Proximity-Based Unification: An Efficient Implementation Method
Unification is a central concept in logic systems based on the resolution principle. As well, in knowledge representation, proximity relations (i.e., reflexive, symmetric, fuzzy binary relations) are useful for introducing semantics into a syntactic level by modeling the semantic closeness of differ...
Uloženo v:
| Vydáno v: | IEEE transactions on fuzzy systems Ročník 29; číslo 5; s. 1238 - 1251 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1063-6706, 1941-0034 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Unification is a central concept in logic systems based on the resolution principle. As well, in knowledge representation, proximity relations (i.e., reflexive, symmetric, fuzzy binary relations) are useful for introducing semantics into a syntactic level by modeling the semantic closeness of different syntactic objects and managing vague or imprecise information. Proximity relations, in combination with the unification algorithm, make possible expressing certain forms of approximate reasoning in a logic programming framework. In this article, we use proximity relations in the context of a (fuzzy) logic programming system, called Bousi <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula> Prolog , as a way of solving the limitations introduced by similarity relations (i.e., transitive proximity relations) to correctly represent fuzzy information. Recently, we introduced an accurate definition of proximity between expressions (terms or atomic formulas) and a new unification algorithm able to manage proximity relations properly. However, the so-called weak unification algorithm, which is an extension of Martelli and Montanari's unification algorithm supported by the new notion of proximity, does not have an efficient implementation. In this article, we present a method that facilitates such an efficient implementation, including an adaptation of the weak SLD resolution rule based on the new unification algorithm, and its integration and implementation into the fuzzy logic programming system Bousi <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula> Prolog . A performance analysis to show its efficiency is also presented. |
|---|---|
| AbstractList | Unification is a central concept in logic systems based on the resolution principle. As well, in knowledge representation, proximity relations (i.e., reflexive, symmetric, fuzzy binary relations) are useful for introducing semantics into a syntactic level by modeling the semantic closeness of different syntactic objects and managing vague or imprecise information. Proximity relations, in combination with the unification algorithm, make possible expressing certain forms of approximate reasoning in a logic programming framework. In this article, we use proximity relations in the context of a (fuzzy) logic programming system, called Bousi <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula> Prolog , as a way of solving the limitations introduced by similarity relations (i.e., transitive proximity relations) to correctly represent fuzzy information. Recently, we introduced an accurate definition of proximity between expressions (terms or atomic formulas) and a new unification algorithm able to manage proximity relations properly. However, the so-called weak unification algorithm, which is an extension of Martelli and Montanari's unification algorithm supported by the new notion of proximity, does not have an efficient implementation. In this article, we present a method that facilitates such an efficient implementation, including an adaptation of the weak SLD resolution rule based on the new unification algorithm, and its integration and implementation into the fuzzy logic programming system Bousi <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula> Prolog . A performance analysis to show its efficiency is also presented. Unification is a central concept in logic systems based on the resolution principle. As well, in knowledge representation, proximity relations (i.e., reflexive, symmetric, fuzzy binary relations) are useful for introducing semantics into a syntactic level by modeling the semantic closeness of different syntactic objects and managing vague or imprecise information. Proximity relations, in combination with the unification algorithm, make possible expressing certain forms of approximate reasoning in a logic programming framework. In this article, we use proximity relations in the context of a (fuzzy) logic programming system, called Bousi [Formula Omitted] Prolog , as a way of solving the limitations introduced by similarity relations (i.e., transitive proximity relations) to correctly represent fuzzy information. Recently, we introduced an accurate definition of proximity between expressions (terms or atomic formulas) and a new unification algorithm able to manage proximity relations properly. However, the so-called weak unification algorithm, which is an extension of Martelli and Montanari's unification algorithm supported by the new notion of proximity, does not have an efficient implementation. In this article, we present a method that facilitates such an efficient implementation, including an adaptation of the weak SLD resolution rule based on the new unification algorithm, and its integration and implementation into the fuzzy logic programming system Bousi [Formula Omitted] Prolog . A performance analysis to show its efficiency is also presented. |
| Author | Julian-Iranzo, Pascual Saenz-Perez, Fernando |
| Author_xml | – sequence: 1 givenname: Pascual orcidid: 0000-0002-6482-3220 surname: Julian-Iranzo fullname: Julian-Iranzo, Pascual email: Pascual.Julian@uclm.es organization: Department of Information Technologies and Systems, University of Castilla-La Mancha,, Ciudad Real, Spain – sequence: 2 givenname: Fernando orcidid: 0000-0001-6075-4398 surname: Saenz-Perez fullname: Saenz-Perez, Fernando email: fernan@sip.ucm.es organization: Department of Software Engineering and Artificial Intelligence, Universidad Complutense de Madrid,, Madrid, Spain |
| BookMark | eNp9kEFPwkAQhTcGEwH9A3pp4rk4u9ttu14MElASjB7gwmWz7U7jErrFbUnk31so8eDB07zJvDeT-Qak5yqHhNxSGFEK8mE5W63XIwYMRkwmnDJ5QfpURjQE4FGv1RDzME4gviKDut4A0EjQtE-ePnz1bUvbHMJnXaMJVs4WNteNrdxjMHbBtGhbi64J5uVui2WrTsPgDZvPylyTy0Jva7w51yFZzabLyWu4eH-ZT8aLMGdSNGGBgFozpFECGXAdaWqEMEnMNMuQGqMLJnRutBGp5BlEnBspEsxkkssiF3xI7ru9O1997bFu1Kbae9eeVEwwJqmggrcu1rlyX9W1x0LtvC21PygK6ghKnUCpIyh1BtWG0j-h3HY_Nl7b7f_Ruy5qEfH3ViolT6OE_wAQ83jq |
| CODEN | IEFSEV |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2022_118858 crossref_primary_10_1016_j_fss_2023_108800 crossref_primary_10_1017_S1471068421000405 crossref_primary_10_1109_TFUZZ_2024_3362897 crossref_primary_10_3233_JCM_226635 |
| Cites_doi | 10.1016/j.fss.2003.10.017 10.1016/j.fss.2006.11.006 10.7551/mitpress/7287.001.0001 10.1017/S1471068411000494 10.1016/j.fss.2012.01.016 10.1016/B978-0-934613-40-8.50016-6 10.1145/362342.362367 10.1002/int.10067 10.3115/1614025.1614037 10.1016/j.fss.2003.11.005 10.1016/S0165-0114(01)00106-3 10.1086/506418 10.3233/IFS-130834 10.2307/2275910 10.5815/ijeme.2015.01.02 10.1109/TFUZZ.2018.2806923 10.1016/j.tcs.2006.06.015 10.1145/357162.357169 10.1016/S0304-3975(01)00188-8 10.1109/FUZZ-IEEE.2018.8491593 10.3233/FI-2000-41402 10.1145/2543629 10.1016/j.fss.2017.12.009 10.1017/S1471068407003158 10.1016/j.fss.2014.07.006 10.1080/0034340052000320887 10.1016/j.fss.2007.12.013 10.1016/j.fss.2016.12.016 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TFUZZ.2020.2973129 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0034 |
| EndPage | 1251 |
| ExternalDocumentID | 10_1109_TFUZZ_2020_2973129 8993847 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Madrid Regional Government grantid: S2018/TCS-4339 – fundername: State Research Agency (AEI) of the Spanish Ministry of Economy and Competition grantid: TIN2016-76843-C4-2-R; TIN2017-86217-R – fundername: EIE Funds of the European Union |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c295t-fe0eaa2e1470b03a4a1d55d762a2be1ddaf25acdad5893b0433d957eb97c9fc53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000648333700024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6706 |
| IngestDate | Sun Nov 30 05:17:31 EST 2025 Tue Nov 18 21:43:01 EST 2025 Sat Nov 29 03:12:39 EST 2025 Wed Aug 27 02:30:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-fe0eaa2e1470b03a4a1d55d762a2be1ddaf25acdad5893b0433d957eb97c9fc53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6075-4398 0000-0002-6482-3220 |
| PQID | 2522915153 |
| PQPubID | 85428 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2522915153 ieee_primary_8993847 crossref_primary_10_1109_TFUZZ_2020_2973129 crossref_citationtrail_10_1109_TFUZZ_2020_2973129 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-01 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 knuth (ref21) 1993 ref15 ref14 ref31 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 flexer (ref27) 2017; 47 ref25 ref20 ref22 ref28 ref29 ref8 ref7 ref4 ref3 ref6 ref5 formato (ref9) 0 |
| References_xml | – ident: ref2 doi: 10.1016/j.fss.2003.10.017 – ident: ref4 doi: 10.1016/j.fss.2006.11.006 – ident: ref30 doi: 10.7551/mitpress/7287.001.0001 – ident: ref25 doi: 10.1017/S1471068411000494 – ident: ref6 doi: 10.1016/j.fss.2012.01.016 – ident: ref20 doi: 10.1016/B978-0-934613-40-8.50016-6 – ident: ref22 doi: 10.1145/362342.362367 – ident: ref11 doi: 10.1002/int.10067 – ident: ref29 doi: 10.3115/1614025.1614037 – ident: ref3 doi: 10.1016/j.fss.2003.11.005 – ident: ref1 doi: 10.1016/S0165-0114(01)00106-3 – ident: ref18 doi: 10.1086/506418 – year: 1993 ident: ref21 publication-title: The Stanford GraphBase A Platform for Combinatorial Computing – ident: ref14 doi: 10.3233/IFS-130834 – ident: ref8 doi: 10.2307/2275910 – ident: ref26 doi: 10.5815/ijeme.2015.01.02 – ident: ref31 doi: 10.1109/TFUZZ.2018.2806923 – ident: ref24 doi: 10.1016/j.tcs.2006.06.015 – volume: 47 start-page: 1 year: 2017 ident: ref27 article-title: Mutual proximity graphs for improved reachability in music recommendation publication-title: J New Music Res – ident: ref13 doi: 10.1145/357162.357169 – ident: ref12 doi: 10.1016/S0304-3975(01)00188-8 – ident: ref19 doi: 10.1109/FUZZ-IEEE.2018.8491593 – start-page: 397 year: 0 ident: ref9 article-title: Extension of logic programming by similarity publication-title: Proc APPIA-GULP-PRODE – ident: ref10 doi: 10.3233/FI-2000-41402 – ident: ref23 doi: 10.1145/2543629 – ident: ref7 doi: 10.1016/j.fss.2017.12.009 – ident: ref28 doi: 10.1017/S1471068407003158 – ident: ref16 doi: 10.1016/j.fss.2014.07.006 – ident: ref17 doi: 10.1080/0034340052000320887 – ident: ref5 doi: 10.1016/j.fss.2007.12.013 – ident: ref15 doi: 10.1016/j.fss.2016.12.016 |
| SSID | ssj0014518 |
| Score | 2.3828795 |
| Snippet | Unification is a central concept in logic systems based on the resolution principle. As well, in knowledge representation, proximity relations (i.e.,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1238 |
| SubjectTerms | Algorithms Approximation algorithms Bousi<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> sim</tex-math> </inline-formula>Prolog Cognition Fuzzy logic fuzzy logic programming (FLP) fuzzy prolog Knowledge representation Logic programming Prolog Proximity proximity relations Semantics Superluminescent diodes Syntactics weak SLD resolution weak unification |
| Title | Proximity-Based Unification: An Efficient Implementation Method |
| URI | https://ieeexplore.ieee.org/document/8993847 https://www.proquest.com/docview/2522915153 |
| Volume | 29 |
| WOSCitedRecordID | wos000648333700024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4MenG6K0yk9eNNsbZo0qxeZsuHFscMGY5eSJikI2sk-RP97kzSdgiJ46-GFlvea95G89_sBXBoG94ioDImQY0QCSRCXPYGoxKSnQwpjjmyCjUa92SweV-B6OwujlLLNZ6pjHu1dvlyIjTkq6-raINTetApVxqJiVmt7Y0BoUIy9RSGKmB-VAzJ-3J0Mp_O5LgWx37FMTTad_ApCllXlhyu28WVY_9-XHcC-yyO9fmH4Q6iovAH1kqPBc1u2AXvfAAebcDteLt7NSNMHutPhS3o65czcqd2N18-9gUWU0O_yLGzwi5tMyr1HyzR9BNPhYHL_gByFAhI4pmuUKV9xjlVAmJ_6ISc8kJRK7QE5TlUgJc8w5UJySbXVUoNmJmPKVBozEWeChsdQyxe5OgGPahlDCiEDkhIRUc5UmOp6JFScSE7TFgSlThPh8MUNzcVzYusMP06sHRJjh8TZoQVX2zWvBbrGn9JNo_mtpFN6C9ql6RK3AVcJ1nllbJK18PT3VWewi017iu1dbENtvdyoc9gRb-un1fLC_luf7_LLzw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9BNFEPoqARRd3Bmxa2rt2YF4MGghEIB0gIl6Vru8REh-HD6H9vWwqaaEy87fCaLe-t76N97_cDuNQM7gGRKeI-w4h4giAm6hxRgUldhZQwtGQTYa9XH42ifg6u17MwUkrTfCar-tHc5YsJX-ijspqqDXzlTTdgkxKC3eW01vrOgFBvOfgW-CgI3WA1IuNGtUFrOB6rYhC7VcPVZBLKrzBkeFV-OGMTYVqF_33bPuzZTNJpLE1_ADmZFaGwYmlw7KYtwu43yMES3Pank3c91PSB7lQAE45KOlN7bnfjNDKnaTAl1LscAxz8YmeTMqdruKYPYdhqDu7byJIoII4jOkepdCVjWHokdBPXZ4R5glKhfCDDifSEYCmmjAsmqLJbovHMRERDmUQhj1JO_SPIZ5NMHoNDlYymhRAeSQgPKAuln6iKxJeMCEaTMngrncbcIoxroovn2FQabhQbO8TaDrG1Qxmu1mtel_gaf0qXtObXklbpZaisTBfbLTiLscosI52u-Se_r7qA7fag24k7D73HU9jBulnFdDJWID-fLuQZbPG3-dNsem7-s0-zFc8W |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximity-Based+Unification%3A+An+Efficient+Implementation+Method&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Julian-Iranzo%2C+Pascual&rft.au=Saenz-Perez%2C+Fernando&rft.date=2021-05-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=29&rft.issue=5&rft.spage=1238&rft.epage=1251&rft_id=info:doi/10.1109%2FTFUZZ.2020.2973129&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2020_2973129 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |