A Novel Data-Driven Approach to Autonomous Fuzzy Clustering
In this article, a new data-driven autonomous fuzzy clustering (AFC) algorithm is proposed for static data clustering. Employing a Gaussian-type membership function, AFC first uses all the data samples as microcluster medoids to assign memberships to each other and obtains the membership matrix. Bas...
Uložené v:
| Vydané v: | IEEE transactions on fuzzy systems Ročník 30; číslo 6; s. 2073 - 2085 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1063-6706, 1941-0034 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this article, a new data-driven autonomous fuzzy clustering (AFC) algorithm is proposed for static data clustering. Employing a Gaussian-type membership function, AFC first uses all the data samples as microcluster medoids to assign memberships to each other and obtains the membership matrix. Based on this, AFC chooses these data samples that represent local models of data distribution as cluster medoids for initial partition. It then continues to optimize the cluster medoids iteratively to obtain a locally optimal partition as the algorithm output. Moreover, an online extension is introduced to AFC enabling the algorithm to cluster streaming data chunk-by-chunk in a "one pass" manner. Numerical examples based on a variety of benchmark problems demonstrate the efficacy of the AFC algorithm in both offline and online application scenarios, proving the effectiveness and validity of the proposed concept and general principles. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1063-6706 1941-0034 |
| DOI: | 10.1109/TFUZZ.2021.3074299 |