Multiobjective Evolution of Fuzzy Rough Neural Network via Distributed Parallelism for Stock Prediction

Fuzzy rough theory can describe real-world situations in a mathematically effective and interpretable way, while evolutionary neural networks can be utilized to solve complex problems. Combining them with these complementary capabilities may lead to evolutionary fuzzy rough neural network with the i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on fuzzy systems Vol. 28; no. 5; pp. 939 - 952
Main Authors: Cao, Bin, Zhao, Jianwei, Lv, Zhihan, Gu, Yu, Yang, Peng, Halgamuge, Saman K.
Format: Journal Article
Language:English
Published: New York IEEE 01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1063-6706, 1941-0034
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Fuzzy rough theory can describe real-world situations in a mathematically effective and interpretable way, while evolutionary neural networks can be utilized to solve complex problems. Combining them with these complementary capabilities may lead to evolutionary fuzzy rough neural network with the interpretability and prediction capability. In this article, we propose modifications to the existing models of fuzzy rough neural network and then develop a powerful evolutionary framework for fuzzy rough neural networks by inheriting the merits of both the aforementioned systems. We first introduce rough neurons and enhance the consequence nodes, and further integrate the interval type-2 fuzzy set into the existing fuzzy rough neural network model. Thus, several modified fuzzy rough neural network models are proposed. While simultaneously considering the objectives of prediction precision and network simplicity , each model is transformed into a multiobjective optimization problem by encoding the structure, membership functions, and the parameters of the network. To solve these optimization problems, distributed parallel multiobjective evolutionary algorithms are proposed. We enhance the optimization processes with several measures including optimizer replacement and parameter adaption. In the distributed parallel environment, the tedious and time-consuming neural network optimization can be alleviated by numerous computational resources, significantly reducing the computational time. Through experimental verification on complex stock time series prediction tasks, the proposed optimization algorithms and the modified fuzzy rough neural network models exhibit significant improvements the existing fuzzy rough neural network and the long short-term memory network.
AbstractList Fuzzy rough theory can describe real-world situations in a mathematically effective and interpretable way, while evolutionary neural networks can be utilized to solve complex problems. Combining them with these complementary capabilities may lead to evolutionary fuzzy rough neural network with the interpretability and prediction capability. In this article, we propose modifications to the existing models of fuzzy rough neural network and then develop a powerful evolutionary framework for fuzzy rough neural networks by inheriting the merits of both the aforementioned systems. We first introduce rough neurons and enhance the consequence nodes, and further integrate the interval type-2 fuzzy set into the existing fuzzy rough neural network model. Thus, several modified fuzzy rough neural network models are proposed. While simultaneously considering the objectives of prediction precision and network simplicity , each model is transformed into a multiobjective optimization problem by encoding the structure, membership functions, and the parameters of the network. To solve these optimization problems, distributed parallel multiobjective evolutionary algorithms are proposed. We enhance the optimization processes with several measures including optimizer replacement and parameter adaption. In the distributed parallel environment, the tedious and time-consuming neural network optimization can be alleviated by numerous computational resources, significantly reducing the computational time. Through experimental verification on complex stock time series prediction tasks, the proposed optimization algorithms and the modified fuzzy rough neural network models exhibit significant improvements the existing fuzzy rough neural network and the long short-term memory network.
Author Cao, Bin
Lv, Zhihan
Gu, Yu
Yang, Peng
Zhao, Jianwei
Halgamuge, Saman K.
Author_xml – sequence: 1
  givenname: Bin
  orcidid: 0000-0003-4558-9501
  surname: Cao
  fullname: Cao, Bin
  email: caobin@scse.hebut.edu.cn
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
– sequence: 2
  givenname: Jianwei
  orcidid: 0000-0003-0424-4056
  surname: Zhao
  fullname: Zhao, Jianwei
  email: 201422102003@stu.hebut.edu.cn
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
– sequence: 3
  givenname: Zhihan
  orcidid: 0000-0003-2525-3074
  surname: Lv
  fullname: Lv, Zhihan
  email: lvzhihan@gmail.com
  organization: School of Data Science and Software Engineering, Qingdao University, Qingdao, China
– sequence: 4
  givenname: Yu
  orcidid: 0000-0003-0073-1383
  surname: Gu
  fullname: Gu, Yu
  email: guyu@mail.buct.edu.cn
  organization: Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
– sequence: 5
  givenname: Peng
  orcidid: 0000-0002-1129-8485
  surname: Yang
  fullname: Yang, Peng
  email: yangp@hebut.edu.cn
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
– sequence: 6
  givenname: Saman K.
  orcidid: 0000-0002-2536-4930
  surname: Halgamuge
  fullname: Halgamuge, Saman K.
  email: saman@unimelb.edu.au
  organization: School of Electronics and Information Engineering, Hebei University of Technology, Tianjin, China
BookMark eNp9UD1PwzAQtRBIQOEPwGKJOcU-x7E9okIBqXwIysISOa4NLmkNjlPU_npSihgYmN7p7n3o3j7anoe5ReiIkj6lRJ2Oh0_Pz30gQPqgBAARW2iPqpxmhLB8u5tJwbJCkGIX7TfNlBCacyr30MtNWycfqqk1yS8svliEuu0WcxwcHrar1RI_hPblFd_aNuq6g_QZ4hteeI3PfZOir9pkJ_hed9fa1r6ZYRcifkzBvOH7aCferO0O0I7TdWMPf7CHnoYX48FVNrq7vB6cjTIDiqfMWSHBKKKFhjyHSljJmTFUAnWM5pQXtOLOSa2AqsIVwIEVDHilYMKcqlgPnWx832P4aG2Tymlo47yLLIEpoYikgncs2LBMDE0TrSvfo5_puCwpKdeFlt-FlutCy59CO5H8IzI-6fVzKWpf_y893ki9tfY3SypZcJGzL_f1hn4
CODEN IEFSEV
CitedBy_id crossref_primary_10_1016_j_patcog_2024_110652
crossref_primary_10_1109_TFUZZ_2020_3026140
crossref_primary_10_1520_JTE20230026
crossref_primary_10_1007_s00366_020_01277_4
crossref_primary_10_1016_j_eti_2021_101439
crossref_primary_10_1109_TITS_2021_3059455
crossref_primary_10_1108_HFF_09_2020_0555
crossref_primary_10_7717_peerj_cs_591
crossref_primary_10_1016_j_seta_2023_103414
crossref_primary_10_1016_j_neucom_2022_01_099
crossref_primary_10_1038_s41598_024_72060_4
crossref_primary_10_1007_s10489_022_03606_0
crossref_primary_10_1109_TNNLS_2022_3186671
crossref_primary_10_1016_j_micpro_2020_103817
crossref_primary_10_1016_j_oceaneng_2020_108415
crossref_primary_10_1111_jfr3_12683
crossref_primary_10_1371_journal_pone_0307381
crossref_primary_10_3233_JIFS_189441
crossref_primary_10_1007_s11432_023_4011_4
crossref_primary_10_1016_j_knosys_2024_111630
crossref_primary_10_1007_s10668_020_01053_w
crossref_primary_10_1080_15567036_2021_1917730
crossref_primary_10_1016_j_ins_2023_120007
crossref_primary_10_1016_j_knosys_2020_106425
crossref_primary_10_1007_s10462_023_10601_5
crossref_primary_10_1016_j_asoc_2024_112450
crossref_primary_10_1080_00397911_2020_1856878
crossref_primary_10_3390_en14051331
crossref_primary_10_1007_s10462_024_10976_z
crossref_primary_10_1016_j_measurement_2021_108967
crossref_primary_10_1016_j_egyr_2021_09_150
crossref_primary_10_1016_j_engappai_2023_106781
crossref_primary_10_1080_00397911_2020_1861301
crossref_primary_10_1080_10916466_2020_1863986
crossref_primary_10_4271_12_07_03_0022
crossref_primary_10_1016_j_egyr_2024_02_046
crossref_primary_10_1109_TFUZZ_2021_3119108
crossref_primary_10_1007_s00366_020_01140_6
crossref_primary_10_1007_s00366_020_01144_2
crossref_primary_10_1007_s11036_022_01919_5
crossref_primary_10_3390_axioms14030196
crossref_primary_10_1007_s10614_021_10130_9
crossref_primary_10_1007_s00366_020_01215_4
crossref_primary_10_1016_j_inffus_2023_02_007
crossref_primary_10_1016_j_heliyon_2024_e25107
crossref_primary_10_3390_fractalfract7010012
crossref_primary_10_1007_s11276_021_02749_1
crossref_primary_10_1109_TFUZZ_2022_3141761
crossref_primary_10_1080_03610918_2022_2116050
crossref_primary_10_1007_s00366_020_01110_y
crossref_primary_10_1007_s11042_024_19054_6
crossref_primary_10_1007_s10973_020_10452_0
crossref_primary_10_1109_TFUZZ_2024_3387429
crossref_primary_10_1080_10106049_2021_1892210
crossref_primary_10_1109_ACCESS_2020_3034754
crossref_primary_10_1109_TFUZZ_2022_3190625
crossref_primary_10_1109_TII_2023_3245640
crossref_primary_10_1016_j_measurement_2020_108837
crossref_primary_10_1080_15567036_2021_1897194
crossref_primary_10_1109_TSMC_2020_3034180
crossref_primary_10_1007_s00366_021_01288_9
crossref_primary_10_1016_j_scs_2020_102681
crossref_primary_10_1080_00397911_2021_1884882
crossref_primary_10_3390_math13071156
crossref_primary_10_1007_s10462_022_10355_6
crossref_primary_10_3390_biomimetics8030268
crossref_primary_10_1016_j_eswa_2020_114369
crossref_primary_10_1007_s11269_021_02815_5
crossref_primary_10_1080_00397911_2021_1936057
crossref_primary_10_1016_j_eswa_2020_114122
crossref_primary_10_1016_j_eswa_2020_114243
crossref_primary_10_1007_s10723_024_09741_x
crossref_primary_10_1109_JIOT_2023_3321889
crossref_primary_10_1007_s00500_023_09032_9
crossref_primary_10_1007_s11277_021_08446_8
crossref_primary_10_1109_TNNLS_2024_3388103
crossref_primary_10_1016_j_compstruct_2020_112990
crossref_primary_10_1016_j_jocs_2024_102515
crossref_primary_10_1088_1361_6501_adf133
crossref_primary_10_1109_TITS_2022_3232242
crossref_primary_10_1016_j_chaos_2021_111304
crossref_primary_10_1109_TFUZZ_2021_3075842
crossref_primary_10_1016_j_ins_2024_120479
crossref_primary_10_1007_s10489_022_04360_z
crossref_primary_10_1109_TFUZZ_2024_3397728
crossref_primary_10_1177_10519815241295943
crossref_primary_10_3390_sym14091833
crossref_primary_10_1007_s00366_020_01210_9
crossref_primary_10_1007_s00366_020_01218_1
crossref_primary_10_1063_5_0227689
crossref_primary_10_1371_journal_pone_0301522
crossref_primary_10_1016_j_micpro_2020_103731
crossref_primary_10_1080_00397911_2021_1894578
crossref_primary_10_1109_TII_2022_3144016
crossref_primary_10_1007_s11042_023_17719_2
crossref_primary_10_1145_3502289
crossref_primary_10_1080_00397911_2021_1894450
crossref_primary_10_1145_3729531
crossref_primary_10_3390_sym13050881
crossref_primary_10_1016_j_engappai_2024_108598
crossref_primary_10_3390_en14041196
crossref_primary_10_1016_j_frl_2022_103025
crossref_primary_10_1049_rpg2_13140
crossref_primary_10_1007_s00500_024_09639_6
crossref_primary_10_1016_j_eswa_2022_118908
crossref_primary_10_1016_j_jksuci_2024_101984
crossref_primary_10_1109_TFUZZ_2024_3407739
crossref_primary_10_1007_s00366_021_01289_8
crossref_primary_10_1093_jcde_qwad073
crossref_primary_10_3390_math12131950
crossref_primary_10_3390_mi16050594
crossref_primary_10_1016_j_patcog_2023_109733
crossref_primary_10_3390_jmse11112184
crossref_primary_10_3390_w16203001
crossref_primary_10_3390_s24144716
crossref_primary_10_1016_j_egyr_2020_12_013
crossref_primary_10_1007_s10723_023_09725_3
crossref_primary_10_1371_journal_pone_0306483
crossref_primary_10_1016_j_asoc_2020_106806
crossref_primary_10_1109_TNNLS_2022_3148194
crossref_primary_10_3390_en14061649
crossref_primary_10_1007_s10910_023_01555_8
crossref_primary_10_3390_math12172656
crossref_primary_10_1007_s10973_021_10696_4
crossref_primary_10_1007_s00521_024_10214_1
crossref_primary_10_1016_j_asoc_2021_107760
crossref_primary_10_1109_ACCESS_2020_3033279
crossref_primary_10_3233_JIFS_219088
crossref_primary_10_1109_ACCESS_2022_3223352
crossref_primary_10_3390_su13063198
crossref_primary_10_1016_j_asoc_2023_111191
crossref_primary_10_1109_ACCESS_2024_3498893
crossref_primary_10_1007_s11276_021_02747_3
crossref_primary_10_1109_JIOT_2020_3033473
crossref_primary_10_1002_aisy_202300406
crossref_primary_10_32604_cmes_2023_030391
crossref_primary_10_1016_j_fss_2020_11_019
crossref_primary_10_1007_s10614_023_10464_6
crossref_primary_10_1007_s11036_022_01921_x
crossref_primary_10_1080_15397734_2020_1815543
crossref_primary_10_1007_s00366_020_01130_8
crossref_primary_10_1007_s00366_020_01119_3
crossref_primary_10_1016_j_chaos_2024_115530
crossref_primary_10_1007_s42979_024_02902_5
crossref_primary_10_1080_10584587_2021_1911255
crossref_primary_10_1109_TFUZZ_2022_3163909
crossref_primary_10_3390_math11143220
crossref_primary_10_1109_TIM_2024_3485438
crossref_primary_10_3390_en16248044
crossref_primary_10_1016_j_micpro_2020_103800
crossref_primary_10_1016_j_micpro_2021_103822
crossref_primary_10_1016_j_knosys_2020_106642
crossref_primary_10_1007_s00366_021_01282_1
crossref_primary_10_1016_j_eswa_2022_117589
crossref_primary_10_1016_j_enconman_2020_113751
crossref_primary_10_1007_s11276_021_02706_y
crossref_primary_10_1007_s12517_022_10541_4
crossref_primary_10_3390_bdcc8090099
crossref_primary_10_1016_j_eswa_2024_124192
crossref_primary_10_1093_comnet_cnad053
crossref_primary_10_3233_JIFS_189436
crossref_primary_10_3233_JIFS_219084
Cites_doi 10.1016/S0925-2312(00)00334-9
10.1109/FUZZ-IEEE.2017.8015457
10.1109/TEVC.2008.927706
10.1145/3065386
10.1109/TEVC.2009.2015575
10.1109/TNNLS.2017.2695223
10.1109/CSE-EUC.2017.215
10.1016/j.matcom.2019.01.001
10.1109/TII.2017.2676000
10.1109/ACCESS.2019.2904630
10.1109/TNNLS.2017.2770179
10.1109/TFUZZ.2017.2785812
10.1162/neco.1997.9.8.1735
10.1016/j.inffus.2017.10.006
10.1109/TII.2019.2961340
10.1109/TEVC.2009.2014613
10.1109/CVPR.2016.90
10.1109/TFUZZ.2018.2878156
10.1016/j.swevo.2019.04.008
10.1007/978-3-319-95312-0_2
10.1109/TEVC.2007.892759
10.1007/s00500-013-1139-y
10.1007/s10614-017-9665-9
10.1109/JAS.2019.1911348
10.1109/TPAMI.2016.2577031
10.1109/TKDE.2003.1161579
10.1016/j.future.2017.10.015
10.1109/TII.2018.2884951
10.1016/j.neunet.2017.08.007
10.1109/TFUZZ.2018.2858749
10.1109/4235.996017
10.1007/978-3-319-51370-6
10.1109/TFUZZ.2019.2892354
10.1109/TCYB.2018.2834356
10.1038/323533a0
10.1007/978-3-319-09072-6
10.1016/j.swevo.2019.100626
10.1016/S0020-0255(97)10045-7
10.1016/0165-0114(94)90242-9
10.1109/72.572107
10.1109/5.784219
10.1007/3-540-58484-6_269
10.1016/j.swevo.2011.02.002
10.1109/TNNLS.2013.2253799
10.1109/TNNLS.2015.2469673
10.1109/TII.2018.2803758
10.1109/CEC.2013.6557555
10.1109/72.728363
10.1109/TSMCB.2011.2148173
10.1016/j.asoc.2015.04.061
10.1007/978-3-540-89921-1
10.1023/A:1008202821328
10.1007/s00500-008-0323-y
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2020.2972207
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 952
ExternalDocumentID 10_1109_TFUZZ_2020_2972207
8986574
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61976242
  funderid: 10.13039/501100001809
– fundername: Sun Yat-sen University
  grantid: 2018002
  funderid: 10.13039/501100002402
– fundername: Guangdong Province Key Laboratory of Computational Science
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-fe782c90a7a2442b7e853cc1821f3141561b5ff8a92196f625236325b92d3f9b3
IEDL.DBID RIE
ISICitedReferencesCount 194
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000532212600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Sun Jun 29 16:54:59 EDT 2025
Sat Nov 29 03:12:39 EST 2025
Tue Nov 18 21:31:35 EST 2025
Wed Aug 27 02:42:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-fe782c90a7a2442b7e853cc1821f3141561b5ff8a92196f625236325b92d3f9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2525-3074
0000-0003-0073-1383
0000-0002-1129-8485
0000-0003-0424-4056
0000-0002-2536-4930
0000-0003-4558-9501
PQID 2397908175
PQPubID 85428
PageCount 14
ParticipantIDs crossref_primary_10_1109_TFUZZ_2020_2972207
proquest_journals_2397908175
ieee_primary_8986574
crossref_citationtrail_10_1109_TFUZZ_2020_2972207
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref53
ref52
ref55
ref11
ref17
ref16
ref19
ref51
ref50
ref46
ref45
kayacan (ref5) 2016
ref48
ref47
ref42
ref41
ref44
ref43
mendel (ref18) 2017
aliev (ref4) 2014
ref49
ref8
ref7
ref9
ref3
kingma (ref61) 2014
ref40
ref35
ref34
ref37
pal (ref14) 2017
ref36
ref30
ref33
ref32
sarkar (ref10) 0; 2
ref2
ref1
ref39
ref38
rumelhart (ref29) 1986; 323
takagi (ref6) 2000; 10
ser (ref31) 2019; 48
ref23
ref26
ye (ref24) 2008
ref20
ref22
deb (ref54) 1995; 9
ref21
ref28
ref27
ye (ref25) 2009; 31
ref60
References_xml – ident: ref17
  doi: 10.1016/S0925-2312(00)00334-9
– ident: ref44
  doi: 10.1109/FUZZ-IEEE.2017.8015457
– ident: ref30
  doi: 10.1109/TEVC.2008.927706
– ident: ref34
  doi: 10.1145/3065386
– ident: ref56
  doi: 10.1109/TEVC.2009.2015575
– ident: ref42
  doi: 10.1109/TNNLS.2017.2695223
– ident: ref1
  doi: 10.1109/CSE-EUC.2017.215
– ident: ref13
  doi: 10.1016/j.matcom.2019.01.001
– ident: ref45
  doi: 10.1109/TII.2017.2676000
– ident: ref23
  doi: 10.1109/ACCESS.2019.2904630
– ident: ref60
  doi: 10.1109/TNNLS.2017.2770179
– ident: ref7
  doi: 10.1109/TFUZZ.2017.2785812
– volume: 10
  start-page: 647
  year: 2000
  ident: ref6
  article-title: Fusion technology of neural networks and fuzzy systems: A chronicled progression from the laboratory to our daily lives
  publication-title: J Appl Math Comput Sci
– ident: ref59
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref2
  doi: 10.1016/j.inffus.2017.10.006
– ident: ref38
  doi: 10.1109/TII.2019.2961340
– volume: 31
  start-page: 2988
  year: 2009
  ident: ref25
  article-title: Structure and parameters optimization of fuzzy rough neural network
  publication-title: Syst Eng Electron
– ident: ref52
  doi: 10.1109/TEVC.2009.2014613
– volume: 9
  start-page: 115
  year: 1995
  ident: ref54
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– ident: ref35
  doi: 10.1109/CVPR.2016.90
– year: 2014
  ident: ref61
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref33
  doi: 10.1109/TFUZZ.2018.2878156
– volume: 48
  start-page: 220
  year: 2019
  ident: ref31
  article-title: Bio-inspired computation: Where we stand and what's next
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2019.04.008
– ident: ref27
  doi: 10.1007/978-3-319-95312-0_2
– ident: ref50
  doi: 10.1109/TEVC.2007.892759
– ident: ref20
  doi: 10.1007/s00500-013-1139-y
– start-page: 107
  year: 2017
  ident: ref14
  publication-title: Fuzzy Rough Granular Neural Network and Unsupervised Feature Selection
– ident: ref26
  doi: 10.1007/s10614-017-9665-9
– ident: ref22
  doi: 10.1109/JAS.2019.1911348
– ident: ref36
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref12
  doi: 10.1109/TKDE.2003.1161579
– ident: ref47
  doi: 10.1016/j.future.2017.10.015
– ident: ref39
  doi: 10.1109/TII.2018.2884951
– ident: ref15
  doi: 10.1016/j.neunet.2017.08.007
– ident: ref8
  doi: 10.1109/TFUZZ.2018.2858749
– ident: ref51
  doi: 10.1109/4235.996017
– year: 2017
  ident: ref18
  publication-title: Uncertain Rule-Based Fuzzy Logic Systems
  doi: 10.1007/978-3-319-51370-6
– ident: ref19
  doi: 10.1109/TFUZZ.2019.2892354
– ident: ref28
  doi: 10.1109/TCYB.2018.2834356
– volume: 323
  start-page: 533
  year: 1986
  ident: ref29
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– year: 2014
  ident: ref4
  publication-title: Type-2 Fuzzy Neural Networks and Their Applications
  doi: 10.1007/978-3-319-09072-6
– ident: ref49
  doi: 10.1016/j.swevo.2019.100626
– year: 2008
  ident: ref24
  article-title: Fuzzy rough neural network modeling and its applications
– volume: 2
  start-page: 2028
  year: 0
  ident: ref10
  article-title: Fuzzy-rough membership functions
  publication-title: Proc IEEE Int Conf Syst Man Cybern (Cat No 98CH36218)
– ident: ref16
  doi: 10.1016/S0020-0255(97)10045-7
– ident: ref3
  doi: 10.1016/0165-0114(94)90242-9
– ident: ref40
  doi: 10.1109/72.572107
– ident: ref32
  doi: 10.1109/5.784219
– ident: ref48
  doi: 10.1007/3-540-58484-6_269
– ident: ref57
  doi: 10.1016/j.swevo.2011.02.002
– ident: ref21
  doi: 10.1109/TNNLS.2013.2253799
– ident: ref41
  doi: 10.1109/TNNLS.2015.2469673
– ident: ref46
  doi: 10.1109/TII.2018.2803758
– ident: ref53
  doi: 10.1109/CEC.2013.6557555
– ident: ref11
  doi: 10.1109/72.728363
– ident: ref43
  doi: 10.1109/TSMCB.2011.2148173
– ident: ref37
  doi: 10.1016/j.asoc.2015.04.061
– ident: ref9
  doi: 10.1007/978-3-540-89921-1
– year: 2016
  ident: ref5
  publication-title: Fuzzy Neural Networks for Real time Control Applications
– ident: ref55
  doi: 10.1023/A:1008202821328
– ident: ref58
  doi: 10.1007/s00500-008-0323-y
SSID ssj0014518
Score 2.6544712
Snippet Fuzzy rough theory can describe real-world situations in a mathematically effective and interpretable way, while evolutionary neural networks can be utilized...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 939
SubjectTerms Algorithms
Artificial neural networks
Biological neural networks
Computing time
Distributed parallelism
Evolutionary algorithms
evolutionary neural network
Fuzzy logic
fuzzy rough neural network (FRNN)
Fuzzy sets
Mathematical models
multiobjective evolution
Multiple objective analysis
Network management systems
Neural networks
Neurons
Optimization
Parameters
Rough sets
stock price prediction
Task complexity
Title Multiobjective Evolution of Fuzzy Rough Neural Network via Distributed Parallelism for Stock Prediction
URI https://ieeexplore.ieee.org/document/8986574
https://www.proquest.com/docview/2397908175
Volume 28
WOSCitedRecordID wos000532212600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH6oeNCDuzhu5OBNq23aNM1R1MGDDIMb4qWk6YuMjDMyG-ivNy_tDIIieOsheZR-yVv6lg_gKJMYCyOiwJkWDBKMRJBZI4ICMeMmTmP0s_Qeb2SrlT09qfYcnMx6YRDRF5_hKT36XH7ZN2P6VXaWqSwVMpmHeSnTqldrljFIRFS1vaVxkMownTbIhOrsvvnw_OxCQR6eciU5J-rYb0bIs6r8UMXevjRX__dma7BS-5HsvAJ-HeawtwGrU44GVl_ZDVj-NnBwE158v22_eK3UHLua1CeP9S1rjj8_P9gt0fYwmtnhxLeqInE26Wh2SSN2iR0LS9bWA-Jg6XaGb8x5vexu5NQqaw8o60PituCheXV_cR3UVAuB4UqMAovOUzAq1FI7e88Lic6MG-OCj8jGEQV5USGszbRyGi61LmjiDkcuCsXL2Koi3oaFXr-HO8BkqZW1lCbGIpFKZ5Etw1JrWbjIKMGkAdH02-emnkNOdBjd3Mcjoco9Xjnhldd4NeB4tue9msLx5-pNQmi2sganAftTiPP6og5zTnlN5xZJsfv7rj1YItlVjeM-LIwGYzyARTMZdYaDQ38GvwC9gtoU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD4CNontYTBgWjcGfuBthCZOHMeP00YFolQVKwjxEjnOMSpi7dSbNH79fBy3Qto0aW958CXKZ59LzuUDOCokpsKIJHKqBaMMExEV1oioQiy4SfMUfS-9m67s9YrbW9Vfg-NVLQwi-uQzPKFHH8uvx2ZOv8rahSpyIbN1eEHMWaFaaxUzyETSFL7laZTLOF-WyMSqPehc3905Z5DHJ1xJzok89pka8rwqfwhjr2E6W__3btvwJliS7EsD_VtYw9EObC1ZGli4tDvw-lnLwV249xW34-qhEXTsdBHOHhtb1pk_Pf1iV0Tcw6hrh1u-16SJs8VQs2_UZJf4sbBmfT0hFpbH4fQHc3Yv-z5zgpX1JxT3oeX24LpzOvh6FgWyhchwJWaRRWcrGBVrqZ3G55VEp8iNce5HYtOE3LykEtYWWjkZl1vnNnGHJBeV4nVqVZW-g43ReITvgclaK2spUIxVJpUuElvHtdaycr5RhlkLkuW3L03oRE6EGI-l90hiVXq8SsKrDHi14PNqzs-mD8c_R-8SQquRAZwW7C8hLsNVnZacIpvOMJLiw99nHcLm2eCyW3bPexcf4RXt02Q87sPGbDLHT_DSLGbD6eTAn8ffQHfdXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiobjective+Evolution+of+Fuzzy+Rough+Neural+Network+via+Distributed+Parallelism+for+Stock+Prediction&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Cao%2C+Bin&rft.au=Zhao%2C+Jianwei&rft.au=Lv%2C+Zhihan&rft.au=Gu%2C+Yu&rft.date=2020-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=28&rft.issue=5&rft.spage=939&rft_id=info:doi/10.1109%2FTFUZZ.2020.2972207&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon