Low-Rank Tensor Graph Learning for Multi-View Subspace Clustering

Graph and subspace clustering methods have become the mainstream of multi-view clustering due to their promising performance. However, (1) since graph clustering methods learn graphs directly from the raw data, when the raw data is distorted by noise and outliers, their performance may seriously dec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology Jg. 32; H. 1; S. 92 - 104
Hauptverfasser: Chen, Yongyong, Xiao, Xiaolin, Peng, Chong, Lu, Guangming, Zhou, Yicong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1051-8215, 1558-2205
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Graph and subspace clustering methods have become the mainstream of multi-view clustering due to their promising performance. However, (1) since graph clustering methods learn graphs directly from the raw data, when the raw data is distorted by noise and outliers, their performance may seriously decrease; (2) subspace clustering methods use a "two-step" strategy to learn the representation and affinity matrix independently, and thus may fail to explore their high correlation. To address these issues, we propose a novel multi-view clustering method via learning a L ow- R ank T ensor G raph (LRTG). Different from subspace clustering methods, LRTG simultaneously learns the representation and affinity matrix in a single step to preserve their correlation. We apply Tucker decomposition and <inline-formula> <tex-math notation="LaTeX">l_{2,1} </tex-math></inline-formula>-norm to the LRTG model to alleviate noise and outliers for learning a "clean" representation. LRTG then learns the affinity matrix from this "clean" representation. Additionally, an adaptive neighbor scheme is proposed to find the <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> largest entries of the affinity matrix to form a flexible graph for clustering. An effective optimization algorithm is designed to solve the LRTG model based on the alternating direction method of multipliers. Extensive experiments on different clustering tasks demonstrate the effectiveness and superiority of LRTG over seventeen state-of-the-art clustering methods.
AbstractList Graph and subspace clustering methods have become the mainstream of multi-view clustering due to their promising performance. However, (1) since graph clustering methods learn graphs directly from the raw data, when the raw data is distorted by noise and outliers, their performance may seriously decrease; (2) subspace clustering methods use a "two-step" strategy to learn the representation and affinity matrix independently, and thus may fail to explore their high correlation. To address these issues, we propose a novel multi-view clustering method via learning a L ow- R ank T ensor G raph (LRTG). Different from subspace clustering methods, LRTG simultaneously learns the representation and affinity matrix in a single step to preserve their correlation. We apply Tucker decomposition and <inline-formula> <tex-math notation="LaTeX">l_{2,1} </tex-math></inline-formula>-norm to the LRTG model to alleviate noise and outliers for learning a "clean" representation. LRTG then learns the affinity matrix from this "clean" representation. Additionally, an adaptive neighbor scheme is proposed to find the <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> largest entries of the affinity matrix to form a flexible graph for clustering. An effective optimization algorithm is designed to solve the LRTG model based on the alternating direction method of multipliers. Extensive experiments on different clustering tasks demonstrate the effectiveness and superiority of LRTG over seventeen state-of-the-art clustering methods.
Graph and subspace clustering methods have become the mainstream of multi-view clustering due to their promising performance. However, (1) since graph clustering methods learn graphs directly from the raw data, when the raw data is distorted by noise and outliers, their performance may seriously decrease; (2) subspace clustering methods use a “two-step” strategy to learn the representation and affinity matrix independently, and thus may fail to explore their high correlation. To address these issues, we propose a novel multi-view clustering method via learning a L ow- R ank T ensor G raph (LRTG). Different from subspace clustering methods, LRTG simultaneously learns the representation and affinity matrix in a single step to preserve their correlation. We apply Tucker decomposition and [Formula Omitted]-norm to the LRTG model to alleviate noise and outliers for learning a “clean” representation. LRTG then learns the affinity matrix from this “clean” representation. Additionally, an adaptive neighbor scheme is proposed to find the [Formula Omitted] largest entries of the affinity matrix to form a flexible graph for clustering. An effective optimization algorithm is designed to solve the LRTG model based on the alternating direction method of multipliers. Extensive experiments on different clustering tasks demonstrate the effectiveness and superiority of LRTG over seventeen state-of-the-art clustering methods.
Author Peng, Chong
Zhou, Yicong
Lu, Guangming
Chen, Yongyong
Xiao, Xiaolin
Author_xml – sequence: 1
  givenname: Yongyong
  orcidid: 0000-0003-1970-1993
  surname: Chen
  fullname: Chen, Yongyong
  email: yongyongchen.cn@gmail.com
  organization: Bio-Computing Research Center, Harbin Institute of Technology, Shenzhen, China
– sequence: 2
  givenname: Xiaolin
  orcidid: 0000-0001-8827-3991
  surname: Xiao
  fullname: Xiao, Xiaolin
  email: shellyxiaolin@gmail.com
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Chong
  orcidid: 0000-0003-0003-5126
  surname: Peng
  fullname: Peng, Chong
  email: pchong1991@163.com
  organization: College of Computer Science and Technology, Qingdao University, Qingdao, China
– sequence: 4
  givenname: Guangming
  orcidid: 0000-0003-1578-2634
  surname: Lu
  fullname: Lu, Guangming
  email: luguangm@hit.edu.cn
  organization: Bio-Computing Research Center, Harbin Institute of Technology, Shenzhen, China
– sequence: 5
  givenname: Yicong
  orcidid: 0000-0002-4487-6384
  surname: Zhou
  fullname: Zhou, Yicong
  email: yicongzhou@um.edu.mo
  organization: Department of Computer and Information Science, University of Macau, Macau, China
BookMark eNp9kDFPwzAQhS1UJNrCH4AlEnOK7eTieKwiKEhBSDR0tZzEAZfgBDtRxb_HpRUDA8vd6fS-u6c3QxPTGYXQJcELQjC_KbL1plhQTMkiwgAJhRM0JQBpSCmGiZ8xkDClBM7QzLktxiROYzZFy7zbhc_SvAeFMq6zwcrK_i3IlbRGm9eg8avHsR10uNFqF6zH0vWyUkHWjm5Q1kvO0WkjW6cujn2OXu5ui-w-zJ9WD9kyDyvKYQgbTkgNitW-liyRNWZUUdakFZdYljFXPGHSewfagHdbSapAxlBGMSvTuo7m6Ppwt7fd56jcILbdaI1_KWhCOKYRS8Gr0oOqsp1zVjWi0oMcdGcGK3UrCBb7wMRPYGIfmDgG5lH6B-2t_pD263_o6gBppdQvwKMYWIyjb9YYeBA
CODEN ITCTEM
CitedBy_id crossref_primary_10_1016_j_inffus_2025_103322
crossref_primary_10_1016_j_sigpro_2022_108901
crossref_primary_10_1109_TCSVT_2024_3401134
crossref_primary_10_1109_TMM_2021_3112230
crossref_primary_10_1007_s00530_023_01234_3
crossref_primary_10_1109_TCSVT_2024_3393148
crossref_primary_10_1016_j_patcog_2022_109264
crossref_primary_10_1109_TKDE_2025_3568795
crossref_primary_10_1109_TNNLS_2025_3545465
crossref_primary_10_1016_j_neucom_2024_128264
crossref_primary_10_1016_j_ins_2024_121575
crossref_primary_10_1109_TIP_2022_3171421
crossref_primary_10_1109_TETCI_2024_3502459
crossref_primary_10_1145_3532612
crossref_primary_10_1109_TCSVT_2023_3302326
crossref_primary_10_1016_j_inffus_2023_02_013
crossref_primary_10_1016_j_phycom_2023_102231
crossref_primary_10_1109_TMM_2022_3185886
crossref_primary_10_1109_TCSVT_2023_3266801
crossref_primary_10_1016_j_inffus_2025_103313
crossref_primary_10_1016_j_engappai_2022_105541
crossref_primary_10_1109_TCSVT_2023_3316279
crossref_primary_10_1016_j_ins_2023_120085
crossref_primary_10_1016_j_neucom_2025_130290
crossref_primary_10_1007_s10489_023_04744_9
crossref_primary_10_1016_j_knosys_2025_113523
crossref_primary_10_1109_TMM_2022_3207922
crossref_primary_10_3390_electronics13112181
crossref_primary_10_1016_j_patcog_2024_110598
crossref_primary_10_1109_TCSVT_2021_3119956
crossref_primary_10_1109_TCSVT_2022_3143848
crossref_primary_10_1016_j_knosys_2022_109127
crossref_primary_10_1016_j_eswa_2025_128007
crossref_primary_10_1016_j_patcog_2024_110473
crossref_primary_10_1109_TCSVT_2023_3312979
crossref_primary_10_1109_TCSVT_2025_3543977
crossref_primary_10_1109_TCSVT_2023_3276362
crossref_primary_10_1109_TCSS_2024_3479188
crossref_primary_10_1109_TCSVT_2021_3089336
crossref_primary_10_1109_TCE_2023_3341908
crossref_primary_10_26599_BDMA_2023_9020004
crossref_primary_10_1109_TCSVT_2023_3241172
crossref_primary_10_1007_s10489_024_05616_6
crossref_primary_10_1016_j_ins_2024_121278
crossref_primary_10_1016_j_patcog_2024_110592
crossref_primary_10_1109_TGRS_2023_3321789
crossref_primary_10_1016_j_eswa_2024_124683
crossref_primary_10_1109_TKDE_2023_3305624
crossref_primary_10_1109_TGRS_2022_3227735
crossref_primary_10_1109_TNNLS_2021_3059874
crossref_primary_10_1109_TCSVT_2022_3201822
crossref_primary_10_1016_j_inffus_2024_102347
crossref_primary_10_1016_j_patcog_2024_110364
crossref_primary_10_1109_TCSVT_2023_3247600
crossref_primary_10_1109_TKDE_2022_3185126
crossref_primary_10_3390_rs17152647
crossref_primary_10_1007_s10489_023_04668_4
crossref_primary_10_1109_TKDE_2024_3391627
crossref_primary_10_1109_TNNLS_2025_3526590
crossref_primary_10_1016_j_knosys_2025_114356
crossref_primary_10_1016_j_knosys_2025_114510
crossref_primary_10_1109_TNNLS_2024_3401449
crossref_primary_10_1016_j_ins_2025_122678
crossref_primary_10_1109_TSIPN_2023_3306098
crossref_primary_10_1109_TCSVT_2022_3200451
crossref_primary_10_1007_s11280_022_01012_7
crossref_primary_10_1109_TCSVT_2022_3207484
crossref_primary_10_1016_j_eswa_2024_124103
crossref_primary_10_1109_TCSVT_2024_3396332
crossref_primary_10_1007_s10489_023_05181_4
crossref_primary_10_1109_TSC_2023_3241659
crossref_primary_10_1109_TCSVT_2024_3376720
crossref_primary_10_1109_TCSVT_2024_3375997
crossref_primary_10_1016_j_eswa_2023_121518
crossref_primary_10_1016_j_inffus_2024_102709
crossref_primary_10_1109_TBDATA_2022_3163584
crossref_primary_10_1109_TCSVT_2023_3275299
crossref_primary_10_1016_j_neucom_2023_126320
crossref_primary_10_1109_TAI_2023_3293479
crossref_primary_10_1007_s00500_023_07919_1
crossref_primary_10_1145_3568684
crossref_primary_10_1109_TCSVT_2023_3249796
crossref_primary_10_1109_TGRS_2023_3285269
crossref_primary_10_1109_TETCI_2024_3353037
crossref_primary_10_1109_TCSVT_2022_3162575
crossref_primary_10_1109_TIP_2024_3378471
crossref_primary_10_1109_TCSVT_2023_3263853
crossref_primary_10_1145_3612923
crossref_primary_10_1109_TGRS_2024_3370633
crossref_primary_10_1109_TKDE_2025_3555043
crossref_primary_10_1016_j_patcog_2025_111818
crossref_primary_10_1109_TSP_2021_3101979
crossref_primary_10_1093_comjnl_bxae049
crossref_primary_10_1109_TCSVT_2024_3442295
crossref_primary_10_1016_j_neucom_2022_09_145
crossref_primary_10_1145_3735644
crossref_primary_10_1109_TCSVT_2021_3089480
crossref_primary_10_1109_TCSVT_2023_3275985
crossref_primary_10_1109_TCSVT_2023_3266283
crossref_primary_10_1109_TNNLS_2025_3545435
crossref_primary_10_1016_j_neunet_2025_107652
crossref_primary_10_1145_3645108
crossref_primary_10_1016_j_ins_2023_119570
crossref_primary_10_1109_TCSVT_2022_3229356
crossref_primary_10_1109_TCSVT_2024_3430041
crossref_primary_10_1109_TMM_2023_3307239
crossref_primary_10_1007_s10489_022_04074_2
crossref_primary_10_1109_TIP_2023_3340609
crossref_primary_10_1109_TSIPN_2022_3169633
crossref_primary_10_1109_TCSVT_2023_3299318
crossref_primary_10_1109_TCSVT_2022_3197230
crossref_primary_10_1109_TII_2022_3197201
crossref_primary_10_1109_TNNLS_2022_3202102
crossref_primary_10_1109_TNSE_2024_3485646
crossref_primary_10_1007_s10489_025_06814_6
crossref_primary_10_1109_TIFS_2023_3337717
crossref_primary_10_1109_TCYB_2024_3443198
crossref_primary_10_1109_TNSE_2023_3244624
crossref_primary_10_1016_j_knosys_2024_112106
crossref_primary_10_1109_TNNLS_2024_3356228
crossref_primary_10_1109_TCSVT_2023_3306811
crossref_primary_10_3390_math11061509
crossref_primary_10_1109_TCSVT_2024_3509892
crossref_primary_10_1109_TCYB_2023_3263175
crossref_primary_10_1016_j_neucom_2024_128093
crossref_primary_10_1109_TIP_2021_3068646
crossref_primary_10_1109_TIP_2023_3293764
crossref_primary_10_1109_TIP_2025_3583122
crossref_primary_10_1109_TNNLS_2025_3527120
crossref_primary_10_1007_s00521_023_08279_5
crossref_primary_10_1109_TCSVT_2023_3258926
crossref_primary_10_1007_s10462_025_11240_8
crossref_primary_10_1016_j_neunet_2023_02_016
crossref_primary_10_1109_TCSVT_2021_3127007
crossref_primary_10_1007_s10489_022_03406_6
crossref_primary_10_1016_j_neucom_2025_129766
crossref_primary_10_1016_j_inffus_2023_101941
crossref_primary_10_1109_ACCESS_2022_3176436
crossref_primary_10_1109_TCSVT_2024_3492814
crossref_primary_10_1109_TCSVT_2024_3399596
crossref_primary_10_1016_j_neunet_2025_108003
crossref_primary_10_1117_1_JRS_18_046510
crossref_primary_10_1007_s11042_023_16846_0
crossref_primary_10_1109_TMM_2023_3347639
Cites_doi 10.1109/TCYB.2020.2987164
10.1109/CVPR.2015.7298657
10.1109/TIP.2019.2916740
10.1109/TPAMI.2018.2847335
10.1109/TIP.2017.2754939
10.1109/JSTSP.2018.2873148
10.1109/TIP.2016.2627806
10.1109/TCYB.2018.2869789
10.1145/2623330.2623726
10.1016/j.patcog.2020.107307
10.1109/TIP.2010.2049235
10.1109/TIP.2019.2941319
10.1109/TPAMI.2012.88
10.1109/JSTSP.2018.2875385
10.1109/TPAMI.2013.57
10.1109/CVPR.2014.484
10.1109/TPAMI.2018.2877660
10.1109/TIP.2018.2825647
10.1145/3343031.3351023
10.1109/ICCV.2011.6126528
10.1109/TCYB.2018.2887094
10.1609/aaai.v34i04.6109
10.1109/ICDM.2016.0167
10.1017/CBO9780511804441
10.1007/s00521-019-04688-7
10.1109/TCYB.2017.2751646
10.1137/07070111X
10.1016/j.neucom.2019.01.004
10.1109/CVPR.2019.00798
10.1561/2200000016
10.1109/ICCV.2019.00826
10.1126/science.290.5500.2323
10.1016/j.knosys.2020.105482
10.1109/TGRS.2017.2706326
10.1109/TPAMI.2018.2794348
10.1109/TCYB.2016.2536752
10.1109/TIP.2017.2754942
10.1109/LSP.2018.2791606
10.1109/TKDE.2019.2903810
10.1109/ICME.2019.00234
10.24963/ijcai.2017/357
10.1109/TPAMI.2015.2462360
10.1109/TSIPN.2020.2988572
10.1162/089976603321780317
10.1007/s11263-018-1086-2
10.1109/ICCV.2015.185
10.1109/ICDM.2019.00095
10.1109/TMM.2019.2952984
10.1109/SSP.2016.7551734
10.1609/aaai.v34i04.6146
10.1109/TPAMI.2020.3037734
10.1109/TCSVT.2020.2967424
10.1109/CVPR.2017.8
10.1109/TNNLS.2018.2851444
10.1109/MSP.2010.939739
10.1016/j.patcog.2020.107441
10.1137/130905010
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2021.3055625
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 104
ExternalDocumentID 10_1109_TCSVT_2021_3055625
9345740
Genre orig-research
GrantInformation_xml – fundername: University of Macau
  grantid: MYRG2018-00136-FST
  funderid: 10.13039/501100004733
– fundername: Science and Technology Development Fund, Macau SAR
  grantid: 189/2017/A3
  funderid: 10.13039/501100006469
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-f911d5e7d1d5b76ad072e27f8c9a0ab49e967a05552f5105ca2e5a45b347b8dd3
IEDL.DBID RIE
ISICitedReferencesCount 165
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000742183600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8215
IngestDate Sun Jun 29 15:40:08 EDT 2025
Tue Nov 18 22:16:48 EST 2025
Sat Nov 29 01:44:15 EST 2025
Wed Aug 27 03:03:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-f911d5e7d1d5b76ad072e27f8c9a0ab49e967a05552f5105ca2e5a45b347b8dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1970-1993
0000-0001-8827-3991
0000-0002-4487-6384
0000-0003-0003-5126
0000-0003-1578-2634
PQID 2619023785
PQPubID 85433
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2021_3055625
proquest_journals_2619023785
crossref_primary_10_1109_TCSVT_2021_3055625
ieee_primary_9345740
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref59
ref15
ref58
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
roweis (ref35) 2000; 290
ref42
guo (ref33) 2015
xia (ref20) 2014
ref43
ref49
ref8
ref7
ref9
ref4
ref3
jia (ref47) 2020
ref6
ref5
teng (ref14) 2020
ref40
ref34
ref37
ref36
lei (ref12) 2020
ref31
ref30
ref32
ref1
ref39
xing (ref2) 2020
xie (ref53) 2020
ref38
jia (ref41) 2020
ref24
ref23
ref26
ref25
xie (ref44) 2020
ref64
ref63
ref66
ref22
ref65
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref31
  doi: 10.1109/TCYB.2020.2987164
– ident: ref23
  doi: 10.1109/CVPR.2015.7298657
– ident: ref18
  doi: 10.1109/TIP.2019.2916740
– ident: ref30
  doi: 10.1109/TPAMI.2018.2847335
– ident: ref19
  doi: 10.1109/TIP.2017.2754939
– ident: ref56
  doi: 10.1109/JSTSP.2018.2873148
– ident: ref9
  doi: 10.1109/TIP.2016.2627806
– ident: ref11
  doi: 10.1109/TCYB.2018.2869789
– ident: ref27
  doi: 10.1145/2623330.2623726
– ident: ref32
  doi: 10.1016/j.patcog.2020.107307
– ident: ref36
  doi: 10.1109/TIP.2010.2049235
– ident: ref63
  doi: 10.1109/TIP.2019.2941319
– ident: ref6
  doi: 10.1109/TPAMI.2012.88
– ident: ref48
  doi: 10.1109/JSTSP.2018.2875385
– ident: ref5
  doi: 10.1109/TPAMI.2013.57
– ident: ref7
  doi: 10.1109/CVPR.2014.484
– year: 2020
  ident: ref14
  article-title: Multi-view spatial attention embedding for vehicle re-identification
  publication-title: IEEE Trans Circuits Syst Video Technol
– ident: ref49
  doi: 10.1109/TPAMI.2018.2877660
– ident: ref24
  doi: 10.1109/TIP.2018.2825647
– ident: ref4
  doi: 10.1145/3343031.3351023
– ident: ref64
  doi: 10.1109/ICCV.2011.6126528
– ident: ref28
  doi: 10.1109/TCYB.2018.2887094
– ident: ref66
  doi: 10.1609/aaai.v34i04.6109
– ident: ref65
  doi: 10.1109/ICDM.2016.0167
– ident: ref61
  doi: 10.1017/CBO9780511804441
– ident: ref39
  doi: 10.1007/s00521-019-04688-7
– ident: ref26
  doi: 10.1109/TCYB.2017.2751646
– ident: ref60
  doi: 10.1137/07070111X
– ident: ref46
  doi: 10.1016/j.neucom.2019.01.004
– ident: ref13
  doi: 10.1109/CVPR.2019.00798
– ident: ref59
  doi: 10.1561/2200000016
– ident: ref50
  doi: 10.1109/ICCV.2019.00826
– volume: 290
  start-page: 2323
  year: 2000
  ident: ref35
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– ident: ref37
  doi: 10.1016/j.knosys.2020.105482
– ident: ref55
  doi: 10.1109/TGRS.2017.2706326
– ident: ref8
  doi: 10.1109/TPAMI.2018.2794348
– ident: ref62
  doi: 10.1109/TCYB.2016.2536752
– year: 2020
  ident: ref44
  article-title: Robust kernelized multiview self-representation for subspace clustering
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref10
  doi: 10.1109/TIP.2017.2754942
– ident: ref42
  doi: 10.1109/LSP.2018.2791606
– ident: ref21
  doi: 10.1109/TKDE.2019.2903810
– ident: ref15
  doi: 10.1109/ICME.2019.00234
– ident: ref25
  doi: 10.24963/ijcai.2017/357
– ident: ref57
  doi: 10.1109/TPAMI.2015.2462360
– year: 2020
  ident: ref41
  article-title: Constrained clustering with dissimilarity propagation-guided graph-Laplacian PCA
  publication-title: IEEE Trans Neural Netw Learn Syst
– year: 2020
  ident: ref53
  article-title: Joint deep multi-view learning for image clustering
  publication-title: IEEE Trans Knowl Data Eng
– ident: ref40
  doi: 10.1109/TSIPN.2020.2988572
– ident: ref34
  doi: 10.1162/089976603321780317
– ident: ref17
  doi: 10.1007/s11263-018-1086-2
– ident: ref16
  doi: 10.1109/ICCV.2015.185
– ident: ref38
  doi: 10.1109/ICDM.2019.00095
– ident: ref43
  doi: 10.1109/TMM.2019.2952984
– ident: ref29
  doi: 10.1109/SSP.2016.7551734
– ident: ref52
  doi: 10.1609/aaai.v34i04.6146
– ident: ref51
  doi: 10.1109/TPAMI.2020.3037734
– year: 2020
  ident: ref47
  article-title: Multi-view spectral clustering tailored tensor low-rank representation
  publication-title: arXiv 2004 14705
– ident: ref3
  doi: 10.1109/TCSVT.2020.2967424
– year: 2020
  ident: ref2
  article-title: Robust high-order manifold constrained low rank representation for subspace clustering
  publication-title: IEEE Trans Circuits Syst Video Technol
– year: 2020
  ident: ref12
  article-title: Deep spatial-spectral subspace clustering for hyperspectral image
  publication-title: IEEE Trans Circuits Syst Video Technol
– ident: ref22
  doi: 10.1109/CVPR.2017.8
– ident: ref45
  doi: 10.1109/TNNLS.2018.2851444
– ident: ref1
  doi: 10.1109/MSP.2010.939739
– ident: ref58
  doi: 10.1016/j.patcog.2020.107441
– start-page: 2149
  year: 2014
  ident: ref20
  article-title: Robust multi-view spectral clustering via low-rank and sparse decomposition
  publication-title: Proc AAAI
– start-page: 3547
  year: 2015
  ident: ref33
  article-title: Robust subspace segmentation by simultaneously learning data representations and their affinity matrix
  publication-title: Proc Int Joint Conf Artif Intell
– ident: ref54
  doi: 10.1137/130905010
SSID ssj0014847
Score 2.6807244
Snippet Graph and subspace clustering methods have become the mainstream of multi-view clustering due to their promising performance. However, (1) since graph...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 92
SubjectTerms Adaptation models
Affinity
Algorithms
Clustering
Clustering algorithms
Clustering methods
Correlation
graph learning
Learning
low-rank
Matrix decomposition
Multi-view clustering
Optimization
Outliers (statistics)
Representations
Sparse matrices
Subspace methods
Subspaces
tensor approximation
Tensors
Title Low-Rank Tensor Graph Learning for Multi-View Subspace Clustering
URI https://ieeexplore.ieee.org/document/9345740
https://www.proquest.com/docview/2619023785
Volume 32
WOSCitedRecordID wos000742183600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zeNCDX1OcTsnBm2br0qZpjmM4PcgQrWO3kiapDEcr-3D_vnlZVwaK4KXkkED5vXy830ve7yF0k9o5kTJNSSoiBdGqkERKSCKzwJfdSFm7aFdsgg-H0XgsnmvorsqFMca4x2emDU13l68LtYRQWUf4AeOBJeg7nPN1rlZ1YxBErpiYdRe6JLLn2CZBxhOduP86ii0VpN22E8SCsthbh5CrqvJjK3bny-Dwf392hA5KPxL31oY_RjWTn6D9LXXBBuo9FSvyIvMPHFuuWszwA4hT41JR9R1bdxW7_FsympgVhi3EEmiD-9MlqCfYLqfobXAf9x9JWTGBKCrYgmR269LMcG2_KQ-l9jg1lGcAvyfTQBgRcgkaXzQDz0pJapgMWOoHPI209s9QPS9yc46wgfck0rf8Iw0DbZtKKcM45KFKlvleE3U3ECaqlBOHqhbTxNEKTyQO9gRgT0rYm-i2GvO5FtP4s3cDgK56lhg3UWtjqaRcb_MEeKD1PnjELn4fdYn2KCQuuOBJC9UXs6W5QrvqazGZz67dVPoGyiXFyw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5EBfXgW6xWzcGbRnezSbM5luILaxFdxduSTbJSlFZqq3_fTLotgiJ4WXJIYJlJZuabZL4BOCz8niiEZbRQqcFsVYOmRmmqS57oODVeLzY0m5CdTvr0pG5n4HhaC-OcC4_P3AkOw12-7ZsRpspOVcKF5B6gzwnOWTyu1preGfA0tBPzAUNMU-_JJiUykTrNWvePmQeDLD4JlFjYGPubGwp9VX4Y4-Bhzlf-92-rsFxFkqQ5Vv0azLjeOix94xfcgGa7_0nvdO-FZB6t9gfkAumpScWp-kx8wEpCBS597LpPgkbEQ2hHWq8j5E_wUzbh4fwsa13SqmcCNUyJIS298bLCSeu_hWxoG0nmmCxRAZEuuHKqITWyfLESYyujmROaiyLhskitTbZgttfvuW0gDl-U6MQjkKLBrR8aY5yQWImqRZlENYgnIsxNRSiOfS1e8wAsIpUHseco9rwSew2OpmvexnQaf87eQEFPZ1YyrkF9oqm8OnHvOSJBH3_IVOz8vuoAFi6zm3bevupc78IiwzKGkEqpw-xwMHJ7MG8-ht33wX7YVl9AC8kS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Rank+Tensor+Graph+Learning+for+Multi-View+Subspace+Clustering&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Chen%2C+Yongyong&rft.au=Xiao%2C+Xiaolin&rft.au=Chong%2C+Peng&rft.au=Lu%2C+Guangming&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=1&rft.spage=92&rft_id=info:doi/10.1109%2FTCSVT.2021.3055625&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon