TIM_2024_3485438 crossref_primary_10_3390_en16248044 crossref_primary_10_1016_j_micpro_2020_103800 crossref_primary_10_1016_j_micpro_2021_103822 crossref_primary_10_1016_j_knosys_2020_106642 crossref_primary_10_1007_s00366_021_01282_1 crossref_primary_10_1016_j_eswa_2022_117589 crossref_primary_10_1016_j_enconman_2020_113751 crossref_primary_10_1007_s11276_021_02706_y crossref_primary_10_1007_s12517_022_10541_4 crossref_primary_10_3390_bdcc8090099 crossref_primary_10_1016_j_eswa_2024_124192 crossref_primary_10_1093_comnet_cnad053 crossref_primary_10_3233_JIFS_189436 crossref_primary_10_3233_JIFS_219084 |
| Cites_doi | 10.1016/S0925-2312(00)00334-9 10.1109/FUZZ-IEEE.2017.8015457 10.1109/TEVC.2008.927706 10.1145/3065386 10.1109/TEVC.2009.2015575 10.1109/TNNLS.2017.2695223 10.1109/CSE-EUC.2017.215 10.1016/j.matcom.2019.01.001 10.1109/TII.2017.2676000 10.1109/ACCESS.2019.2904630 10.1109/TNNLS.2017.2770179 10.1109/TFUZZ.2017.2785812 10.1162/neco.1997.9.8.1735 10.1016/j.inffus.2017.10.006 10.1109/TII.2019.2961340 10.1109/TEVC.2009.2014613 10.1109/CVPR.2016.90 10.1109/TFUZZ.2018.2878156 10.1016/j.swevo.2019.04.008 10.1007/978-3-319-95312-0_2 10.1109/TEVC.2007.892759 10.1007/s00500-013-1139-y 10.1007/s10614-017-9665-9 10.1109/JAS.2019.1911348 10.1109/TPAMI.2016.2577031 10.1109/TKDE.2003.1161579 10.1016/j.future.2017.10.015 10.1109/TII.2018.2884951 10.1016/j.neunet.2017.08.007 10.1109/TFUZZ.2018.2858749 10.1109/4235.996017 10.1007/978-3-319-51370-6 10.1109/TFUZZ.2019.2892354 10.1109/TCYB.2018.2834356 10.1038/323533a0 10.1007/978-3-319-09072-6 10.1016/j.swevo.2019.100626 10.1016/S0020-0255(97)10045-7 10.1016/0165-0114(94)90242-9 10.1109/72.572107 10.1109/5.784219 10.1007/3-540-58484-6_269 10.1016/j.swevo.2011.02.002 10.1109/TNNLS.2013.2253799 10.1109/TNNLS.2015.2469673 10.1109/TII.2018.2803758 10.1109/CEC.2013.6557555 10.1109/72.728363 10.1109/TSMCB.2011.2148173 10.1016/j.asoc.2015.04.061 10.1007/978-3-540-89921-1 10.1023/A:1008202821328 10.1007/s00500-008-0323-y |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TFUZZ.2020.2972207 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0034 |
| EndPage | 952 |
| ExternalDocumentID | 10_1109_TFUZZ_2020_2972207 8986574 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61976242 funderid: 10.13039/501100001809 – fundername: Sun Yat-sen University grantid: 2018002 funderid: 10.13039/501100002402 – fundername: Guangdong Province Key Laboratory of Computational Science |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c295t-fe782c90a7a2442b7e853cc1821f3141561b5ff8a92196f625236325b92d3f9b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 194 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000532212600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6706 |
| IngestDate | Sun Jun 29 16:54:59 EDT 2025 Sat Nov 29 03:12:39 EST 2025 Tue Nov 18 21:31:35 EST 2025 Wed Aug 27 02:42:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-fe782c90a7a2442b7e853cc1821f3141561b5ff8a92196f625236325b92d3f9b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2525-3074 0000-0003-0073-1383 0000-0002-1129-8485 0000-0003-0424-4056 0000-0002-2536-4930 0000-0003-4558-9501 |
| PQID | 2397908175 |
| PQPubID | 85428 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TFUZZ_2020_2972207 proquest_journals_2397908175 ieee_primary_8986574 crossref_citationtrail_10_1109_TFUZZ_2020_2972207 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-01 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref53 ref52 ref55 ref11 ref17 ref16 ref19 ref51 ref50 ref46 ref45 kayacan (ref5) 2016 ref48 ref47 ref42 ref41 ref44 ref43 mendel (ref18) 2017 aliev (ref4) 2014 ref49 ref8 ref7 ref9 ref3 kingma (ref61) 2014 ref40 ref35 ref34 ref37 pal (ref14) 2017 ref36 ref30 ref33 ref32 sarkar (ref10) 0; 2 ref2 ref1 ref39 ref38 rumelhart (ref29) 1986; 323 takagi (ref6) 2000; 10 ser (ref31) 2019; 48 ref23 ref26 ye (ref24) 2008 ref20 ref22 deb (ref54) 1995; 9 ref21 ref28 ref27 ye (ref25) 2009; 31 ref60 |
| References_xml | – ident: ref17 doi: 10.1016/S0925-2312(00)00334-9 – ident: ref44 doi: 10.1109/FUZZ-IEEE.2017.8015457 – ident: ref30 doi: 10.1109/TEVC.2008.927706 – ident: ref34 doi: 10.1145/3065386 – ident: ref56 doi: 10.1109/TEVC.2009.2015575 – ident: ref42 doi: 10.1109/TNNLS.2017.2695223 – ident: ref1 doi: 10.1109/CSE-EUC.2017.215 – ident: ref13 doi: 10.1016/j.matcom.2019.01.001 – ident: ref45 doi: 10.1109/TII.2017.2676000 – ident: ref23 doi: 10.1109/ACCESS.2019.2904630 – ident: ref60 doi: 10.1109/TNNLS.2017.2770179 – ident: ref7 doi: 10.1109/TFUZZ.2017.2785812 – volume: 10 start-page: 647 year: 2000 ident: ref6 article-title: Fusion technology of neural networks and fuzzy systems: A chronicled progression from the laboratory to our daily lives publication-title: J Appl Math Comput Sci – ident: ref59 doi: 10.1162/neco.1997.9.8.1735 – ident: ref2 doi: 10.1016/j.inffus.2017.10.006 – ident: ref38 doi: 10.1109/TII.2019.2961340 – volume: 31 start-page: 2988 year: 2009 ident: ref25 article-title: Structure and parameters optimization of fuzzy rough neural network publication-title: Syst Eng Electron – ident: ref52 doi: 10.1109/TEVC.2009.2014613 – volume: 9 start-page: 115 year: 1995 ident: ref54 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst – ident: ref35 doi: 10.1109/CVPR.2016.90 – year: 2014 ident: ref61 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref33 doi: 10.1109/TFUZZ.2018.2878156 – volume: 48 start-page: 220 year: 2019 ident: ref31 article-title: Bio-inspired computation: Where we stand and what's next publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2019.04.008 – ident: ref27 doi: 10.1007/978-3-319-95312-0_2 – ident: ref50 doi: 10.1109/TEVC.2007.892759 – ident: ref20 doi: 10.1007/s00500-013-1139-y – start-page: 107 year: 2017 ident: ref14 publication-title: Fuzzy Rough Granular Neural Network and Unsupervised Feature Selection – ident: ref26 doi: 10.1007/s10614-017-9665-9 – ident: ref22 doi: 10.1109/JAS.2019.1911348 – ident: ref36 doi: 10.1109/TPAMI.2016.2577031 – ident: ref12 doi: 10.1109/TKDE.2003.1161579 – ident: ref47 doi: 10.1016/j.future.2017.10.015 – ident: ref39 doi: 10.1109/TII.2018.2884951 – ident: ref15 doi: 10.1016/j.neunet.2017.08.007 – ident: ref8 doi: 10.1109/TFUZZ.2018.2858749 – ident: ref51 doi: 10.1109/4235.996017 – year: 2017 ident: ref18 publication-title: Uncertain Rule-Based Fuzzy Logic Systems doi: 10.1007/978-3-319-51370-6 – ident: ref19 doi: 10.1109/TFUZZ.2019.2892354 – ident: ref28 doi: 10.1109/TCYB.2018.2834356 – volume: 323 start-page: 533 year: 1986 ident: ref29 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – year: 2014 ident: ref4 publication-title: Type-2 Fuzzy Neural Networks and Their Applications doi: 10.1007/978-3-319-09072-6 – ident: ref49 doi: 10.1016/j.swevo.2019.100626 – year: 2008 ident: ref24 article-title: Fuzzy rough neural network modeling and its applications – volume: 2 start-page: 2028 year: 0 ident: ref10 article-title: Fuzzy-rough membership functions publication-title: Proc IEEE Int Conf Syst Man Cybern (Cat No 98CH36218) – ident: ref16 doi: 10.1016/S0020-0255(97)10045-7 – ident: ref3 doi: 10.1016/0165-0114(94)90242-9 – ident: ref40 doi: 10.1109/72.572107 – ident: ref32 doi: 10.1109/5.784219 – ident: ref48 doi: 10.1007/3-540-58484-6_269 – ident: ref57 doi: 10.1016/j.swevo.2011.02.002 – ident: ref21 doi: 10.1109/TNNLS.2013.2253799 – ident: ref41 doi: 10.1109/TNNLS.2015.2469673 – ident: ref46 doi: 10.1109/TII.2018.2803758 – ident: ref53 doi: 10.1109/CEC.2013.6557555 – ident: ref11 doi: 10.1109/72.728363 – ident: ref43 doi: 10.1109/TSMCB.2011.2148173 – ident: ref37 doi: 10.1016/j.asoc.2015.04.061 – ident: ref9 doi: 10.1007/978-3-540-89921-1 – year: 2016 ident: ref5 publication-title: Fuzzy Neural Networks for Real time Control Applications – ident: ref55 doi: 10.1023/A:1008202821328 – ident: ref58 doi: 10.1007/s00500-008-0323-y |
| SSID | ssj0014518 |
| Score | 2.6544712 |
| Snippet | Fuzzy rough theory can describe real-world situations in a mathematically effective and interpretable way, while evolutionary neural networks can be utilized... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 939 |
| SubjectTerms | Algorithms Artificial neural networks Biological neural networks Computing time Distributed parallelism Evolutionary algorithms evolutionary neural network Fuzzy logic fuzzy rough neural network (FRNN) Fuzzy sets Mathematical models multiobjective evolution Multiple objective analysis Network management systems Neural networks Neurons Optimization Parameters Rough sets stock price prediction Task complexity |
| Title | Multiobjective Evolution of Fuzzy Rough Neural Network via Distributed Parallelism for Stock Prediction |
| URI | https://ieeexplore.ieee.org/document/8986574 https://www.proquest.com/docview/2397908175 |
| Volume | 28 |
| WOSCitedRecordID | wos000532212600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH6oeNCDuzhu5OBNq23aNM1R1MGDDIMb4qWk6YuMjDMyG-ivNy_tDIIieOsheZR-yVv6lg_gKJMYCyOiwJkWDBKMRJBZI4ICMeMmTmP0s_Qeb2SrlT09qfYcnMx6YRDRF5_hKT36XH7ZN2P6VXaWqSwVMpmHeSnTqldrljFIRFS1vaVxkMownTbIhOrsvvnw_OxCQR6eciU5J-rYb0bIs6r8UMXevjRX__dma7BS-5HsvAJ-HeawtwGrU44GVl_ZDVj-NnBwE158v22_eK3UHLua1CeP9S1rjj8_P9gt0fYwmtnhxLeqInE26Wh2SSN2iR0LS9bWA-Jg6XaGb8x5vexu5NQqaw8o60PituCheXV_cR3UVAuB4UqMAovOUzAq1FI7e88Lic6MG-OCj8jGEQV5USGszbRyGi61LmjiDkcuCsXL2Koi3oaFXr-HO8BkqZW1lCbGIpFKZ5Etw1JrWbjIKMGkAdH02-emnkNOdBjd3Mcjoco9Xjnhldd4NeB4tue9msLx5-pNQmi2sganAftTiPP6og5zTnlN5xZJsfv7rj1YItlVjeM-LIwGYzyARTMZdYaDQ38GvwC9gtoU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD4CNontYTBgWjcGfuBthCZOHMeP00YFolQVKwjxEjnOMSpi7dSbNH79fBy3Qto0aW958CXKZ59LzuUDOCokpsKIJHKqBaMMExEV1oioQiy4SfMUfS-9m67s9YrbW9Vfg-NVLQwi-uQzPKFHH8uvx2ZOv8rahSpyIbN1eEHMWaFaaxUzyETSFL7laZTLOF-WyMSqPehc3905Z5DHJ1xJzok89pka8rwqfwhjr2E6W__3btvwJliS7EsD_VtYw9EObC1ZGli4tDvw-lnLwV249xW34-qhEXTsdBHOHhtb1pk_Pf1iV0Tcw6hrh1u-16SJs8VQs2_UZJf4sbBmfT0hFpbH4fQHc3Yv-z5zgpX1JxT3oeX24LpzOvh6FgWyhchwJWaRRWcrGBVrqZ3G55VEp8iNce5HYtOE3LykEtYWWjkZl1vnNnGHJBeV4nVqVZW-g43ReITvgclaK2spUIxVJpUuElvHtdaycr5RhlkLkuW3L03oRE6EGI-l90hiVXq8SsKrDHi14PNqzs-mD8c_R-8SQquRAZwW7C8hLsNVnZacIpvOMJLiw99nHcLm2eCyW3bPexcf4RXt02Q87sPGbDLHT_DSLGbD6eTAn8ffQHfdXQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiobjective+Evolution+of+Fuzzy+Rough+Neural+Network+via+Distributed+Parallelism+for+Stock+Prediction&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Cao%2C+Bin&rft.au=Zhao%2C+Jianwei&rft.au=Lv%2C+Zhihan&rft.au=Gu%2C+Yu&rft.date=2020-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=28&rft.issue=5&rft.spage=939&rft_id=info:doi/10.1109%2FTFUZZ.2020.2972207&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |