An Adaptive Archive-Based Evolutionary Framework for Many-Task Optimization

Multi-task optimization is an emerging research topic in computational intelligence community. In this paper, we propose a novel evolutionary framework, many-task evolutionary algorithm (MaTEA), for many-task optimization. In the proposed MaTEA, an adaptive selection mechanism is proposed to select...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on emerging topics in computational intelligence Ročník 4; číslo 3; s. 369 - 384
Hlavní autoři: Chen, Yongliang, Zhong, Jinghui, Feng, Liang, Zhang, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2471-285X, 2471-285X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Multi-task optimization is an emerging research topic in computational intelligence community. In this paper, we propose a novel evolutionary framework, many-task evolutionary algorithm (MaTEA), for many-task optimization. In the proposed MaTEA, an adaptive selection mechanism is proposed to select suitable "assisted" task for a given task by considering the similarity between tasks and the accumulated rewards of knowledge transfer during the evolution. Besides, a knowledge transfer schema via crossover is adopted to exchange information among tasks to improve the search efficiency. In addition, to facilitate measuring similarity between tasks and transferring knowledge among tasks that arrive at different time instances, multiple archives are integrated with the proposed MaTEA. Experiments on both single-objective and multi-objective optimization problems have demonstrated that the proposed MaTEA can outperform the state-of-the-art multi-task evolutionary algorithms, in terms of search efficiency and solution accuracy. Besides, the proposed MaTEA is also capable of solving dynamic many-task optimization where tasks arrive at different time instances.
AbstractList Multi-task optimization is an emerging research topic in computational intelligence community. In this paper, we propose a novel evolutionary framework, many-task evolutionary algorithm (MaTEA), for many-task optimization. In the proposed MaTEA, an adaptive selection mechanism is proposed to select suitable “assisted” task for a given task by considering the similarity between tasks and the accumulated rewards of knowledge transfer during the evolution. Besides, a knowledge transfer schema via crossover is adopted to exchange information among tasks to improve the search efficiency. In addition, to facilitate measuring similarity between tasks and transferring knowledge among tasks that arrive at different time instances, multiple archives are integrated with the proposed MaTEA. Experiments on both single-objective and multi-objective optimization problems have demonstrated that the proposed MaTEA can outperform the state-of-the-art multi-task evolutionary algorithms, in terms of search efficiency and solution accuracy. Besides, the proposed MaTEA is also capable of solving dynamic many-task optimization where tasks arrive at different time instances.
Author Feng, Liang
Zhong, Jinghui
Chen, Yongliang
Zhang, Jun
Author_xml – sequence: 1
  givenname: Yongliang
  orcidid: 0000-0002-2483-8890
  surname: Chen
  fullname: Chen, Yongliang
  email: chanwl0629@gmail.com
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Jinghui
  orcidid: 0000-0003-0113-3430
  surname: Zhong
  fullname: Zhong, Jinghui
  email: jinghuizhong@gmail.com
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Liang
  orcidid: 0000-0002-8356-7242
  surname: Feng
  fullname: Feng, Liang
  email: liangf@cqu.edu.cn
  organization: College of Computer Science, Chongqing University, Chongqing, China
– sequence: 4
  givenname: Jun
  orcidid: 0000-0001-7835-9871
  surname: Zhang
  fullname: Zhang, Jun
  email: junzhang@ieee.org
  organization: Victoria University, Melbourne, VIC, Australia
BookMark eNp9kEtPwzAQhC1UJErpH4BLJM4paydO7GOoKFQU9VIkbpYdOyJ9xMVOi8qvx30IIQ6cdg_z7ezMJeo0tjEIXWMYYAz8bvYwG44HBDAfEI4zoPgMdUma45gw-tb5tV-gvvdzACCc4oSmXfRcNFGh5bqttyYqXPkeZnwvvdHRw9YuN21tG-l20cjJlfm0bhFV1kUvstnFM-kX0TSQq_pL7nVX6LySS2_6p9lDr6Pw2lM8mT6Oh8UkLoNtGxvNpcQqwwSIZkYrk0ma8aqiecY4z5mCFINWSjPKIadKV0qnChLDVSaxTnro9nh37ezHxvhWzO3GNcFSkBRySCFkDSpyVJXOeu9MJdauXoUsAoPY9yYOvYl9b-LUW4DYH6is20O41sl6-T96c0RrY8yPF8tJzpMk-QapuX1w
CODEN ITETCU
CitedBy_id crossref_primary_10_1007_s11227_025_07787_6
crossref_primary_10_1109_TEVC_2023_3339506
crossref_primary_10_1109_TETCI_2021_3051970
crossref_primary_10_1007_s10489_022_03626_w
crossref_primary_10_1007_s12293_021_00347_4
crossref_primary_10_1109_TC_2025_3558077
crossref_primary_10_1109_TEVC_2023_3258491
crossref_primary_10_1109_TEVC_2023_3291874
crossref_primary_10_1016_j_knosys_2025_113931
crossref_primary_10_1109_TEVC_2022_3187512
crossref_primary_10_1109_TASE_2024_3498064
crossref_primary_10_1016_j_ins_2024_121214
crossref_primary_10_3389_fnbot_2019_00109
crossref_primary_10_1016_j_eswa_2024_126321
crossref_primary_10_1109_JAS_2024_124545
crossref_primary_10_1109_TCYB_2020_3043509
crossref_primary_10_1109_TEVC_2022_3147568
crossref_primary_10_1007_s11227_024_06016_w
crossref_primary_10_1109_TEVC_2023_3330265
crossref_primary_10_1109_TCYB_2022_3222101
crossref_primary_10_1109_TCYB_2020_2981733
crossref_primary_10_1109_TETCI_2024_3437202
crossref_primary_10_1109_TETCI_2024_3369314
crossref_primary_10_1007_s12065_024_00999_4
crossref_primary_10_1109_TCC_2023_3315014
crossref_primary_10_1109_TCYB_2020_2980888
crossref_primary_10_1109_TCYB_2022_3196887
crossref_primary_10_1007_s12065_022_00788_x
crossref_primary_10_1016_j_ins_2021_09_021
crossref_primary_10_1016_j_aei_2023_102343
crossref_primary_10_1109_TCYB_2023_3234969
crossref_primary_10_1109_TETCI_2023_3281876
crossref_primary_10_1016_j_eswa_2023_120110
crossref_primary_10_1016_j_knosys_2025_113361
crossref_primary_10_1109_MCI_2021_3108310
crossref_primary_10_1109_TEVC_2024_3417325
crossref_primary_10_1016_j_eswa_2025_129459
crossref_primary_10_1016_j_ins_2025_121908
crossref_primary_10_1016_j_asoc_2023_110182
crossref_primary_10_1016_j_asoc_2024_112040
crossref_primary_10_1016_j_jocs_2024_102361
crossref_primary_10_1109_TEVC_2023_3279775
crossref_primary_10_1016_j_asoc_2024_111232
crossref_primary_10_1016_j_future_2023_03_034
crossref_primary_10_1016_j_ins_2022_10_099
crossref_primary_10_1109_TEVC_2021_3139437
crossref_primary_10_1109_TEVC_2023_3263871
crossref_primary_10_1109_TSMC_2024_3520526
crossref_primary_10_1109_TETCI_2021_3127523
crossref_primary_10_1109_MCI_2022_3155325
crossref_primary_10_1109_TSMC_2025_3541002
crossref_primary_10_1109_TSC_2024_3463423
crossref_primary_10_1109_TEVC_2021_3065707
crossref_primary_10_1109_TCYB_2020_3029176
crossref_primary_10_1109_TETCI_2023_3296747
crossref_primary_10_1109_TEVC_2022_3227120
crossref_primary_10_1016_j_swevo_2023_101394
crossref_primary_10_1109_TEVC_2024_3355781
crossref_primary_10_1109_TEVC_2022_3210783
crossref_primary_10_1007_s12293_022_00374_9
crossref_primary_10_1016_j_asoc_2023_110070
crossref_primary_10_1007_s12293_025_00464_4
crossref_primary_10_1109_TEVC_2021_3068157
crossref_primary_10_1016_j_ins_2022_09_020
crossref_primary_10_1016_j_knosys_2023_110906
crossref_primary_10_3390_math9080864
crossref_primary_10_1109_TEVC_2023_3348475
crossref_primary_10_1016_j_ins_2021_09_007
crossref_primary_10_1016_j_ins_2023_119568
crossref_primary_10_7717_peerj_cs_1192
crossref_primary_10_1016_j_ins_2023_119961
crossref_primary_10_3389_fnins_2019_01396
crossref_primary_10_1016_j_knosys_2022_110214
crossref_primary_10_1016_j_eswa_2024_123932
crossref_primary_10_3390_app13010602
crossref_primary_10_1016_j_aei_2023_101984
crossref_primary_10_1109_TCYB_2023_3273625
crossref_primary_10_1109_TNNLS_2021_3130896
crossref_primary_10_1007_s00521_025_11534_6
crossref_primary_10_1016_j_asoc_2024_111605
crossref_primary_10_1109_TEVC_2022_3160196
crossref_primary_10_1016_j_swevo_2024_101798
crossref_primary_10_2118_219732_PA
crossref_primary_10_1109_TEVC_2024_3373131
crossref_primary_10_1109_TCYB_2020_3036393
crossref_primary_10_1109_TCYB_2025_3561518
crossref_primary_10_1109_TETCI_2024_3381512
crossref_primary_10_1016_j_eswa_2024_124618
crossref_primary_10_1016_j_eswa_2022_119025
crossref_primary_10_1109_TETCI_2022_3205384
crossref_primary_10_1109_TETCI_2023_3236633
crossref_primary_10_3390_electronics10232945
crossref_primary_10_1109_TCYB_2020_2969025
crossref_primary_10_1109_TEVC_2020_3023480
crossref_primary_10_1109_TEVC_2024_3370937
crossref_primary_10_1016_j_ymssp_2024_112256
crossref_primary_10_1007_s12293_024_00431_5
crossref_primary_10_1109_TEVC_2021_3101697
crossref_primary_10_1016_j_ins_2022_03_020
crossref_primary_10_1109_TEVC_2021_3107435
crossref_primary_10_1016_j_asoc_2023_110780
crossref_primary_10_1016_j_eswa_2023_120529
crossref_primary_10_1109_TEVC_2021_3098523
crossref_primary_10_1007_s12559_024_10386_x
crossref_primary_10_1016_j_eswa_2025_127599
crossref_primary_10_1109_TCYB_2021_3090769
crossref_primary_10_1109_TSMC_2025_3577732
crossref_primary_10_3390_app15179746
crossref_primary_10_1109_TETCI_2021_3115518
crossref_primary_10_1109_TETCI_2024_3359070
crossref_primary_10_1109_TETCI_2024_3360331
crossref_primary_10_1109_TEVC_2024_3398436
crossref_primary_10_1016_j_asoc_2023_110545
crossref_primary_10_1109_TCYB_2022_3232113
crossref_primary_10_1016_j_swevo_2022_101203
crossref_primary_10_1038_s41598_024_70145_8
Cites_doi 10.1109/TEVC.2005.846356
10.1109/TEVC.2017.2669638
10.1109/MHS.1995.494215
10.1109/CEC.2013.6557606
10.1109/TENCON.2016.7848632
10.1109/TEVC.2015.2458037
10.1109/TEVC.2017.2785351
10.1007/s12559-016-9395-7
10.1007/978-1-4614-6940-7_15
10.1109/TNN.1998.712192
10.1109/CIS.2017.00050
10.1016/j.swevo.2012.05.001
10.1109/4235.585888
10.1109/TEVC.2007.892759
10.1109/TCYB.2016.2554622
10.1109/TETCI.2017.2769104
10.1109/TCYB.2018.2845361
10.1109/CEC.2017.7969579
10.1214/aoms/1177729694
10.1109/4235.996017
10.1109/TEVC.2017.2682274
10.1109/CEC.2017.7969407
10.1109/TCYB.2014.2307319
10.1109/CEC.2018.8477722
10.1109/CEC.2018.8477830
10.1023/A:1008202821328
10.1162/106365600568202
10.1016/j.vlsi.2008.04.003
10.1109/CEC.2017.7969596
10.1109/72.265956
10.1007/s40747-016-0011-y
10.1109/CEC.2001.934295
10.1109/TEVC.2017.2783441
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TETCI.2019.2916051
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 2471-285X
EndPage 384
ExternalDocumentID 10_1109_TETCI_2019_2916051
8727933
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61602181; 61876025
  funderid: 10.13039/501100001809
– fundername: Guangdong Introducing Innovative and Enterpreneurial
  grantid: 2017ZT07X183
– fundername: National Training Program of Innovation and Entrepreneurship for Undergraduates
  grantid: 201810561127
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-ed9aa1b61202d8edbe6a569ff57689978b0410dbbd859075bdfbd4b03e9b6a1d3
IEDL.DBID RIE
ISICitedReferencesCount 175
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000682799900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2471-285X
IngestDate Sun Nov 30 04:20:26 EST 2025
Sat Nov 29 05:12:07 EST 2025
Tue Nov 18 22:23:59 EST 2025
Wed Aug 27 02:37:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-ed9aa1b61202d8edbe6a569ff57689978b0410dbbd859075bdfbd4b03e9b6a1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2483-8890
0000-0003-0113-3430
0000-0002-8356-7242
0000-0001-7835-9871
PQID 2407040285
PQPubID 4437216
PageCount 16
ParticipantIDs proquest_journals_2407040285
crossref_primary_10_1109_TETCI_2019_2916051
ieee_primary_8727933
crossref_citationtrail_10_1109_TETCI_2019_2916051
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
da (ref21) 0
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref38
ref16
ref19
ref24
ref23
zitzler (ref5) 2001
ref26
ong (ref25) 2016; 8
ref20
zhou (ref29) 0
ref22
potter (ref35) 0
zhong (ref18) 0
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
References_xml – ident: ref3
  doi: 10.1109/TEVC.2005.846356
– ident: ref12
  doi: 10.1109/TEVC.2017.2669638
– year: 0
  ident: ref18
  article-title: Multifactorial genetic programming for symbolic regression problems
  publication-title: IEEE Trans Syst Man Cybern Syst
– ident: ref26
  doi: 10.1109/MHS.1995.494215
– ident: ref10
  doi: 10.1109/CEC.2013.6557606
– ident: ref11
  doi: 10.1109/TENCON.2016.7848632
– ident: ref14
  doi: 10.1109/TEVC.2015.2458037
– ident: ref19
  doi: 10.1109/TEVC.2017.2785351
– volume: 8
  start-page: 125
  year: 2016
  ident: ref25
  article-title: Evolutionary multitasking: A computer science view of cognitive multitasking
  publication-title: Cogn Comput
  doi: 10.1007/s12559-016-9395-7
– ident: ref9
  doi: 10.1007/978-1-4614-6940-7_15
– ident: ref37
  doi: 10.1109/TNN.1998.712192
– ident: ref36
  doi: 10.1109/CIS.2017.00050
– ident: ref4
  doi: 10.1016/j.swevo.2012.05.001
– ident: ref1
  doi: 10.1109/4235.585888
– ident: ref8
  doi: 10.1109/TEVC.2007.892759
– year: 2001
  ident: ref5
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
– ident: ref16
  doi: 10.1109/TCYB.2016.2554622
– ident: ref24
  doi: 10.1109/TETCI.2017.2769104
– ident: ref31
  doi: 10.1109/TCYB.2018.2845361
– ident: ref23
  doi: 10.1109/CEC.2017.7969579
– ident: ref20
  doi: 10.1214/aoms/1177729694
– ident: ref7
  doi: 10.1109/4235.996017
– ident: ref30
  doi: 10.1109/TEVC.2017.2682274
– ident: ref17
  doi: 10.1109/CEC.2017.7969407
– ident: ref38
  doi: 10.1109/TCYB.2014.2307319
– ident: ref33
  doi: 10.1109/CEC.2018.8477722
– ident: ref34
  doi: 10.1109/CEC.2018.8477830
– ident: ref27
  doi: 10.1023/A:1008202821328
– year: 0
  ident: ref21
  article-title: Evolutionary multitasking for single-objective continuous optimization: Benchmark problems, performance metric, and baseline results
  publication-title: arXiv preprint arXiv 1706 03470
– ident: ref22
  doi: 10.1162/106365600568202
– ident: ref13
  doi: 10.1016/j.vlsi.2008.04.003
– start-page: 249
  year: 0
  ident: ref35
  article-title: A cooperative coevolutionary approach to function optimization
  publication-title: Proc Int Conf Parallel Problem Solving Nature
– ident: ref28
  doi: 10.1109/CEC.2017.7969596
– start-page: 1
  year: 0
  ident: ref29
  article-title: Evolutionary multitasking in combinatorial search spaces: A case study in capacitated vehicle routing problem
  publication-title: Proc IEEE Symp Series Comput Intell
– ident: ref2
  doi: 10.1109/72.265956
– ident: ref15
  doi: 10.1007/s40747-016-0011-y
– ident: ref6
  doi: 10.1109/CEC.2001.934295
– ident: ref32
  doi: 10.1109/TEVC.2017.2783441
SSID ssj0002951354
Score 2.527722
Snippet Multi-task optimization is an emerging research topic in computational intelligence community. In this paper, we propose a novel evolutionary framework,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 369
SubjectTerms adaptive strategy
Archives & records
Artificial intelligence
Crossovers
dynamic control
Evolutionary algorithm
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
Knowledge management
Knowledge transfer
many-task optimization
multi-task optimization
Multiple objective analysis
Optimization
Similarity
Sociology
Statistics
Task analysis
Title An Adaptive Archive-Based Evolutionary Framework for Many-Task Optimization
URI https://ieeexplore.ieee.org/document/8727933
https://www.proquest.com/docview/2407040285
Volume 4
WOSCitedRecordID wos000682799900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FUMXXgVRKMgDG6R13vFYUCsQUBiK1C3yKwvQVn1J_HvOjhsJgZDYMpyj-M65u-98D4BLP-AasbHwhK8QoBRUe0gpPC1YhjpTykLZJq6P6WiUTSbspQbXVS2M1tomn-muebR3-Wom1yZU1svQ2CIAr0M9TZOyVquKpwToKoRxtK2Loaw3Hoxv703yFusG6ATR2P9me-wwlR8a2JqV4d7_Pmgfdp37SPqlvA-gpqeH0DQeY9lwuQUP_SnpKz43aoy4vrLeDdoqRQYbd8744pMMt1lZBN1W8oQ6wRvz5Rt5xpUfrjjzCF6HuL07z01M8CTuf-VpxTj3BXotNFCZVkInPE5YURhUwRAwChr5VAmhshhRcSxUIVQkaKiZSLivwmNoTGdTfQIkVExmXEUyDFmUJvhiE3vksUx4hhiKtsHf8jKXrp24mWrxnltYQVlu-Z8b_ueO_224qtbMy2Yaf1K3DMcrSsfsNnS2Isvd_7bMDS5FdRRk8envq86gGRikbOMnHWisFmt9Djtyg-JZXNij9AVD_Mhp
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmsjFFxpR1B686UL3yfaIBgLhoQdMuG362osKBIHEf--0FBKjMfG2h-lmO9OdmW86D4BbP-AasbHwhK8QoORUe0gpPC1YijpTylzZJq79xnCYjsfsuQD321oYrbVNPtM182jv8tVULk2orJ6isUUAvgO7ZnKWq9baRlQCdBbCONpUxlBWH7VGj12TvsVqAbpBNPa_WR87TuWHDraGpX34v086ggPnQJLmWuLHUNCTEygZn3HdcrkMveaENBWfGUVGXGdZ7wGtlSKtlTtpfP5J2pu8LIKOKxmgVvBG_OOVPOHKd1eeeQovbdxex3MzEzyJ-194WjHOfYF-Cw1UqpXQCY8TlucGVzCEjIJGPlVCqDRGXBwLlQsVCRpqJhLuq_AMipPpRJ8DCRWTKVeRDEMWNRJ8sYk-8lgmPEUURSvgb3iZSddQ3My1eMsssKAss_zPDP8zx_8K3G3XzNbtNP6kLhuObykdsytQ3Ygsc3_cR2aQKSqkII0vfl91A_ud0aCf9bvD3iWUAoObbTSlCsXFfKmvYE-uUFTza3usvgDfmMuy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adaptive+Archive-Based+Evolutionary+Framework+for+Many-Task+Optimization&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Chen%2C+Yongliang&rft.au=Zhong%2C+Jinghui&rft.au=Feng%2C+Liang&rft.au=Zhang%2C+Jun&rft.date=2020-06-01&rft.pub=IEEE&rft.eissn=2471-285X&rft.volume=4&rft.issue=3&rft.spage=369&rft.epage=384&rft_id=info:doi/10.1109%2FTETCI.2019.2916051&rft.externalDocID=8727933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon