Constant time approximation scheme for largest well predicted subset

The largest well predicted subset problem is formulated for comparison of two predicted 3D protein structures from the same sequence. A 3D protein structure is represented by an ordered point set A ={ a 1 ,…, a n }, where each a i is a point in 3D space. Given two ordered point sets A ={ a 1 ,…, a n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of combinatorial optimization Ročník 25; číslo 3; s. 352 - 367
Hlavní autoři: Fu, Bin, Wang, Lusheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.04.2013
Springer Science + Business Media
Témata:
ISSN:1382-6905, 1573-2886
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The largest well predicted subset problem is formulated for comparison of two predicted 3D protein structures from the same sequence. A 3D protein structure is represented by an ordered point set A ={ a 1 ,…, a n }, where each a i is a point in 3D space. Given two ordered point sets A ={ a 1 ,…, a n } and B ={ b 1 , b 2 ,… b n } containing n points, and a threshold d , the largest well predicted subset problem is to find the rigid body transformation T for a largest subset B opt of B such that the distance between a i and T ( b i ) is at most d for every b i in B opt . A meaningful prediction requires that the size of B opt is at least αn for some constant α (Li et al. in CPM 2008, 2008 ). We use LWPS( A , B , d , α ) to denote the largest well predicted subset problem with meaningful prediction. An (1+ δ 1 ,1− δ 2 )-approximation for LWPS( A , B , d , α ) is to find a transformation T to bring a subset B ′⊆ B of size at least (1− δ 2 )| B opt | such that for each b i ∈ B ′, the Euclidean distance between the two points distance ( a i , T ( b i ))≤(1+ δ 1 ) d . We develop a constant time (1+ δ 1 ,1− δ 2 )-approximation algorithm for LWPS( A , B , d , α ) for arbitrary positive constants δ 1 and δ 2 . To our knowledge, this is the first constant time algorithm in this area. Li et al. (CPM 2008, 2008 ) showed an time randomized (1+ δ 1 )-distance approximation algorithm for the largest well predicted subset problem under meaningful prediction. We also study a closely related problem, the bottleneck distance problem, where we are given two ordered point sets A ={ a 1 ,…, a n } and B ={ b 1 , b 2 ,… b n } containing n points and the problem is to find the smallest d opt such that there exists a rigid transformation T with distance ( a i , T ( b i ))≤ d opt for every point b i ∈ B . A (1+ δ )-approximation for the bottleneck distance problem is to find a transformation T , such that for each b i ∈ B , distance ( a i , T ( b i ))≤(1+ δ ) d opt , where δ is a constant. For an arbitrary constant δ , we obtain a linear O ( n / δ 6 ) time (1+ δ )-algorithm for the bottleneck distance problem. The best known algorithms for both problems require super-linear time (Li et al. in CPM 2008, 2008 ).
AbstractList The largest well predicted subset problem is formulated for comparison of two predicted 3D protein structures from the same sequence. A 3D protein structure is represented by an ordered point set A ={ a 1 ,…, a n }, where each a i is a point in 3D space. Given two ordered point sets A ={ a 1 ,…, a n } and B ={ b 1 , b 2 ,… b n } containing n points, and a threshold d , the largest well predicted subset problem is to find the rigid body transformation T for a largest subset B opt of B such that the distance between a i and T ( b i ) is at most d for every b i in B opt . A meaningful prediction requires that the size of B opt is at least αn for some constant α (Li et al. in CPM 2008, 2008 ). We use LWPS( A , B , d , α ) to denote the largest well predicted subset problem with meaningful prediction. An (1+ δ 1 ,1− δ 2 )-approximation for LWPS( A , B , d , α ) is to find a transformation T to bring a subset B ′⊆ B of size at least (1− δ 2 )| B opt | such that for each b i ∈ B ′, the Euclidean distance between the two points distance ( a i , T ( b i ))≤(1+ δ 1 ) d . We develop a constant time (1+ δ 1 ,1− δ 2 )-approximation algorithm for LWPS( A , B , d , α ) for arbitrary positive constants δ 1 and δ 2 . To our knowledge, this is the first constant time algorithm in this area. Li et al. (CPM 2008, 2008 ) showed an time randomized (1+ δ 1 )-distance approximation algorithm for the largest well predicted subset problem under meaningful prediction. We also study a closely related problem, the bottleneck distance problem, where we are given two ordered point sets A ={ a 1 ,…, a n } and B ={ b 1 , b 2 ,… b n } containing n points and the problem is to find the smallest d opt such that there exists a rigid transformation T with distance ( a i , T ( b i ))≤ d opt for every point b i ∈ B . A (1+ δ )-approximation for the bottleneck distance problem is to find a transformation T , such that for each b i ∈ B , distance ( a i , T ( b i ))≤(1+ δ ) d opt , where δ is a constant. For an arbitrary constant δ , we obtain a linear O ( n / δ 6 ) time (1+ δ )-algorithm for the bottleneck distance problem. The best known algorithms for both problems require super-linear time (Li et al. in CPM 2008, 2008 ).
Author Fu, Bin
Wang, Lusheng
Author_xml – sequence: 1
  givenname: Bin
  surname: Fu
  fullname: Fu, Bin
  email: binfu@cs.panam.edu
  organization: Department of Computer Science, University of Texas–Pan American
– sequence: 2
  givenname: Lusheng
  surname: Wang
  fullname: Wang, Lusheng
  organization: Department of Computer Science, City University of Hong Kong
BackLink http://www.econis.eu/PPNSET?PPN=742271587$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
BookMark eNp9kM9KAzEQh4Mo2FYfwJP7AtFJNttsjlL_QsGLnkN2M6lbtklJUtS3N2XFo6cZhu83zHxzcuqDR0KuGNwwAHmbGLSypcCAqloyyk7IjDWyprxtl6elr1tOlwqaczJPaQsApRczcr8KPmXjc5WHHVZmv4_ha9iZPARfpf4Dy9CFWI0mbjDl6hPHsdpHtEOf0Vbp0CXMF-TMmTHh5W9dkPfHh7fVM12_Pr2s7ta056rJ1BluHUPmlOJSdFwIYTsBpgZ0aHvVCSWltVags0tmekDelaAA1XWOt7ZekOtpL_bBD0nvY7k0fmspOJesaWUh2ET0MaQU0f0xDPRRlJ5E6SJKH0VpVjJ8yqTC-g1GvQ2H6Msj_4R-AOu_bcw
Cites_doi 10.1093/bioinformatics/16.9.776
10.1002/prot.20264
10.1007/3-540-45253-2_6
10.1145/506147.506150
10.1093/nar/gkg571
10.1109/TPAMI.1987.4767965
10.1007/978-3-540-44827-3_1
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2010
Copyright_xml – notice: Springer Science+Business Media, LLC 2010
DBID AAYXX
CITATION
OQ6
DOI 10.1007/s10878-010-9371-1
DatabaseName CrossRef
ECONIS
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2886
EndPage 367
ExternalDocumentID 742271587
10_1007_s10878_010_9371_1
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
OQ6
ID FETCH-LOGICAL-c295t-fa2df1e1f99274b2444db40a30efedc9b4977ddd4efd61ac0e2b295409bbf28d3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316020900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-6905
IngestDate Sat Mar 08 16:22:18 EST 2025
Sat Nov 29 04:54:09 EST 2025
Fri Feb 21 02:33:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Approximation scheme
Constant time
Randomization
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-fa2df1e1f99274b2444db40a30efedc9b4977ddd4efd61ac0e2b295409bbf28d3
PageCount 16
ParticipantIDs econis_primary_742271587
crossref_primary_10_1007_s10878_010_9371_1
springer_journals_10_1007_s10878_010_9371_1
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2013
Publisher Springer US
Springer Science + Business Media
Publisher_xml – name: Springer US
– name: Springer Science + Business Media
References Lancia, Istrail (CR6) 2003
Goodrich, Mitchell, Orletsky (CR4) 1994
Ambühl, Chakraborty, Gärtner (CR1) 2000
Indyk, Motwani (CR5) 1999
Li, Bu, Xu, Li (CR8) 2008
Arun, Huang, Blostein (CR2) 1987; 9
Siew, Elofsson, Rychlewski, Fischer (CR10) 2000; 16
Zemla (CR11) 2003; 31
Zhang, Skolnick (CR12) 2004; 57
Choi, Goyal (CR3) 2004
Motwani, Raghavan (CR9) 2000
Li, Ma, Wang (CR7) 2002; 49
R Motwani (9371_CR9) 2000
Y Zhang (9371_CR12) 2004; 57
KS Arun (9371_CR2) 1987; 9
C Ambühl (9371_CR1) 2000
SC Li (9371_CR8) 2008
P Indyk (9371_CR5) 1999
V Choi (9371_CR3) 2004
A Zemla (9371_CR11) 2003; 31
M Goodrich (9371_CR4) 1994
M Li (9371_CR7) 2002; 49
G Lancia (9371_CR6) 2003
N Siew (9371_CR10) 2000; 16
References_xml – volume: 16
  start-page: 776
  issue: 9
  year: 2000
  end-page: 785
  ident: CR10
  article-title: Maxsub: an automated measure for the assessment of protein structure prediction quality
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.9.776
– start-page: 103
  year: 1994
  end-page: 112
  ident: CR4
  article-title: Practical methods for approximate geometric pattern matching under rigid motions
  publication-title: SOCG 1994
– volume: 57
  start-page: 702
  year: 2004
  end-page: 710
  ident: CR12
  article-title: Scoring function for automated assessment of protein structure template quality
  publication-title: Proteins
  doi: 10.1002/prot.20264
– start-page: 52
  year: 2000
  end-page: 63
  ident: CR1
  article-title: Computing largest common point sets under approximate congruence
  publication-title: ESA 2000
  doi: 10.1007/3-540-45253-2_6
– start-page: 457
  year: 1999
  end-page: 465
  ident: CR5
  article-title: Geometric matching under noise: combinatorial bounds and algorithms
  publication-title: SODA 1999
– year: 2000
  ident: CR9
  publication-title: Randomized algorithms
– volume: 49
  start-page: 157
  issue: 2
  year: 2002
  end-page: 171
  ident: CR7
  article-title: On the closest string and substring problems
  publication-title: J ACM
  doi: 10.1145/506147.506150
– volume: 31
  start-page: 3370
  issue: 13
  year: 2003
  end-page: 3374
  ident: CR11
  article-title: LGA: a method for folding 3d similarities in protein structures
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg571
– start-page: 44
  year: 2008
  end-page: 55
  ident: CR8
  article-title: Finding largest well-predicted subset of protein structure models
  publication-title: CPM 2008
– volume: 9
  start-page: 698
  issue: 5
  year: 1987
  end-page: 700
  ident: CR2
  article-title: Least-squares fitting of two 3-d point sets
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.1987.4767965
– start-page: 1
  year: 2003
  end-page: 33
  ident: CR6
  article-title: Protein structure comparison: algorithms and applications
  publication-title: Mathemat methods for protein struct analysis and design
  doi: 10.1007/978-3-540-44827-3_1
– start-page: 285
  year: 2004
  end-page: 296
  ident: CR3
  article-title: A combinatorial shape matching algorithm for rigid protein docking
  publication-title: CPM 2004
– start-page: 44
  volume-title: CPM 2008
  year: 2008
  ident: 9371_CR8
– start-page: 103
  volume-title: SOCG 1994
  year: 1994
  ident: 9371_CR4
– volume: 9
  start-page: 698
  issue: 5
  year: 1987
  ident: 9371_CR2
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.1987.4767965
– volume: 31
  start-page: 3370
  issue: 13
  year: 2003
  ident: 9371_CR11
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg571
– volume: 16
  start-page: 776
  issue: 9
  year: 2000
  ident: 9371_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.9.776
– volume: 49
  start-page: 157
  issue: 2
  year: 2002
  ident: 9371_CR7
  publication-title: J ACM
  doi: 10.1145/506147.506150
– volume-title: Randomized algorithms
  year: 2000
  ident: 9371_CR9
– volume: 57
  start-page: 702
  year: 2004
  ident: 9371_CR12
  publication-title: Proteins
  doi: 10.1002/prot.20264
– start-page: 285
  volume-title: CPM 2004
  year: 2004
  ident: 9371_CR3
– start-page: 52
  volume-title: ESA 2000
  year: 2000
  ident: 9371_CR1
  doi: 10.1007/3-540-45253-2_6
– start-page: 457
  volume-title: SODA 1999
  year: 1999
  ident: 9371_CR5
– start-page: 1
  volume-title: Mathemat methods for protein struct analysis and design
  year: 2003
  ident: 9371_CR6
  doi: 10.1007/978-3-540-44827-3_1
SSID ssj0009054
Score 1.9158578
Snippet The largest well predicted subset problem is formulated for comparison of two predicted 3D protein structures from the same sequence. A 3D protein structure is...
SourceID econis
crossref
springer
SourceType Index Database
Publisher
StartPage 352
SubjectTerms Combinatorics
Convex and Discrete Geometry
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Theory of Computation
Title Constant time approximation scheme for largest well predicted subset
URI https://link.springer.com/article/10.1007/s10878-010-9371-1
http://www.econis.eu/PPNSET?PPN=742271587
Volume 25
WOSCitedRecordID wos000316020900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK Contemporary (1997 - Present)
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5Ee9CDb2l9sQdPykKS7ja7R6kWLxbxRW8huzuBgtTSRPHnO5tHW1EPegkkLEv42Mx8k5n5BuCMnEAUW6t43NWKCycFV1pY3kW6YipDVLYcNhEPh2o00nd1H3feVLs3KcnSUi81uymvBkt2w2u4cQp51rx2iR9bcP_wvFDaDWQ1yZaoI4V-skll_rTFF2fU8hHoOP-WEi09zWDrX--4DZs1sWSX1UnYgRWc7MLGktwg3d3ONVrzPbjqV9SwYH6-PCvFxT_GVScjo5gX6SExWvbia8Xzgvm_fGw684kdYqksJ4uDxT48Da4f-ze8nqnAbaRlwbM0clmIYaY1xaOGnLtwRgRpN8AMndVGECF0zgnMXC9MbYCR8anAQBuTRcp1D2B18jrBNjBMY6Old4GxFWiV6RGVEMZgLxNWGtGB8wbcZFpJZyQLkWQPVEJAJR6oJOxAu4J_vpRi9igOpYo7cNGAndQfWP77Rod_Wn0E61E538KX4hzDajF7wxNo2fdinM9Oy4P1CS7SyAU
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kFtSDb2l97sGTspBsdpvdo1RLxbaIVuktZB-BgtTSRPHnO5tHW1EPegkkLEv4mMx8k5n9BqFzCAI01FqQMJCCMMMZEZJpEli42pj7Vuh82EQ4GIjRSN6X57jTqtu9KknmnnrpsJtwarDgN5yGG4GUZ5VRP3Bm_fD4vFDa9XgxyRaoI6R-vCpl_rTFl2BUdxnoOP1WEs0jTWfrX--4jTZLYomvCkvYQSt2sos2luQG4a4_12hN99B1u6CGGXbz5XEuLv4xLk4yYsh5LTwERotfXK94mmH3lw9PZ66wAywVp-BxbLaPnjo3w3aXlDMViKaSZySJqUl86ydSQj6qILgzo5gXB55NrNFSMSCExhhmE9PyY-1Zqlwp0JNKJVSY4ADVJq8T20DYxqGS3IXAUDOrhWoBlWBK2VbCNFesiS4qcKNpIZ0RLUSSHVARABU5oCK_iRoF_POlkLPT0OcibKLLCuyo_MDS3zc6_NPqM7TWHfZ7Ue92cHeE1mk-68K15RyjWjZ7syeort-zcTo7zY3sE5lwyuk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iRfTgW1qfOXhSQveRdJOjtBZFLQUf9LZsXlCQtXRX8ec72UdbUQ_iZWGXEJZJNvN9OzPfIHQGTiCIlOIkCgUnVDNKuKCKhAauJmG-4apoNhENBnw0EsOqz2lWZ7vXIcmypsGpNKV5e6Jte6HwjTtlWDhDnJ4bAfqzQp0YmqPrD89z1V2PlV1tAUYCDWR1WPOnKb44poZjo-PsW3i08Dr9zX-_7xbaqAAnvix3yDZaMukOWl-QIYS7-5l2a7aLet0SMubY9Z3Hhej4x7iscMTAhQ08BKSLX1wOeZZj9_cPT6Yu4APoFWdwEpl8Dz31rx6716TqtUBUIFhObBJo6xvfCgE8VYLTp1pSLwk9Y41WQlIAilpraqzu-InyTCBdiNATUtqA63AfLaevqWkibJJICuZcY6SoUVx2AGJQKU3HUsUkbaHz2tDxpJTUiOfiyc5QMRgqdoaK_RZqlksxGwpcPoh8xqMWuqgNH1cfXvb7RAd_Gn2KVoe9fnx3M7g9RGtB0QLDZescoeV8-maOUUO95-NselLst0-oHdPN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constant+time+approximation+scheme+for+largest+well+predicted+subset&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Fu%2C+Bin&rft.au=Wang%2C+Lusheng&rft.date=2013-04-01&rft.pub=Springer+Science+%2B+Business+Media&rft.issn=1382-6905&rft.volume=25&rft.issue=3&rft.spage=352&rft.epage=367&rft_id=info:doi/10.1007%2Fs10878-010-9371-1&rft.externalDocID=742271587
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon