Sensing OFDM Signal: A Deep Learning Approach

Spectrum sensing plays a critical role in dynamic spectrum sharing, a promising technology to address the radio spectrum shortage. In particular, sensing of orthogonal frequency division multiplexing (OFDM) signals, a widely accepted multi-carrier transmission paradigm, has received paramount intere...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications Vol. 67; no. 11; pp. 7785 - 7798
Main Authors: Cheng, Qingqing, Shi, Zhenguo, Nguyen, Diep N., Dutkiewicz, Eryk
Format: Journal Article
Language:English
Published: New York IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0090-6778, 1558-0857
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Spectrum sensing plays a critical role in dynamic spectrum sharing, a promising technology to address the radio spectrum shortage. In particular, sensing of orthogonal frequency division multiplexing (OFDM) signals, a widely accepted multi-carrier transmission paradigm, has received paramount interest. Despite various efforts, noise uncertainty, timing delay and carrier frequency offset (CFO) still remain as challenging problems, significantly degrading the sensing performance. In this work, we develop two novel OFDM sensing frameworks utilizing the properties of deep learning networks. Specifically, we first propose a stacked autoencoder based spectrum sensing method (SAE-SS), in which a stacked autoencoder network is designed to extract the hidden features of OFDM signals for classifying the user's activities. Compared to the conventional OFDM sensing methods, SAE-SS is significantly superior in the robustness to noise uncertainty, timing delay, and CFO. Moreover, SAE-SS requires neither any prior information of signals (e.g., signal structure, pilot tones, cyclic prefix) nor explicit feature extraction algorithms which however are essential for the conventional OFDM sensing methods. To further improve the sensing accuracy of SAE-SS, especially under low SNR conditions, we propose a stacked autoencoder based spectrum sensing method using time-frequency domain signals (SAE-TF). SAE-TF achieves higher sensing accuracy than SAE-SS using the features extracted from both time and frequency domains, at the cost of higher computational complexity. Through extensive simulation results, both SAE-SS and SAE-TF are shown to achieve notably higher sensing accuracy than that of state of the art approaches.
AbstractList Spectrum sensing plays a critical role in dynamic spectrum sharing, a promising technology to address the radio spectrum shortage. In particular, sensing of orthogonal frequency division multiplexing (OFDM) signals, a widely accepted multi-carrier transmission paradigm, has received paramount interest. Despite various efforts, noise uncertainty, timing delay and carrier frequency offset (CFO) still remain as challenging problems, significantly degrading the sensing performance. In this work, we develop two novel OFDM sensing frameworks utilizing the properties of deep learning networks. Specifically, we first propose a stacked autoencoder based spectrum sensing method (SAE-SS), in which a stacked autoencoder network is designed to extract the hidden features of OFDM signals for classifying the user’s activities. Compared to the conventional OFDM sensing methods, SAE-SS is significantly superior in the robustness to noise uncertainty, timing delay, and CFO. Moreover, SAE-SS requires neither any prior information of signals (e.g., signal structure, pilot tones, cyclic prefix) nor explicit feature extraction algorithms which however are essential for the conventional OFDM sensing methods. To further improve the sensing accuracy of SAE-SS, especially under low SNR conditions, we propose a stacked autoencoder based spectrum sensing method using time-frequency domain signals (SAE-TF). SAE-TF achieves higher sensing accuracy than SAE-SS using the features extracted from both time and frequency domains, at the cost of higher computational complexity. Through extensive simulation results, both SAE-SS and SAE-TF are shown to achieve notably higher sensing accuracy than that of state of the art approaches.
Author Dutkiewicz, Eryk
Shi, Zhenguo
Cheng, Qingqing
Nguyen, Diep N.
Author_xml – sequence: 1
  givenname: Qingqing
  orcidid: 0000-0003-2664-5176
  surname: Cheng
  fullname: Cheng, Qingqing
  email: qingqing.cheng@student.uts.edu.au
  organization: School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia
– sequence: 2
  givenname: Zhenguo
  surname: Shi
  fullname: Shi, Zhenguo
  email: zhenguo.shi@student.uts.edu.au
  organization: School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia
– sequence: 3
  givenname: Diep N.
  orcidid: 0000-0003-2659-8648
  surname: Nguyen
  fullname: Nguyen, Diep N.
  email: diep.nguyen@uts.edu.au
  organization: School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia
– sequence: 4
  givenname: Eryk
  orcidid: 0000-0002-4268-9286
  surname: Dutkiewicz
  fullname: Dutkiewicz, Eryk
  email: eryk.dutkiewicz@uts.edu.au
  organization: School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia
BookMark eNp9kE1PAjEQhhuDiYD-Ab1s4nlx2tIvbwRETSAcwHNT2gGX4O7aLgf_vYsQDx48zWHeZ97J0yOdsiqRkFsKA0rBPKzGi_l8wICaATNDAMovSJcKoXPQQnVIF8BALpXSV6SX0g4AhsB5l-RLLFNRbrPFdDLPlsW2dPvHbJRNEOtshi6Wx-WormPl_Ps1udy4fcKb8-yTt-nTavySzxbPr-PRLPfMiCbfcMFE4MEFZigTXIj1WiBySlEZKr0MqJxiXpjAgg6cewzDFgro_Fpxz_vk_nS3rf08YGrsrjrE9rVkGadSSAmatSl2SvlYpRRxY-tYfLj4ZSnYoxb7o8UetdizlhbSfyBfNK4pqrKJrtj_j96d0AIRf7u0ZkpIzr8BxN5v9w
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_TCOMM_2020_3005708
crossref_primary_10_1109_TGCN_2020_3046725
crossref_primary_10_1109_TVT_2023_3324826
crossref_primary_10_1109_TWC_2022_3203732
crossref_primary_10_1007_s10479_022_05160_x
crossref_primary_10_1109_LCOMM_2020_3037273
crossref_primary_10_1109_ACCESS_2022_3206814
crossref_primary_10_3233_JIFS_224376
crossref_primary_10_1109_TCCN_2023_3254524
crossref_primary_10_3390_electronics11101567
crossref_primary_10_1109_ACCESS_2020_2967461
crossref_primary_10_3390_sym13010147
crossref_primary_10_1016_j_phycom_2023_102222
crossref_primary_10_1109_ACCESS_2021_3102223
crossref_primary_10_1109_TCOMM_2024_3354204
crossref_primary_10_1109_ACCESS_2020_2995633
crossref_primary_10_1109_TVT_2020_2982203
crossref_primary_10_1109_OJVT_2025_3574223
crossref_primary_10_3390_app12094534
crossref_primary_10_1109_ACCESS_2023_3305388
crossref_primary_10_1016_j_dsp_2025_105243
crossref_primary_10_1109_TCOMM_2021_3070892
crossref_primary_10_1155_2022_1830497
crossref_primary_10_1016_j_phycom_2024_102497
crossref_primary_10_1016_j_phycom_2022_101715
crossref_primary_10_3390_s24247907
crossref_primary_10_1109_TVT_2021_3138593
crossref_primary_10_1109_TVT_2023_3269345
crossref_primary_10_1080_1206212X_2024_2414042
crossref_primary_10_1002_ett_4328
crossref_primary_10_3390_s21072408
crossref_primary_10_1002_ett_4388
Cites_doi 10.1109/TITS.2018.2835308
10.1109/TVT.2015.2478517
10.1109/JSAC.2013.131120
10.1561/2200000006
10.1109/JSAC.2014.2361074
10.1109/CISP-BMEI.2017.8302117
10.1109/TCOMM.2013.020813.120323
10.1109/TSP.2017.2684743
10.1109/TMI.2015.2458702
10.1109/SURV.2009.090109
10.1109/JSAC.2011.110203
10.1109/TWC.2011.040411.101430
10.1109/TIP.2015.2487860
10.1109/TVT.2019.2891291
10.1109/COMST.2015.2452414
10.1007/3-540-45665-1_17
10.1109/TCOMM.2014.2360384
10.1137/1.9781611970920
10.1109/DYSPAN.2005.1542650
10.1109/TWC.2016.2613920
10.1109/CVPR.2017.243
10.1109/PIMRC.2017.8292449
10.1098/rsif.2017.0387
10.1109/COMST.2018.2846401
10.1016/j.csda.2004.05.034
10.1109/TSP.2018.2870379
10.1109/WICOM.2010.5601105
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2019.2940013
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 7798
ExternalDocumentID 10_1109_TCOMM_2019_2940013
8827563
Genre orig-research
GrantInformation_xml – fundername: Australian Research Council
  grantid: DE150101092
  funderid: 10.13039/501100000923
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYXX
CITATION
7SP
8FD
L7M
RIG
ID FETCH-LOGICAL-c295t-f3525d3dad29125355bb5ee311e7916c6de7a72c59d2d8d33ced4f35deacb73c3
IEDL.DBID RIE
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000512366100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0090-6778
IngestDate Mon Jun 30 10:23:10 EDT 2025
Tue Nov 18 21:53:44 EST 2025
Sat Nov 29 04:08:17 EST 2025
Wed Aug 27 02:49:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-f3525d3dad29125355bb5ee311e7916c6de7a72c59d2d8d33ced4f35deacb73c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4268-9286
0000-0003-2664-5176
0000-0003-2659-8648
PQID 2316566082
PQPubID 85472
PageCount 14
ParticipantIDs proquest_journals_2316566082
crossref_primary_10_1109_TCOMM_2019_2940013
ieee_primary_8827563
crossref_citationtrail_10_1109_TCOMM_2019_2940013
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref33
ref11
ref32
ref10
molnar (ref24) 2019
ref2
ref1
ref17
ref16
ref19
ref18
(ref29) 2013
(ref30) 2010
martens (ref22) 0
(ref31) 2016
ref23
ref26
ref25
(ref28) 2010
ref21
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
liu (ref20) 2016
References_xml – ident: ref17
  doi: 10.1109/TITS.2018.2835308
– ident: ref6
  doi: 10.1109/TVT.2015.2478517
– ident: ref10
  doi: 10.1109/JSAC.2013.131120
– ident: ref18
  doi: 10.1561/2200000006
– ident: ref3
  doi: 10.1109/JSAC.2014.2361074
– year: 2013
  ident: ref29
  publication-title: Comments on Spectrum Monitoring Pilot Program
– ident: ref15
  doi: 10.1109/CISP-BMEI.2017.8302117
– ident: ref4
  doi: 10.1109/TCOMM.2013.020813.120323
– ident: ref7
  doi: 10.1109/TSP.2017.2684743
– start-page: 2378
  year: 2016
  ident: ref20
  article-title: Stein variational gradient descent: A general purpose Bayesian inference algorithm
  publication-title: Advances in Neural IInformation Processing Systems
– ident: ref21
  doi: 10.1109/TMI.2015.2458702
– year: 2016
  ident: ref31
  publication-title: Amendment of the commission rules with regard to commercial operations in the 3550-3650 MHz band
– start-page: 1033
  year: 0
  ident: ref22
  article-title: Learning recurrent neural networks with hessian-free optimization
  publication-title: Proc Int Conf Int Conf Mach Learn (ICML)
– ident: ref1
  doi: 10.1109/SURV.2009.090109
– year: 2010
  ident: ref30
  publication-title: Second Memorandum Opinion and Order
– ident: ref5
  doi: 10.1109/JSAC.2011.110203
– year: 2019
  ident: ref24
  publication-title: Interpretable Machine Learning
– ident: ref9
  doi: 10.1109/TWC.2011.040411.101430
– ident: ref26
  doi: 10.1109/TIP.2015.2487860
– ident: ref11
  doi: 10.1109/TVT.2019.2891291
– ident: ref8
  doi: 10.1109/COMST.2015.2452414
– ident: ref25
  doi: 10.1007/3-540-45665-1_17
– ident: ref32
  doi: 10.1109/TCOMM.2014.2360384
– ident: ref23
  doi: 10.1137/1.9781611970920
– ident: ref27
  doi: 10.1109/DYSPAN.2005.1542650
– ident: ref2
  doi: 10.1109/TWC.2016.2613920
– ident: ref34
  doi: 10.1109/CVPR.2017.243
– ident: ref13
  doi: 10.1109/PIMRC.2017.8292449
– ident: ref19
  doi: 10.1098/rsif.2017.0387
– year: 2010
  ident: ref28
  publication-title: Unlicensed Operation in the TV Broadcast Bands Final Rules
– ident: ref16
  doi: 10.1109/COMST.2018.2846401
– ident: ref33
  doi: 10.1016/j.csda.2004.05.034
– ident: ref12
  doi: 10.1109/TSP.2018.2870379
– ident: ref14
  doi: 10.1109/WICOM.2010.5601105
SSID ssj0004033
Score 2.4922762
Snippet Spectrum sensing plays a critical role in dynamic spectrum sharing, a promising technology to address the radio spectrum shortage. In particular, sensing of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7785
SubjectTerms Accuracy
Algorithms
Carrier frequencies
Computer simulation
Deep learning
Delay
Delays
Detection
Feature extraction
Frequency domain analysis
Machine learning
OFDM
Orthogonal Frequency Division Multiplexing
Radio spectra
Sensors
Signal classification
Spectrum sensing
stacked autoencoder SAE
Uncertainty
Title Sensing OFDM Signal: A Deep Learning Approach
URI https://ieeexplore.ieee.org/document/8827563
https://www.proquest.com/docview/2316566082
Volume 67
WOSCitedRecordID wos000512366100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0857
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004033
  issn: 0090-6778
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5B4kEP_kIjiqYHb1pg67au3ghIPAiYgIbbsvUHITGD8MO_37YrqNGYeNuhr1m-bn1ft_d9D-AmzDyhFFVYaHqAg1gFOI0ihjOd_CRlnErrxPT6RPv9eDxmzyW422phpJS2-EzWzaX9ly9mfG0-lTU0G6RhRHZgh1JaaLU-NZBN4hwnTTk7jTcCmSZrjNqDXs9UcbG6b_qAe-RbErJdVX5sxTa_dA__d2dHcOB4JGoVC38MJZmfwP4Xd8EK4KEpTs8naNDt9NBwOtEB96iFOlLOkfNVnaCWMxU_hZfuw6j9iF13BMx9Fq6wMkamgohU-EyzFM0bsiyUkniextiLeCQkTanPQyZ8EQtCuBSBDhJ6q80o4eQMyvksl-eAmAgymgqVpk0VhPrARvU0gZ-lhHsqkkEVvA1cCXfW4aaDxVtijxBNlliIEwNx4iCuwu02Zl4YZ_w5umJA3Y50eFahtlmVxL1by0QzUkNCNXe5-D3qEvbM3IVisAbl1WItr2CXv6-my8W1fWw-ABThvVU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT8IwFL1BNFEf_EIjiroH33Swrt26-kZEgpGBCWh4W7a2IyQGCB_-ftutoEZj4tseerfldOs9W-85F-DaS5BIU5raQtEDmwQpsWPfZ3aikp-kjFOZOTG9tmmnEwwG7LkAt2stjJQyKz6TVX2Y7eWLCV_qX2U1xQap5-MN2PQIcVGu1vpUQTrYeE7qgnYarCQyDqv177thqOu4WNXVncAR_paGsr4qPxbjLMM09_93bwewZ5ikVc-n_hAKcnwEu1_8BUtg93R5-nhodZuN0OqNhirgzqpbDSmnlnFWHVp1Yyt-DC_Nh_59yzb9EWzuMm9hp9rKVGARC5cpnqKYQ5J4UmKEFMrI576QNKYu95hwRSAw5lIQFSTUYptQzPEJFMeTsTwFiwmS0FikceykRIEbUHUa4iYx5ij1JSkDWsEVcWMerntYvEXZR4TDogziSEMcGYjLcLOOmebWGX-OLmlQ1yMNnmWorGYlMm_XPFKcVNNQxV7Ofo-6gu1WP2xH7cfO0zns6Ovk-sEKFBezpbyALf6-GM1nl9kj9AEd6MCc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensing+OFDM+Signal%3A+A+Deep+Learning+Approach&rft.jtitle=IEEE+transactions+on+communications&rft.au=Cheng%2C+Qingqing&rft.au=Shi%2C+Zhenguo&rft.au=Nguyen%2C+Diep+N.&rft.au=Dutkiewicz%2C+Eryk&rft.date=2019-11-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=67&rft.issue=11&rft.spage=7785&rft.epage=7798&rft_id=info:doi/10.1109%2FTCOMM.2019.2940013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2019_2940013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon