Sensing OFDM Signal: A Deep Learning Approach
Spectrum sensing plays a critical role in dynamic spectrum sharing, a promising technology to address the radio spectrum shortage. In particular, sensing of orthogonal frequency division multiplexing (OFDM) signals, a widely accepted multi-carrier transmission paradigm, has received paramount intere...
Saved in:
| Published in: | IEEE transactions on communications Vol. 67; no. 11; pp. 7785 - 7798 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0090-6778, 1558-0857 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Spectrum sensing plays a critical role in dynamic spectrum sharing, a promising technology to address the radio spectrum shortage. In particular, sensing of orthogonal frequency division multiplexing (OFDM) signals, a widely accepted multi-carrier transmission paradigm, has received paramount interest. Despite various efforts, noise uncertainty, timing delay and carrier frequency offset (CFO) still remain as challenging problems, significantly degrading the sensing performance. In this work, we develop two novel OFDM sensing frameworks utilizing the properties of deep learning networks. Specifically, we first propose a stacked autoencoder based spectrum sensing method (SAE-SS), in which a stacked autoencoder network is designed to extract the hidden features of OFDM signals for classifying the user's activities. Compared to the conventional OFDM sensing methods, SAE-SS is significantly superior in the robustness to noise uncertainty, timing delay, and CFO. Moreover, SAE-SS requires neither any prior information of signals (e.g., signal structure, pilot tones, cyclic prefix) nor explicit feature extraction algorithms which however are essential for the conventional OFDM sensing methods. To further improve the sensing accuracy of SAE-SS, especially under low SNR conditions, we propose a stacked autoencoder based spectrum sensing method using time-frequency domain signals (SAE-TF). SAE-TF achieves higher sensing accuracy than SAE-SS using the features extracted from both time and frequency domains, at the cost of higher computational complexity. Through extensive simulation results, both SAE-SS and SAE-TF are shown to achieve notably higher sensing accuracy than that of state of the art approaches. |
|---|---|
| AbstractList | Spectrum sensing plays a critical role in dynamic spectrum sharing, a promising technology to address the radio spectrum shortage. In particular, sensing of orthogonal frequency division multiplexing (OFDM) signals, a widely accepted multi-carrier transmission paradigm, has received paramount interest. Despite various efforts, noise uncertainty, timing delay and carrier frequency offset (CFO) still remain as challenging problems, significantly degrading the sensing performance. In this work, we develop two novel OFDM sensing frameworks utilizing the properties of deep learning networks. Specifically, we first propose a stacked autoencoder based spectrum sensing method (SAE-SS), in which a stacked autoencoder network is designed to extract the hidden features of OFDM signals for classifying the user’s activities. Compared to the conventional OFDM sensing methods, SAE-SS is significantly superior in the robustness to noise uncertainty, timing delay, and CFO. Moreover, SAE-SS requires neither any prior information of signals (e.g., signal structure, pilot tones, cyclic prefix) nor explicit feature extraction algorithms which however are essential for the conventional OFDM sensing methods. To further improve the sensing accuracy of SAE-SS, especially under low SNR conditions, we propose a stacked autoencoder based spectrum sensing method using time-frequency domain signals (SAE-TF). SAE-TF achieves higher sensing accuracy than SAE-SS using the features extracted from both time and frequency domains, at the cost of higher computational complexity. Through extensive simulation results, both SAE-SS and SAE-TF are shown to achieve notably higher sensing accuracy than that of state of the art approaches. |
| Author | Dutkiewicz, Eryk Shi, Zhenguo Cheng, Qingqing Nguyen, Diep N. |
| Author_xml | – sequence: 1 givenname: Qingqing orcidid: 0000-0003-2664-5176 surname: Cheng fullname: Cheng, Qingqing email: qingqing.cheng@student.uts.edu.au organization: School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia – sequence: 2 givenname: Zhenguo surname: Shi fullname: Shi, Zhenguo email: zhenguo.shi@student.uts.edu.au organization: School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia – sequence: 3 givenname: Diep N. orcidid: 0000-0003-2659-8648 surname: Nguyen fullname: Nguyen, Diep N. email: diep.nguyen@uts.edu.au organization: School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia – sequence: 4 givenname: Eryk orcidid: 0000-0002-4268-9286 surname: Dutkiewicz fullname: Dutkiewicz, Eryk email: eryk.dutkiewicz@uts.edu.au organization: School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia |
| BookMark | eNp9kE1PAjEQhhuDiYD-Ab1s4nlx2tIvbwRETSAcwHNT2gGX4O7aLgf_vYsQDx48zWHeZ97J0yOdsiqRkFsKA0rBPKzGi_l8wICaATNDAMovSJcKoXPQQnVIF8BALpXSV6SX0g4AhsB5l-RLLFNRbrPFdDLPlsW2dPvHbJRNEOtshi6Wx-WormPl_Ps1udy4fcKb8-yTt-nTavySzxbPr-PRLPfMiCbfcMFE4MEFZigTXIj1WiBySlEZKr0MqJxiXpjAgg6cewzDFgro_Fpxz_vk_nS3rf08YGrsrjrE9rVkGadSSAmatSl2SvlYpRRxY-tYfLj4ZSnYoxb7o8UetdizlhbSfyBfNK4pqrKJrtj_j96d0AIRf7u0ZkpIzr8BxN5v9w |
| CODEN | IECMBT |
| CitedBy_id | crossref_primary_10_1109_TCOMM_2020_3005708 crossref_primary_10_1109_TGCN_2020_3046725 crossref_primary_10_1109_TVT_2023_3324826 crossref_primary_10_1109_TWC_2022_3203732 crossref_primary_10_1007_s10479_022_05160_x crossref_primary_10_1109_LCOMM_2020_3037273 crossref_primary_10_1109_ACCESS_2022_3206814 crossref_primary_10_3233_JIFS_224376 crossref_primary_10_1109_TCCN_2023_3254524 crossref_primary_10_3390_electronics11101567 crossref_primary_10_1109_ACCESS_2020_2967461 crossref_primary_10_3390_sym13010147 crossref_primary_10_1016_j_phycom_2023_102222 crossref_primary_10_1109_ACCESS_2021_3102223 crossref_primary_10_1109_TCOMM_2024_3354204 crossref_primary_10_1109_ACCESS_2020_2995633 crossref_primary_10_1109_TVT_2020_2982203 crossref_primary_10_1109_OJVT_2025_3574223 crossref_primary_10_3390_app12094534 crossref_primary_10_1109_ACCESS_2023_3305388 crossref_primary_10_1016_j_dsp_2025_105243 crossref_primary_10_1109_TCOMM_2021_3070892 crossref_primary_10_1155_2022_1830497 crossref_primary_10_1016_j_phycom_2024_102497 crossref_primary_10_1016_j_phycom_2022_101715 crossref_primary_10_3390_s24247907 crossref_primary_10_1109_TVT_2021_3138593 crossref_primary_10_1109_TVT_2023_3269345 crossref_primary_10_1080_1206212X_2024_2414042 crossref_primary_10_1002_ett_4328 crossref_primary_10_3390_s21072408 crossref_primary_10_1002_ett_4388 |
| Cites_doi | 10.1109/TITS.2018.2835308 10.1109/TVT.2015.2478517 10.1109/JSAC.2013.131120 10.1561/2200000006 10.1109/JSAC.2014.2361074 10.1109/CISP-BMEI.2017.8302117 10.1109/TCOMM.2013.020813.120323 10.1109/TSP.2017.2684743 10.1109/TMI.2015.2458702 10.1109/SURV.2009.090109 10.1109/JSAC.2011.110203 10.1109/TWC.2011.040411.101430 10.1109/TIP.2015.2487860 10.1109/TVT.2019.2891291 10.1109/COMST.2015.2452414 10.1007/3-540-45665-1_17 10.1109/TCOMM.2014.2360384 10.1137/1.9781611970920 10.1109/DYSPAN.2005.1542650 10.1109/TWC.2016.2613920 10.1109/CVPR.2017.243 10.1109/PIMRC.2017.8292449 10.1098/rsif.2017.0387 10.1109/COMST.2018.2846401 10.1016/j.csda.2004.05.034 10.1109/TSP.2018.2870379 10.1109/WICOM.2010.5601105 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TCOMM.2019.2940013 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0857 |
| EndPage | 7798 |
| ExternalDocumentID | 10_1109_TCOMM_2019_2940013 8827563 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Australian Research Council grantid: DE150101092 funderid: 10.13039/501100000923 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 ZCA ZCG AAYXX CITATION 7SP 8FD L7M RIG |
| ID | FETCH-LOGICAL-c295t-f3525d3dad29125355bb5ee311e7916c6de7a72c59d2d8d33ced4f35deacb73c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 45 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000512366100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0090-6778 |
| IngestDate | Mon Jun 30 10:23:10 EDT 2025 Tue Nov 18 21:53:44 EST 2025 Sat Nov 29 04:08:17 EST 2025 Wed Aug 27 02:49:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-f3525d3dad29125355bb5ee311e7916c6de7a72c59d2d8d33ced4f35deacb73c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4268-9286 0000-0003-2664-5176 0000-0003-2659-8648 |
| PQID | 2316566082 |
| PQPubID | 85472 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2316566082 crossref_primary_10_1109_TCOMM_2019_2940013 ieee_primary_8827563 crossref_citationtrail_10_1109_TCOMM_2019_2940013 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on communications |
| PublicationTitleAbbrev | TCOMM |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 ref15 ref14 ref33 ref11 ref32 ref10 molnar (ref24) 2019 ref2 ref1 ref17 ref16 ref19 ref18 (ref29) 2013 (ref30) 2010 martens (ref22) 0 (ref31) 2016 ref23 ref26 ref25 (ref28) 2010 ref21 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 liu (ref20) 2016 |
| References_xml | – ident: ref17 doi: 10.1109/TITS.2018.2835308 – ident: ref6 doi: 10.1109/TVT.2015.2478517 – ident: ref10 doi: 10.1109/JSAC.2013.131120 – ident: ref18 doi: 10.1561/2200000006 – ident: ref3 doi: 10.1109/JSAC.2014.2361074 – year: 2013 ident: ref29 publication-title: Comments on Spectrum Monitoring Pilot Program – ident: ref15 doi: 10.1109/CISP-BMEI.2017.8302117 – ident: ref4 doi: 10.1109/TCOMM.2013.020813.120323 – ident: ref7 doi: 10.1109/TSP.2017.2684743 – start-page: 2378 year: 2016 ident: ref20 article-title: Stein variational gradient descent: A general purpose Bayesian inference algorithm publication-title: Advances in Neural IInformation Processing Systems – ident: ref21 doi: 10.1109/TMI.2015.2458702 – year: 2016 ident: ref31 publication-title: Amendment of the commission rules with regard to commercial operations in the 3550-3650 MHz band – start-page: 1033 year: 0 ident: ref22 article-title: Learning recurrent neural networks with hessian-free optimization publication-title: Proc Int Conf Int Conf Mach Learn (ICML) – ident: ref1 doi: 10.1109/SURV.2009.090109 – year: 2010 ident: ref30 publication-title: Second Memorandum Opinion and Order – ident: ref5 doi: 10.1109/JSAC.2011.110203 – year: 2019 ident: ref24 publication-title: Interpretable Machine Learning – ident: ref9 doi: 10.1109/TWC.2011.040411.101430 – ident: ref26 doi: 10.1109/TIP.2015.2487860 – ident: ref11 doi: 10.1109/TVT.2019.2891291 – ident: ref8 doi: 10.1109/COMST.2015.2452414 – ident: ref25 doi: 10.1007/3-540-45665-1_17 – ident: ref32 doi: 10.1109/TCOMM.2014.2360384 – ident: ref23 doi: 10.1137/1.9781611970920 – ident: ref27 doi: 10.1109/DYSPAN.2005.1542650 – ident: ref2 doi: 10.1109/TWC.2016.2613920 – ident: ref34 doi: 10.1109/CVPR.2017.243 – ident: ref13 doi: 10.1109/PIMRC.2017.8292449 – ident: ref19 doi: 10.1098/rsif.2017.0387 – year: 2010 ident: ref28 publication-title: Unlicensed Operation in the TV Broadcast Bands Final Rules – ident: ref16 doi: 10.1109/COMST.2018.2846401 – ident: ref33 doi: 10.1016/j.csda.2004.05.034 – ident: ref12 doi: 10.1109/TSP.2018.2870379 – ident: ref14 doi: 10.1109/WICOM.2010.5601105 |
| SSID | ssj0004033 |
| Score | 2.4922762 |
| Snippet | Spectrum sensing plays a critical role in dynamic spectrum sharing, a promising technology to address the radio spectrum shortage. In particular, sensing of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7785 |
| SubjectTerms | Accuracy Algorithms Carrier frequencies Computer simulation Deep learning Delay Delays Detection Feature extraction Frequency domain analysis Machine learning OFDM Orthogonal Frequency Division Multiplexing Radio spectra Sensors Signal classification Spectrum sensing stacked autoencoder SAE Uncertainty |
| Title | Sensing OFDM Signal: A Deep Learning Approach |
| URI | https://ieeexplore.ieee.org/document/8827563 https://www.proquest.com/docview/2316566082 |
| Volume | 67 |
| WOSCitedRecordID | wos000512366100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0857 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004033 issn: 0090-6778 databaseCode: RIE dateStart: 19720101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5B4kEP_kIjiqYHb1pg67au3ghIPAiYgIbbsvUHITGD8MO_37YrqNGYeNuhr1m-bn1ft_d9D-AmzDyhFFVYaHqAg1gFOI0ihjOd_CRlnErrxPT6RPv9eDxmzyW422phpJS2-EzWzaX9ly9mfG0-lTU0G6RhRHZgh1JaaLU-NZBN4hwnTTk7jTcCmSZrjNqDXs9UcbG6b_qAe-RbErJdVX5sxTa_dA__d2dHcOB4JGoVC38MJZmfwP4Xd8EK4KEpTs8naNDt9NBwOtEB96iFOlLOkfNVnaCWMxU_hZfuw6j9iF13BMx9Fq6wMkamgohU-EyzFM0bsiyUkniextiLeCQkTanPQyZ8EQtCuBSBDhJ6q80o4eQMyvksl-eAmAgymgqVpk0VhPrARvU0gZ-lhHsqkkEVvA1cCXfW4aaDxVtijxBNlliIEwNx4iCuwu02Zl4YZ_w5umJA3Y50eFahtlmVxL1by0QzUkNCNXe5-D3qEvbM3IVisAbl1WItr2CXv6-my8W1fWw-ABThvVU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT8IwFL1BNFEf_EIjiroH33Swrt26-kZEgpGBCWh4W7a2IyQGCB_-ftutoEZj4tseerfldOs9W-85F-DaS5BIU5raQtEDmwQpsWPfZ3aikp-kjFOZOTG9tmmnEwwG7LkAt2stjJQyKz6TVX2Y7eWLCV_qX2U1xQap5-MN2PQIcVGu1vpUQTrYeE7qgnYarCQyDqv177thqOu4WNXVncAR_paGsr4qPxbjLMM09_93bwewZ5ikVc-n_hAKcnwEu1_8BUtg93R5-nhodZuN0OqNhirgzqpbDSmnlnFWHVp1Yyt-DC_Nh_59yzb9EWzuMm9hp9rKVGARC5cpnqKYQ5J4UmKEFMrI576QNKYu95hwRSAw5lIQFSTUYptQzPEJFMeTsTwFiwmS0FikceykRIEbUHUa4iYx5ij1JSkDWsEVcWMerntYvEXZR4TDogziSEMcGYjLcLOOmebWGX-OLmlQ1yMNnmWorGYlMm_XPFKcVNNQxV7Ofo-6gu1WP2xH7cfO0zns6Ovk-sEKFBezpbyALf6-GM1nl9kj9AEd6MCc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensing+OFDM+Signal%3A+A+Deep+Learning+Approach&rft.jtitle=IEEE+transactions+on+communications&rft.au=Cheng%2C+Qingqing&rft.au=Shi%2C+Zhenguo&rft.au=Nguyen%2C+Diep+N.&rft.au=Dutkiewicz%2C+Eryk&rft.date=2019-11-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=67&rft.issue=11&rft.spage=7785&rft.epage=7798&rft_id=info:doi/10.1109%2FTCOMM.2019.2940013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2019_2940013 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |