Proximity-Based Unification: An Efficient Implementation Method

Unification is a central concept in logic systems based on the resolution principle. As well, in knowledge representation, proximity relations (i.e., reflexive, symmetric, fuzzy binary relations) are useful for introducing semantics into a syntactic level by modeling the semantic closeness of differ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on fuzzy systems Ročník 29; číslo 5; s. 1238 - 1251
Hlavní autoři: Julian-Iranzo, Pascual, Saenz-Perez, Fernando
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1063-6706, 1941-0034
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Unification is a central concept in logic systems based on the resolution principle. As well, in knowledge representation, proximity relations (i.e., reflexive, symmetric, fuzzy binary relations) are useful for introducing semantics into a syntactic level by modeling the semantic closeness of different syntactic objects and managing vague or imprecise information. Proximity relations, in combination with the unification algorithm, make possible expressing certain forms of approximate reasoning in a logic programming framework. In this article, we use proximity relations in the context of a (fuzzy) logic programming system, called Bousi <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula> Prolog , as a way of solving the limitations introduced by similarity relations (i.e., transitive proximity relations) to correctly represent fuzzy information. Recently, we introduced an accurate definition of proximity between expressions (terms or atomic formulas) and a new unification algorithm able to manage proximity relations properly. However, the so-called weak unification algorithm, which is an extension of Martelli and Montanari's unification algorithm supported by the new notion of proximity, does not have an efficient implementation. In this article, we present a method that facilitates such an efficient implementation, including an adaptation of the weak SLD resolution rule based on the new unification algorithm, and its integration and implementation into the fuzzy logic programming system Bousi <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula> Prolog . A performance analysis to show its efficiency is also presented.
AbstractList Unification is a central concept in logic systems based on the resolution principle. As well, in knowledge representation, proximity relations (i.e., reflexive, symmetric, fuzzy binary relations) are useful for introducing semantics into a syntactic level by modeling the semantic closeness of different syntactic objects and managing vague or imprecise information. Proximity relations, in combination with the unification algorithm, make possible expressing certain forms of approximate reasoning in a logic programming framework. In this article, we use proximity relations in the context of a (fuzzy) logic programming system, called Bousi <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula> Prolog , as a way of solving the limitations introduced by similarity relations (i.e., transitive proximity relations) to correctly represent fuzzy information. Recently, we introduced an accurate definition of proximity between expressions (terms or atomic formulas) and a new unification algorithm able to manage proximity relations properly. However, the so-called weak unification algorithm, which is an extension of Martelli and Montanari's unification algorithm supported by the new notion of proximity, does not have an efficient implementation. In this article, we present a method that facilitates such an efficient implementation, including an adaptation of the weak SLD resolution rule based on the new unification algorithm, and its integration and implementation into the fuzzy logic programming system Bousi <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula> Prolog . A performance analysis to show its efficiency is also presented.
Unification is a central concept in logic systems based on the resolution principle. As well, in knowledge representation, proximity relations (i.e., reflexive, symmetric, fuzzy binary relations) are useful for introducing semantics into a syntactic level by modeling the semantic closeness of different syntactic objects and managing vague or imprecise information. Proximity relations, in combination with the unification algorithm, make possible expressing certain forms of approximate reasoning in a logic programming framework. In this article, we use proximity relations in the context of a (fuzzy) logic programming system, called Bousi [Formula Omitted] Prolog , as a way of solving the limitations introduced by similarity relations (i.e., transitive proximity relations) to correctly represent fuzzy information. Recently, we introduced an accurate definition of proximity between expressions (terms or atomic formulas) and a new unification algorithm able to manage proximity relations properly. However, the so-called weak unification algorithm, which is an extension of Martelli and Montanari's unification algorithm supported by the new notion of proximity, does not have an efficient implementation. In this article, we present a method that facilitates such an efficient implementation, including an adaptation of the weak SLD resolution rule based on the new unification algorithm, and its integration and implementation into the fuzzy logic programming system Bousi [Formula Omitted] Prolog . A performance analysis to show its efficiency is also presented.
Author Julian-Iranzo, Pascual
Saenz-Perez, Fernando
Author_xml – sequence: 1
  givenname: Pascual
  orcidid: 0000-0002-6482-3220
  surname: Julian-Iranzo
  fullname: Julian-Iranzo, Pascual
  email: Pascual.Julian@uclm.es
  organization: Department of Information Technologies and Systems, University of Castilla-La Mancha,, Ciudad Real, Spain
– sequence: 2
  givenname: Fernando
  orcidid: 0000-0001-6075-4398
  surname: Saenz-Perez
  fullname: Saenz-Perez, Fernando
  email: fernan@sip.ucm.es
  organization: Department of Software Engineering and Artificial Intelligence, Universidad Complutense de Madrid,, Madrid, Spain
BookMark eNp9kEFPwkAQhTcGEwH9A3pp4rk4u9ttu14MElASjB7gwmWz7U7jErrFbUnk31so8eDB07zJvDeT-Qak5yqHhNxSGFEK8mE5W63XIwYMRkwmnDJ5QfpURjQE4FGv1RDzME4gviKDut4A0EjQtE-ePnz1bUvbHMJnXaMJVs4WNteNrdxjMHbBtGhbi64J5uVui2WrTsPgDZvPylyTy0Jva7w51yFZzabLyWu4eH-ZT8aLMGdSNGGBgFozpFECGXAdaWqEMEnMNMuQGqMLJnRutBGp5BlEnBspEsxkkssiF3xI7ru9O1997bFu1Kbae9eeVEwwJqmggrcu1rlyX9W1x0LtvC21PygK6ghKnUCpIyh1BtWG0j-h3HY_Nl7b7f_Ruy5qEfH3ViolT6OE_wAQ83jq
CODEN IEFSEV
CitedBy_id crossref_primary_10_1016_j_eswa_2022_118858
crossref_primary_10_1016_j_fss_2023_108800
crossref_primary_10_1017_S1471068421000405
crossref_primary_10_1109_TFUZZ_2024_3362897
crossref_primary_10_3233_JCM_226635
Cites_doi 10.1016/j.fss.2003.10.017
10.1016/j.fss.2006.11.006
10.7551/mitpress/7287.001.0001
10.1017/S1471068411000494
10.1016/j.fss.2012.01.016
10.1016/B978-0-934613-40-8.50016-6
10.1145/362342.362367
10.1002/int.10067
10.3115/1614025.1614037
10.1016/j.fss.2003.11.005
10.1016/S0165-0114(01)00106-3
10.1086/506418
10.3233/IFS-130834
10.2307/2275910
10.5815/ijeme.2015.01.02
10.1109/TFUZZ.2018.2806923
10.1016/j.tcs.2006.06.015
10.1145/357162.357169
10.1016/S0304-3975(01)00188-8
10.1109/FUZZ-IEEE.2018.8491593
10.3233/FI-2000-41402
10.1145/2543629
10.1016/j.fss.2017.12.009
10.1017/S1471068407003158
10.1016/j.fss.2014.07.006
10.1080/0034340052000320887
10.1016/j.fss.2007.12.013
10.1016/j.fss.2016.12.016
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2020.2973129
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 1251
ExternalDocumentID 10_1109_TFUZZ_2020_2973129
8993847
Genre orig-research
GrantInformation_xml – fundername: Madrid Regional Government
  grantid: S2018/TCS-4339
– fundername: State Research Agency (AEI) of the Spanish Ministry of Economy and Competition
  grantid: TIN2016-76843-C4-2-R; TIN2017-86217-R
– fundername: EIE Funds of the European Union
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-fe0eaa2e1470b03a4a1d55d762a2be1ddaf25acdad5893b0433d957eb97c9fc53
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000648333700024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Sun Nov 30 05:17:31 EST 2025
Tue Nov 18 21:43:01 EST 2025
Sat Nov 29 03:12:39 EST 2025
Wed Aug 27 02:30:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-fe0eaa2e1470b03a4a1d55d762a2be1ddaf25acdad5893b0433d957eb97c9fc53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6075-4398
0000-0002-6482-3220
PQID 2522915153
PQPubID 85428
PageCount 14
ParticipantIDs proquest_journals_2522915153
ieee_primary_8993847
crossref_primary_10_1109_TFUZZ_2020_2973129
crossref_citationtrail_10_1109_TFUZZ_2020_2973129
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
knuth (ref21) 1993
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
flexer (ref27) 2017; 47
ref25
ref20
ref22
ref28
ref29
ref8
ref7
ref4
ref3
ref6
ref5
formato (ref9) 0
References_xml – ident: ref2
  doi: 10.1016/j.fss.2003.10.017
– ident: ref4
  doi: 10.1016/j.fss.2006.11.006
– ident: ref30
  doi: 10.7551/mitpress/7287.001.0001
– ident: ref25
  doi: 10.1017/S1471068411000494
– ident: ref6
  doi: 10.1016/j.fss.2012.01.016
– ident: ref20
  doi: 10.1016/B978-0-934613-40-8.50016-6
– ident: ref22
  doi: 10.1145/362342.362367
– ident: ref11
  doi: 10.1002/int.10067
– ident: ref29
  doi: 10.3115/1614025.1614037
– ident: ref3
  doi: 10.1016/j.fss.2003.11.005
– ident: ref1
  doi: 10.1016/S0165-0114(01)00106-3
– ident: ref18
  doi: 10.1086/506418
– year: 1993
  ident: ref21
  publication-title: The Stanford GraphBase A Platform for Combinatorial Computing
– ident: ref14
  doi: 10.3233/IFS-130834
– ident: ref8
  doi: 10.2307/2275910
– ident: ref26
  doi: 10.5815/ijeme.2015.01.02
– ident: ref31
  doi: 10.1109/TFUZZ.2018.2806923
– ident: ref24
  doi: 10.1016/j.tcs.2006.06.015
– volume: 47
  start-page: 1
  year: 2017
  ident: ref27
  article-title: Mutual proximity graphs for improved reachability in music recommendation
  publication-title: J New Music Res
– ident: ref13
  doi: 10.1145/357162.357169
– ident: ref12
  doi: 10.1016/S0304-3975(01)00188-8
– ident: ref19
  doi: 10.1109/FUZZ-IEEE.2018.8491593
– start-page: 397
  year: 0
  ident: ref9
  article-title: Extension of logic programming by similarity
  publication-title: Proc APPIA-GULP-PRODE
– ident: ref10
  doi: 10.3233/FI-2000-41402
– ident: ref23
  doi: 10.1145/2543629
– ident: ref7
  doi: 10.1016/j.fss.2017.12.009
– ident: ref28
  doi: 10.1017/S1471068407003158
– ident: ref16
  doi: 10.1016/j.fss.2014.07.006
– ident: ref17
  doi: 10.1080/0034340052000320887
– ident: ref5
  doi: 10.1016/j.fss.2007.12.013
– ident: ref15
  doi: 10.1016/j.fss.2016.12.016
SSID ssj0014518
Score 2.3828795
Snippet Unification is a central concept in logic systems based on the resolution principle. As well, in knowledge representation, proximity relations (i.e.,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1238
SubjectTerms Algorithms
Approximation algorithms
Bousi<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> sim</tex-math> </inline-formula>Prolog
Cognition
Fuzzy logic
fuzzy logic programming (FLP)
fuzzy prolog
Knowledge representation
Logic programming
Prolog
Proximity
proximity relations
Semantics
Superluminescent diodes
Syntactics
weak SLD resolution
weak unification
Title Proximity-Based Unification: An Efficient Implementation Method
URI https://ieeexplore.ieee.org/document/8993847
https://www.proquest.com/docview/2522915153
Volume 29
WOSCitedRecordID wos000648333700024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4MenG6K0yk9eNNsbZo0qxeZsuHFscMGY5eSJikI2sk-RP97kzSdgiJ46-GFlvea95G89_sBXBoG94ioDImQY0QCSRCXPYGoxKSnQwpjjmyCjUa92SweV-B6OwujlLLNZ6pjHu1dvlyIjTkq6-raINTetApVxqJiVmt7Y0BoUIy9RSGKmB-VAzJ-3J0Mp_O5LgWx37FMTTad_ApCllXlhyu28WVY_9-XHcC-yyO9fmH4Q6iovAH1kqPBc1u2AXvfAAebcDteLt7NSNMHutPhS3o65czcqd2N18-9gUWU0O_yLGzwi5tMyr1HyzR9BNPhYHL_gByFAhI4pmuUKV9xjlVAmJ_6ISc8kJRK7QE5TlUgJc8w5UJySbXVUoNmJmPKVBozEWeChsdQyxe5OgGPahlDCiEDkhIRUc5UmOp6JFScSE7TFgSlThPh8MUNzcVzYusMP06sHRJjh8TZoQVX2zWvBbrGn9JNo_mtpFN6C9ql6RK3AVcJ1nllbJK18PT3VWewi017iu1dbENtvdyoc9gRb-un1fLC_luf7_LLzw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9BNFEPoqARRd3Bmxa2rt2YF4MGghEIB0gIl6Vru8REh-HD6H9vWwqaaEy87fCaLe-t76N97_cDuNQM7gGRKeI-w4h4giAm6hxRgUldhZQwtGQTYa9XH42ifg6u17MwUkrTfCar-tHc5YsJX-ijspqqDXzlTTdgkxKC3eW01vrOgFBvOfgW-CgI3WA1IuNGtUFrOB6rYhC7VcPVZBLKrzBkeFV-OGMTYVqF_33bPuzZTNJpLE1_ADmZFaGwYmlw7KYtwu43yMES3Pank3c91PSB7lQAE45KOlN7bnfjNDKnaTAl1LscAxz8YmeTMqdruKYPYdhqDu7byJIoII4jOkepdCVjWHokdBPXZ4R5glKhfCDDifSEYCmmjAsmqLJbovHMRERDmUQhj1JO_SPIZ5NMHoNDlYymhRAeSQgPKAuln6iKxJeMCEaTMngrncbcIoxroovn2FQabhQbO8TaDrG1Qxmu1mtel_gaf0qXtObXklbpZaisTBfbLTiLscosI52u-Se_r7qA7fag24k7D73HU9jBulnFdDJWID-fLuQZbPG3-dNsem7-s0-zFc8W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximity-Based+Unification%3A+An+Efficient+Implementation+Method&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Julian-Iranzo%2C+Pascual&rft.au=Saenz-Perez%2C+Fernando&rft.date=2021-05-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=29&rft.issue=5&rft.spage=1238&rft.epage=1251&rft_id=info:doi/10.1109%2FTFUZZ.2020.2973129&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2020_2973129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon