Extracting Moving Objects More Accurately: A CDA Contour Optimizer

In the area of change detection, there were a rare number of optimization methods. Most of the optimization methods that are used by change detection are morphological transformation or median filtering, which cannot best optimize change detection algorithm. In this paper, a general post-processing...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems for video technology Ročník 31; číslo 12; s. 4840 - 4849
Hlavní autoři: Gao, Fei, Li, Yunyang, Lu, Shufang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1051-8215, 1558-2205
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the area of change detection, there were a rare number of optimization methods. Most of the optimization methods that are used by change detection are morphological transformation or median filtering, which cannot best optimize change detection algorithm. In this paper, a general post-processing algorithm for change detection is proposed. We believe that some problems cannot be avoided in the area of change detection such as 1) region of moving object generated by change detection is slightly larger than the ground-truth and 2) there are always some disjoint and small regions that are independent from the moving objects. To address the problem, our method can optimize the change detection algorithm bases on the idea of edge detection, which can remove the wrong edge or pixel. In the experiments, more than 20 change detection algorithms that include the best algorithm in ChangeDetection.net are selected. Most of these change detection algorithms are optimized by the proposed method on PWC, Precision, and FMeasure, where, our optimized algorithm named FgSegNet_v2 is better than all other algorithms in the CDnet. The best-optimized margin of PWC is 0.64, and the fast speed is 548FPS on CPU. Our approach can better resolve the afore-mentioned problems that cannot be avoided and is general and fast. The experiments can be reproduced with C++ on Github https://github.com/walty19950301/CDA-contour-optimizer .
AbstractList In the area of change detection, there were a rare number of optimization methods. Most of the optimization methods that are used by change detection are morphological transformation or median filtering, which cannot best optimize change detection algorithm. In this paper, a general post-processing algorithm for change detection is proposed. We believe that some problems cannot be avoided in the area of change detection such as 1) region of moving object generated by change detection is slightly larger than the ground-truth and 2) there are always some disjoint and small regions that are independent from the moving objects. To address the problem, our method can optimize the change detection algorithm bases on the idea of edge detection, which can remove the wrong edge or pixel. In the experiments, more than 20 change detection algorithms that include the best algorithm in ChangeDetection.net are selected. Most of these change detection algorithms are optimized by the proposed method on PWC, Precision, and FMeasure, where, our optimized algorithm named FgSegNet_v2 is better than all other algorithms in the CDnet. The best-optimized margin of PWC is 0.64, and the fast speed is 548FPS on CPU. Our approach can better resolve the afore-mentioned problems that cannot be avoided and is general and fast. The experiments can be reproduced with C++ on Github https://github.com/walty19950301/CDA-contour-optimizer .
Author Gao, Fei
Li, Yunyang
Lu, Shufang
Author_xml – sequence: 1
  givenname: Fei
  orcidid: 0000-0002-4678-1936
  surname: Gao
  fullname: Gao, Fei
  email: feig@zjut.edu.cn
  organization: Laboratory of Graphics and Image Processing, College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
– sequence: 2
  givenname: Yunyang
  surname: Li
  fullname: Li, Yunyang
  email: yunyang_li@qq.com
  organization: Laboratory of Graphics and Image Processing, College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
– sequence: 3
  givenname: Shufang
  orcidid: 0000-0002-8711-1605
  surname: Lu
  fullname: Lu, Shufang
  email: sflu@zjut.edu.cn
  organization: Laboratory of Graphics and Image Processing, College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
BookMark eNp9UE1PwzAMjdCQ2AZ_AC6VOHc4SdOk3EYZH9LQDgyuURq5KNPWjjRDjF9PxiYOHJBl2Zbe87PfgPSatkFCzimMKIXial4-v85HDBgdcRBC8OKI9KkQKmUMRC_2IGiqGBUnZNB1CwCaqUz2yc3kM3hjg2vekqf2Y1dm1QJt6OLoMRlbu_Em4HJ7nYyT8jZm24R245PZOriV-0J_So5rs-zw7FCH5OVuMi8f0uns_rEcT1PLChHSWlTIKYKojBWS2wyV5FmeCQMgc1bXCqlklFrIigKNLDi3taoQlZK5oTUfksv93rVv3zfYBb2IdzRRUrMchIScAY8otkdZ33adx1qvvVsZv9UU9M4r_eOV3nmlD15FkvpDsi6Y4OKr3rjl_9SLPdUh4q9WwTOIwb8BqJp3wg
CODEN ITCTEM
CitedBy_id crossref_primary_10_1016_j_compeleceng_2023_108671
crossref_primary_10_1109_TIP_2024_3378473
crossref_primary_10_1007_s11063_022_11092_1
crossref_primary_10_1016_j_knosys_2024_111765
crossref_primary_10_1109_TETCI_2025_3529893
crossref_primary_10_1007_s10489_022_04062_6
crossref_primary_10_1109_ACCESS_2023_3299872
crossref_primary_10_1016_j_neucom_2022_06_104
crossref_primary_10_1109_TMM_2023_3266608
Cites_doi 10.1109/ICPR.2004.1333992
10.1109/WACV.2015.137
10.1007/s11042-010-0575-2
10.1016/j.neucom.2015.04.118
10.1109/TIP.2010.2101613
10.1109/TCSVT.2016.2614984
10.1109/2.410146
10.1109/TIP.2017.2695882
10.1109/CVPR.1999.784637
10.1109/CVPRW.2014.68
10.1109/BRICS-CCI-CBIC.2013.37
10.1007/s10044-019-00845-9
10.1016/j.patrec.2016.09.014
10.1109/ICIP.2015.7351664
10.1016/j.patcog.2014.10.020
10.1109/ICPR.2010.498
10.1186/s41074-017-0036-1
10.1109/TIP.2014.2378053
10.1109/CVPRW.2014.66
10.1109/ICIP.2014.7025661
10.3390/sym11050621
10.1016/j.patcog.2017.09.040
10.1109/AVSS.2013.6636617
10.1109/CVPR.2004.1315249
10.1109/TEVC.2017.2694160
10.1109/ISCAS.2017.8050570
10.1109/TIP.2016.2598691
10.4304/jmm.2.4.20-33
10.1109/ICIP.2011.6115731
10.1109/CVPRW.2012.6238922
10.1109/ICIP.2017.8297144
10.1109/TCSVT.2015.2424052
10.1109/WIAMIS.2008.60
10.1016/j.patrec.2018.08.002
10.1016/j.neucom.2019.04.088
10.1109/TCSVT.2014.2355695
10.1109/CVPRW.2014.126
10.1109/ICSS.2014.11
10.1109/TCSVT.2013.2291358
10.1145/1291233.1291254
10.1109/CRV.2013.29
10.1109/TCSVT.2018.2795657
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2021.3055539
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 4849
ExternalDocumentID 10_1109_TCSVT_2021_3055539
9340404
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Project of China
  grantid: 2020AAA0104001
– fundername: Zhejiang Provincial Science and Technology Planning Key Project of China
  grantid: 2021C03129
– fundername: Zhejiang Laboratory
  grantid: 2019KD0AD011005
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-f5be31e05bac573c4e8734645a00762ff8e17211c0499ea7933cf8bee8876a1f3
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000725812500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8215
IngestDate Sun Jun 29 16:46:28 EDT 2025
Tue Nov 18 22:35:34 EST 2025
Sat Nov 29 01:44:15 EST 2025
Wed Aug 27 05:11:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-f5be31e05bac573c4e8734645a00762ff8e17211c0499ea7933cf8bee8876a1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4678-1936
0000-0002-8711-1605
PQID 2605706203
PQPubID 85433
PageCount 10
ParticipantIDs ieee_primary_9340404
proquest_journals_2605706203
crossref_citationtrail_10_1109_TCSVT_2021_3055539
crossref_primary_10_1109_TCSVT_2021_3055539
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref1
ref39
ref17
ref38
ref16
ref19
ref18
wang (ref27) 2013
ref46
ref24
ref45
ref23
ref26
ref25
ref20
ref42
ref22
ref44
ref21
ref43
ref28
sav (ref2) 2005
ref29
ref8
ref7
ref9
ref4
benezeth (ref41) 2010; 19
ref3
ref6
ref5
ref40
References_xml – ident: ref32
  doi: 10.1109/ICPR.2004.1333992
– ident: ref19
  doi: 10.1109/WACV.2015.137
– start-page: 475
  year: 2013
  ident: ref27
  article-title: The optimized filter width using in post-processing ESWAN data of prostate
  publication-title: Proc ICME Int Conf Complex Med Eng
– ident: ref5
  doi: 10.1007/s11042-010-0575-2
– ident: ref43
  doi: 10.1016/j.neucom.2015.04.118
– ident: ref16
  doi: 10.1109/TIP.2010.2101613
– ident: ref6
  doi: 10.1109/TCSVT.2016.2614984
– ident: ref1
  doi: 10.1109/2.410146
– ident: ref37
  doi: 10.1109/TIP.2017.2695882
– ident: ref15
  doi: 10.1109/CVPR.1999.784637
– ident: ref20
  doi: 10.1109/CVPRW.2014.68
– ident: ref44
  doi: 10.1109/BRICS-CCI-CBIC.2013.37
– ident: ref11
  doi: 10.1007/s10044-019-00845-9
– ident: ref9
  doi: 10.1016/j.patrec.2016.09.014
– ident: ref38
  doi: 10.1109/ICIP.2015.7351664
– ident: ref34
  doi: 10.1016/j.patcog.2014.10.020
– ident: ref29
  doi: 10.1109/ICPR.2010.498
– ident: ref35
  doi: 10.1186/s41074-017-0036-1
– ident: ref17
  doi: 10.1109/TIP.2014.2378053
– ident: ref40
  doi: 10.1109/CVPRW.2014.66
– ident: ref33
  doi: 10.1109/ICIP.2014.7025661
– ident: ref45
  doi: 10.3390/sym11050621
– ident: ref12
  doi: 10.1016/j.patcog.2017.09.040
– ident: ref42
  doi: 10.1109/AVSS.2013.6636617
– ident: ref7
  doi: 10.1109/CVPR.2004.1315249
– ident: ref22
  doi: 10.1109/TEVC.2017.2694160
– ident: ref30
  doi: 10.1109/ISCAS.2017.8050570
– ident: ref18
  doi: 10.1109/TIP.2016.2598691
– ident: ref21
  doi: 10.4304/jmm.2.4.20-33
– ident: ref28
  doi: 10.1109/ICIP.2011.6115731
– ident: ref39
  doi: 10.1109/CVPR.1999.784637
– ident: ref36
  doi: 10.1109/CVPRW.2012.6238922
– ident: ref13
  doi: 10.1109/ICIP.2017.8297144
– volume: 19
  start-page: 1
  year: 2010
  ident: ref41
  article-title: Comparative study of background subtraction algorithms
  publication-title: J Elec Imag
– ident: ref23
  doi: 10.1109/TCSVT.2015.2424052
– ident: ref25
  doi: 10.1109/WIAMIS.2008.60
– ident: ref10
  doi: 10.1016/j.patrec.2018.08.002
– ident: ref46
  doi: 10.1016/j.neucom.2019.04.088
– ident: ref3
  doi: 10.1109/TCSVT.2014.2355695
– start-page: 1
  year: 2005
  ident: ref2
  article-title: Associating low-level features with semantic concepts using video objects and relevance feedback
  publication-title: Proc 8th Int Workshop Image Analy Multimedia Interactive Services (WIAMIS)
– ident: ref8
  doi: 10.1109/CVPRW.2014.126
– ident: ref26
  doi: 10.1109/ICSS.2014.11
– ident: ref31
  doi: 10.1109/TCSVT.2013.2291358
– ident: ref4
  doi: 10.1145/1291233.1291254
– ident: ref24
  doi: 10.1109/CRV.2013.29
– ident: ref14
  doi: 10.1109/TCSVT.2018.2795657
SSID ssj0014847
Score 2.4206762
Snippet In the area of change detection, there were a rare number of optimization methods. Most of the optimization methods that are used by change detection are...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4840
SubjectTerms Algorithms
Change detection
change detection algorithm
Change detection algorithms
Contours
Edge detection
Feature extraction
Image edge detection
motion detection
Moving object recognition
Optical filters
Optimization
optimization method
Post-processing algorithm
Semantics
Supervised learning
Unsupervised learning
Title Extracting Moving Objects More Accurately: A CDA Contour Optimizer
URI https://ieeexplore.ieee.org/document/9340404
https://www.proquest.com/docview/2605706203
Volume 31
WOSCitedRecordID wos000725812500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4Me_JridEoP3rRb27RN623OiQfdBOfYrTTpqwxmJ10r6l9vknZloAgeCi0kj_KSvJf39XsA564RYUwjQw8p47rNCNGZFVE9iikLPaEDXZXtPrmnw6E3nfqPNbisamEQUSWfYUe-qlh-tOC5dJV1fWKLPWfXoU6pW9RqVRED21PNxMR1wdQ9ocdWBTKG3x33nyZjYQpaZkfhW8nG4GtKSHVV-SGKlX653fnfn-3CdnmP1HrFwu9BDZN92FpDF2zC9eAjUzVQyYv2oBwH2ohJt8tSfKao9TjPJVDE_PNK62n9G_FIMIM81UZCjrzOvjA9gOfbwbh_p5ctE3Ru-U6mxw5DYqLhsJA7lHAbPUpk8DKUITcrjj1UNh-Xlg6G4nASHnsMUcgaNzRjcgiNZJHgEWhUEBDUTC-MJYac6XOTuRF1LGZIIyVsgbniYcBLPHHZ1mIeKLvC8APF90DyPSj53oKLas5bgabx5-im5HQ1smRyC9qrpQrKA7cMpFlGDdcyyPHvs05gU9IuMlHa0MjSHE9hg79ns2V6pvbSN6mlxH8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHv6Y4ndoH37Qubdqm9W3OjYlzCs7hW2nSqwzmJl0n6l9vknVjoAg-FFpI0nBJ7nJfvwM49UiMCYuJGTEuTIdTanI7ZmacMB75UgZ6Otq912adjv_8HDwU4HyeC4OIOvgML9Sr9uXHIzFRprJqQB2555wlWHYdxybTbK25z8DxdTkxeWGwTF9KslmKDAmq3fpjryuVQdu60AhXqjT4ghjSdVV-MGMtYZqb_5vbFmzkN0mjNl36bSjgcAfWF_AFS3DV-Mh0FtTwxbjTpgPjnivDy1h-pmjUhJgoqIjB56VRM-rX8lFwBpPUuJec5LX_hekuPDUb3XrLzIsmmMIO3MxMXI7UQuLySLiMCgd9RpX7MlJONztJfNRan1C6DkbyeFKR-BxRchsvshK6B8XhaIj7YDA5gBzN8qNEochZgbC4FzPX5kSpKVEZrBkNQ5EjiqvCFoNQaxYkCDXdQ0X3MKd7Gc7mfd6meBp_ti4pSs9b5kQuQ2W2VGF-5MahUswY8WxCD37vdQKrre5dO2zfdG4PYU39ZxqXUoFilk7wCFbEe9Yfp8d6X30DEPrHxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+Moving+Objects+More+Accurately%3A+A+CDA+Contour+Optimizer&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Gao%2C+Fei&rft.au=Li%2C+Yunyang&rft.au=Lu%2C+Shufang&rft.date=2021-12-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=31&rft.issue=12&rft.spage=4840&rft.epage=4849&rft_id=info:doi/10.1109%2FTCSVT.2021.3055539&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2021_3055539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon