Stacking Model for Photovoltaic-Power-Generation Prediction

Despite the clean and renewable advantages of solar energy, the instability of photovoltaic power generation limits its wide applicability. In order to ensure stable power-grid operations and the safe dispatching of the power grid, it is necessary to develop a model that can accurately predict the p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sustainability Ročník 14; číslo 9; s. 5669
Hlavní autoři: Zhang, Hongchao, Zhu, Tengteng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.05.2022
Témata:
ISSN:2071-1050, 2071-1050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Despite the clean and renewable advantages of solar energy, the instability of photovoltaic power generation limits its wide applicability. In order to ensure stable power-grid operations and the safe dispatching of the power grid, it is necessary to develop a model that can accurately predict the photovoltaic power generation. As a widely used prediction method, the stacking model has been applied in many fields. However, few studies have used stacking models to predict photovoltaic power generation. In the research, we develop four different stacking models that are based on extreme gradient boosting, random forest, light gradient boosting, and gradient boosting decision tree to predict photovoltaic power generation, by using two datasets. The results show that the prediction accuracy of the stacking model is higher than that of the single ensemble-learning model, and that the prediction accuracy of the Stacking-GBDT model is higher than the other stacking models. The stacking model that is proposed in this research provides a reference for the accurate prediction of photovoltaic power generation.
AbstractList Despite the clean and renewable advantages of solar energy, the instability of photovoltaic power generation limits its wide applicability. In order to ensure stable power-grid operations and the safe dispatching of the power grid, it is necessary to develop a model that can accurately predict the photovoltaic power generation. As a widely used prediction method, the stacking model has been applied in many fields. However, few studies have used stacking models to predict photovoltaic power generation. In the research, we develop four different stacking models that are based on extreme gradient boosting, random forest, light gradient boosting, and gradient boosting decision tree to predict photovoltaic power generation, by using two datasets. The results show that the prediction accuracy of the stacking model is higher than that of the single ensemble-learning model, and that the prediction accuracy of the Stacking-GBDT model is higher than the other stacking models. The stacking model that is proposed in this research provides a reference for the accurate prediction of photovoltaic power generation.
Author Zhu, Tengteng
Zhang, Hongchao
Author_xml – sequence: 1
  givenname: Hongchao
  orcidid: 0000-0002-1560-6940
  surname: Zhang
  fullname: Zhang, Hongchao
– sequence: 2
  givenname: Tengteng
  surname: Zhu
  fullname: Zhu, Tengteng
BookMark eNptkE9LAzEQxYNUsNZe_AQL3oTVmc1ussGTFK1CxYJ6XtL80dR1U5NU8du7tYIizmXe4fdmHm-fDDrfGUIOEU4oFXAa11iCqBgTO2RYAMccoYLBL71HxjEuoR9KUSAbkrO7JNWz6x6zG69Nm1kfsvmTT_7Nt0k6lc_9uwn51HQmyOR8l82D0U5t5AHZtbKNZvy9R-Th8uJ-cpXPbqfXk_NZrgpRpdzWYFEUuixVbTlqoUpuq7LmGrhmaKiurV4Usmaa0qKynALqylhcAJfWUjoiR9u7q-Bf1yamZunXoetfNgVjFAtAjj0FW0oFH2MwtlEufUVOQbq2QWg2LTU_LfWW4z-WVXAvMnz8B38CzzBo6Q
CitedBy_id crossref_primary_10_1016_j_enconman_2024_118397
crossref_primary_10_3390_su141711083
crossref_primary_10_1016_j_egyr_2025_03_060
crossref_primary_10_1186_s42162_025_00561_1
crossref_primary_10_1007_s13369_024_08854_5
crossref_primary_10_1007_s11465_024_0796_0
crossref_primary_10_3390_electronics11193242
crossref_primary_10_1007_s00202_024_02281_3
crossref_primary_10_1016_j_jclepro_2022_134979
crossref_primary_10_1109_ACCESS_2022_3228441
crossref_primary_10_3390_s22239060
crossref_primary_10_3390_en16041963
crossref_primary_10_3390_su151713146
crossref_primary_10_31015_2025_1_24
crossref_primary_10_3390_su142416433
crossref_primary_10_3390_en16124827
crossref_primary_10_1016_j_egyr_2024_08_078
crossref_primary_10_3390_su152014928
crossref_primary_10_1016_j_prime_2025_100977
crossref_primary_10_3390_inventions7030067
crossref_primary_10_1038_s41598_025_99109_2
crossref_primary_10_1016_j_engappai_2025_110075
crossref_primary_10_1016_j_eswa_2023_121668
crossref_primary_10_3390_en18123136
crossref_primary_10_1007_s41060_024_00686_8
crossref_primary_10_1109_ACCESS_2025_3604038
crossref_primary_10_1016_j_procs_2022_10_113
crossref_primary_10_3390_su16125254
crossref_primary_10_3390_su16145880
crossref_primary_10_3390_electronics13101837
Cites_doi 10.1613/jair.594
10.3390/en12071249
10.1016/j.solener.2019.07.061
10.1016/j.enconman.2016.04.051
10.1016/j.jclepro.2020.123285
10.1016/j.ijepes.2018.01.025
10.1016/j.renene.2019.12.131
10.1016/S0893-6080(05)80023-1
10.1109/TIA.2012.2190816
10.1016/j.energy.2020.117743
10.1016/j.renene.2020.05.150
10.1016/j.solener.2014.11.017
10.1016/j.apenergy.2019.114216
10.1016/j.enconman.2020.112582
10.1109/TSTE.2017.2762435
10.3390/en9010011
10.1016/j.renene.2018.02.006
10.3390/su132111833
10.1016/j.energy.2018.09.116
10.1016/j.egyr.2020.11.006
10.1146/annurev-soc-073117-041106
10.1109/ACCESS.2020.2981819
10.1016/j.enconman.2015.02.052
10.1016/j.ijepes.2015.02.006
10.1016/j.enbuild.2010.04.006
10.1016/j.solener.2012.04.004
10.1016/j.apenergy.2016.08.093
10.1016/j.renene.2020.09.141
10.1080/19397038.2021.1986590
10.1023/A:1010933404324
10.1016/j.apenergy.2017.06.104
10.1016/j.apenergy.2019.114001
10.1145/2939672.2939785
10.1162/neco.1997.9.8.1735
10.1007/3-540-45014-9_1
10.1016/j.renene.2017.11.011
10.1016/j.renene.2020.11.089
10.1109/TSTE.2014.2313600
10.1016/j.renene.2018.08.005
10.1109/ACCESS.2022.3156942
10.1016/j.renene.2013.11.067
10.1016/j.enconman.2016.05.025
10.1016/j.solener.2020.01.034
10.1016/j.solener.2009.05.016
10.1016/j.rser.2019.02.006
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/su14095669
DatabaseName CrossRef
University Readers
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (subscription)
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID 10_3390_su14095669
GeographicLocations Australia
China
GeographicLocations_xml – name: China
– name: Australia
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
ESTFP
FRS
GX1
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
4U-
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c295t-f80f192d44c8f71d9c47f5487d07d61e3d8fdb2a86d3325f7301d5ef1b07aff33
IEDL.DBID BENPR
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795243100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2071-1050
IngestDate Mon Jun 30 07:34:53 EDT 2025
Tue Nov 18 21:05:32 EST 2025
Sat Nov 29 07:13:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-f80f192d44c8f71d9c47f5487d07d61e3d8fdb2a86d3325f7301d5ef1b07aff33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1560-6940
OpenAccessLink https://www.proquest.com/docview/2663120171?pq-origsite=%requestingapplication%
PQID 2663120171
PQPubID 2032327
ParticipantIDs proquest_journals_2663120171
crossref_citationtrail_10_3390_su14095669
crossref_primary_10_3390_su14095669
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Shi (ref_27) 2012; 48
Ting (ref_48) 1999; 10
Hassan (ref_8) 2017; 203
Gupta (ref_15) 2021; 14
Dimd (ref_2) 2022; 10
Eseye (ref_34) 2017; 118
Gao (ref_39) 2020; 162
Guo (ref_19) 2020; 6
ref_17
ref_16
Liu (ref_28) 2019; 189
Bacher (ref_3) 2009; 83
Bessa (ref_4) 2015; 72
Hochreiter (ref_37) 1997; 9
Wolpert (ref_47) 1992; 5
Dewangan (ref_26) 2020; 202
ref_22
Chu (ref_5) 2015; 112
Fouilloy (ref_9) 2018; 165
Kumari (ref_46) 2021; 279
Ramsami (ref_35) 2015; 95
Yu (ref_43) 2010; 42
Cao (ref_50) 2019; 26
Reiman (ref_51) 2001; 45
Lou (ref_7) 2016; 181
Yagli (ref_11) 2019; 105
ref_32
ref_30
Li (ref_41) 2020; 259
Li (ref_6) 2014; 66
Breiman (ref_18) 1996; 46
Rosiek (ref_31) 2018; 99
Eom (ref_20) 2020; 8
Lee (ref_14) 2020; 208
Sharadga (ref_36) 2020; 150
Narvaez (ref_13) 2021; 167
Zang (ref_38) 2020; 160
Babar (ref_12) 2020; 198
ref_45
Koster (ref_21) 2019; 132
Rana (ref_24) 2016; 121
Pedro (ref_29) 2012; 86
ref_42
ref_1
Molina (ref_23) 2019; 45
Zheng (ref_40) 2020; 257
Sun (ref_44) 2016; 119
ref_49
Pedro (ref_10) 2018; 123
Gigoni (ref_25) 2017; 9
Yang (ref_33) 2014; 5
References_xml – volume: 10
  start-page: 271
  year: 1999
  ident: ref_48
  article-title: Issues in Stacked Generalization
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.594
– ident: ref_32
  doi: 10.3390/en12071249
– volume: 189
  start-page: 291
  year: 2019
  ident: ref_28
  article-title: A recursive ensemble model for forecasting the power output of photovoltaic systems
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.07.061
– volume: 119
  start-page: 121
  year: 2016
  ident: ref_44
  article-title: Assessing the potential of random forest method for estimating solar radiation using air pollution index
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.04.051
– volume: 279
  start-page: 123285
  year: 2021
  ident: ref_46
  article-title: Extreme gradient boosting and deep neural network based ensemble learning approach to forecast hourly solar irradiance
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123285
– volume: 99
  start-page: 261
  year: 2018
  ident: ref_31
  article-title: Online 3-h forecasting of the power output from a BIPV system using satellite observations and ANN
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.01.025
– volume: 150
  start-page: 797
  year: 2020
  ident: ref_36
  article-title: Time series forecasting of solar power generation for large-scale photovoltaic plants
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.12.131
– ident: ref_1
– volume: 5
  start-page: 241
  year: 1992
  ident: ref_47
  article-title: Stacked generalization
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80023-1
– volume: 48
  start-page: 1064
  year: 2012
  ident: ref_27
  article-title: Forecasting Power Output of photovoltaic Systems Based on Weather Classification and Support Vector Machines
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2012.2190816
– volume: 26
  start-page: 2231
  year: 2019
  ident: ref_50
  article-title: The Two-layer Classifier Model and its Application to Personal Credit Assessment
  publication-title: Control. Eng. China
– volume: 202
  start-page: 117743
  year: 2020
  ident: ref_26
  article-title: Combining forecasts of day-ahead solar power
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117743
– volume: 160
  start-page: 26
  year: 2020
  ident: ref_38
  article-title: Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.05.150
– volume: 112
  start-page: 68
  year: 2015
  ident: ref_5
  article-title: Short-term reforecasting of power output from a 48 MWe solar PV plant
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.11.017
– volume: 259
  start-page: 114216
  year: 2020
  ident: ref_41
  article-title: A hybrid deep learning model for short-term PV power forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114216
– volume: 208
  start-page: 112582
  year: 2020
  ident: ref_14
  article-title: Reliable solar irradiance prediction using ensemble learning-based models: A comparative study
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.112582
– volume: 9
  start-page: 831
  year: 2017
  ident: ref_25
  article-title: Day-Ahead Hourly Forecasting of Power Generation from photovoltaic Plants
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2017.2762435
– ident: ref_30
  doi: 10.3390/en9010011
– ident: ref_17
– ident: ref_45
– volume: 123
  start-page: 191
  year: 2018
  ident: ref_10
  article-title: Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.02.006
– ident: ref_49
  doi: 10.3390/su132111833
– volume: 165
  start-page: 620
  year: 2018
  ident: ref_9
  article-title: Solar irradiation prediction with machine learning: Forecasting models selection method depending on weather variability
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.116
– volume: 6
  start-page: 1424
  year: 2020
  ident: ref_19
  article-title: Study on short-term photovoltaic power prediction model based on the Stacking ensemble learning
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2020.11.006
– volume: 45
  start-page: 27
  year: 2019
  ident: ref_23
  article-title: Machine Learning for Sociology
  publication-title: Annu. Rev. Sociol.
  doi: 10.1146/annurev-soc-073117-041106
– volume: 8
  start-page: 54620
  year: 2020
  ident: ref_20
  article-title: Feature-Selective Ensemble Learning-Based Long-Term Regional PV Generation Forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981819
– volume: 95
  start-page: 406
  year: 2015
  ident: ref_35
  article-title: A hybrid method for forecasting the energy output of photovoltaic systems
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.02.052
– volume: 72
  start-page: 16
  year: 2015
  ident: ref_4
  article-title: Solar power forecasting in smart grids using distributed information
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.02.006
– volume: 42
  start-page: 1637
  year: 2010
  ident: ref_43
  article-title: A decision tree method for building energy demand modeling
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2010.04.006
– volume: 86
  start-page: 2017
  year: 2012
  ident: ref_29
  article-title: Assessment of forecasting techniques for solar power production with no exogenous inputs
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.04.004
– volume: 181
  start-page: 367
  year: 2016
  ident: ref_7
  article-title: Prediction of diffuse solar irradiance using machine learning and multivariable regression
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.08.093
– volume: 162
  start-page: 1665
  year: 2020
  ident: ref_39
  article-title: Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.09.141
– volume: 46
  start-page: 50
  year: 1996
  ident: ref_18
  article-title: Bagging Predictors
  publication-title: Mach. Learn.
– volume: 14
  start-page: 1733
  year: 2021
  ident: ref_15
  article-title: PV power forecasting based on data driven models: A review
  publication-title: Int. J. Sustain. Eng.
  doi: 10.1080/19397038.2021.1986590
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_51
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 203
  start-page: 897
  year: 2017
  ident: ref_8
  article-title: Exploring the potential of tree-based ensemble methods in solar radiation modeling
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.06.104
– volume: 257
  start-page: 114001
  year: 2020
  ident: ref_40
  article-title: Time series prediction for output of multi-region solar power plants
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114001
– ident: ref_16
  doi: 10.1145/2939672.2939785
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_37
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_42
  doi: 10.1007/3-540-45014-9_1
– volume: 118
  start-page: 357
  year: 2017
  ident: ref_34
  article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.11.011
– volume: 167
  start-page: 333
  year: 2021
  ident: ref_13
  article-title: Machine Learning for Site-adaptation and Solar Radiation Forecasting
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.11.089
– volume: 5
  start-page: 917
  year: 2014
  ident: ref_33
  article-title: A Weather-Based Hybrid Method for 1-Day Ahead Hourly Forecasting of PV Power Output
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2014.2313600
– volume: 132
  start-page: 55
  year: 2019
  ident: ref_21
  article-title: Short-term and regionalized photovoltaic power forecasting, enhanced by reference systems, on the example of Luxembourg
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.08.005
– volume: 10
  start-page: 26404
  year: 2022
  ident: ref_2
  article-title: A Review of Machine Learning-Based photovoltaic Output Power Forecasting: Nordic Context
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3156942
– volume: 66
  start-page: 78
  year: 2014
  ident: ref_6
  article-title: An ARMAX model for forecasting the power output of a grid connected photovoltaic system
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2013.11.067
– volume: 121
  start-page: 380
  year: 2016
  ident: ref_24
  article-title: Univariate and multivariate methods for very short-term solar photovoltaic power forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.05.025
– volume: 198
  start-page: 81
  year: 2020
  ident: ref_12
  article-title: Random forest regression for improved mapping of solar irradiance at high latitudes
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.01.034
– ident: ref_22
– volume: 83
  start-page: 1772
  year: 2009
  ident: ref_3
  article-title: Online short-term solar power forecasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2009.05.016
– volume: 105
  start-page: 487
  year: 2019
  ident: ref_11
  article-title: Automatic hourly solar forecasting using machine learning models
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.02.006
SSID ssj0000331916
Score 2.4834766
Snippet Despite the clean and renewable advantages of solar energy, the instability of photovoltaic power generation limits its wide applicability. In order to ensure...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 5669
SubjectTerms Accuracy
Algorithms
Alternative energy sources
Carbon
Electricity distribution
Machine learning
Research methodology
Solar energy
Statistical methods
Sustainability
Terms of sale
Title Stacking Model for Photovoltaic-Power-Generation Prediction
URI https://www.proquest.com/docview/2663120171
Volume 14
WOSCitedRecordID wos000795243100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5sK-jFR7VYrSWgFw-LSTZPPIhKi4ItQVTqKSS7WSyUtjbRo7_dmWbbUhAv3hIyC2HnPbvzDcA5ehBhpr7LPCdMmRMKlwVcZpilKJHwwFNlH_fro9_vB4NBGOmCW66vVS5s4txQy4mgGvklOhJu2YTucj39YDQ1ik5X9QiNCtQIqQzlvHbb6UdPyyqLyVHELK_EJeWY3yN_CeIJg5hw3ROtG-K5d-nu_ve_9mBHx5XGTSkI-7CRjeuwtWg7zuvQ6Kxa2pBQ63R-AFcYbwoqmBs0F21kYBRrRO-TYoKGq0iGgkU0SI2V-NTERiOa0ekOPR7CS7fzfHfP9EgFJuzQLZgKTIUxnXQcESjfkqFwfEVJizR96VkZl4GSqZ0EnuTcdhXpv3QzZaWmnyjFeQOq48k4OwIjS01kdJpggimd1PFT20q45_lC4RLTSppwsdjeWGi8cRp7MYox7yBWxCtWNOFsSTstUTZ-pWotWBBrTcvj1f4f__35BLZtal2YX1ZsQbWYfWansCm-imE-a2vBaUOl993Bt-ihF739AKIz0MY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB6kFerFd7FaNaAePCwm2TwREdGKxVpyqFJPMdnNYkFabaLin_I3OtMkFkG89eAtkMkhmS_fvHZmAPbRggg9dm3mWH7MLF_YzOMywShFiYh7jsr7uO86brfr9ft-MAefZS8MHassOXFC1HIkKEd-hIaEGyZNdzl9fmG0NYqqq-UKjRwW18nHO4Zs6Un7AvV7YJqXrd75FSu2CjBh-nbGlKcrdGukZQlPuYb0heUq8tul7krHSLj0lIzNyHMk56at6BeQdqKMWHcjpSgBipRftQjsFagG7Zvg_juro3OEtOHkc1A593XEE42UQqfJ_2n5fhL_xJpdLv2377AMi4XfrJ3lQF-BuWS4CrWyrTpdhXpr2rKHggVnpWtwjP60oIKARnvfnjT00rXgcZSNkJizaCBYQIviWD5_m2CqBWOqXtHlOtzO5KXqUBmOhskGaEmsI5DjCANoacWWG5tGxB3HFQof0Y2oAYelOkNRzFOntR5PIcZVpPpwqvoG7H3LPudTRH6VapYqDwsmScOpvjf_vr0LtaveTSfstLvXW7BgUpvG5GBmEyrZ-DXZhnnxlg3S8U4BWg0eZo2PL4PrK40
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB6kinrxUS2-DagHD4vJbp6IiGiLRS05qOgpJrtZFKTVJir-NX-dM01iKYi3HrwFsntI5tuZb2Z2ZgB20YJIM_Ec5tpBwuxAOswXKkUvRctY-K4u6rhvL71Ox7-7C8IJ-KpqYehaZaUTB4pa9STFyA_QkAiLU3eXA11eiwjPWscvr4wmSFGmtRqnUUDkIv38QPctO2qfoaz3OG81r0_PWTlhgEkeODnTvqmR4ijblr72LBVI29PE4ZXpKddKhfK1Snjsu0oI7mg6DspJtZWYXqw1BUNR_U8iJbd5DSbD9lV4_xPhMQXC23KLnqhCBCZii9pLIYEKRq3gqBEYWLbW_H_-JwswV_Jp46Q4AIswkXbrMFOVW2d1aDSHpXy4sNRl2RIcIs-WlCgwaB7cs4Hs3Qgfe3kPFXYeP0kW0gA5VvTlJvgaYZ-yWvS4DDdj-agG1Lq9broCRpqYCPAkRsda2YntJdyKhet6UuMW04pXYb8SbSTLPus07uM5Qn-LYBANYbAKOz9rX4ruIr-u2qjEH5UaJouGsl_7-_U2TCMoost252IdZjlVbwzua25ALe-_pZswJd_zp6y_VeLXgIdxw-MbbxQ0TQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacking+Model+for+Photovoltaic-Power-Generation+Prediction&rft.jtitle=Sustainability&rft.au=Zhang%2C+Hongchao&rft.au=Zhu%2C+Tengteng&rft.date=2022-05-01&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=14&rft.issue=9&rft.spage=5669&rft_id=info:doi/10.3390%2Fsu14095669&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su14095669
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon