An Adaptive Archive-Based Evolutionary Framework for Many-Task Optimization
Multi-task optimization is an emerging research topic in computational intelligence community. In this paper, we propose a novel evolutionary framework, many-task evolutionary algorithm (MaTEA), for many-task optimization. In the proposed MaTEA, an adaptive selection mechanism is proposed to select...
Uloženo v:
| Vydáno v: | IEEE transactions on emerging topics in computational intelligence Ročník 4; číslo 3; s. 369 - 384 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2471-285X, 2471-285X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Multi-task optimization is an emerging research topic in computational intelligence community. In this paper, we propose a novel evolutionary framework, many-task evolutionary algorithm (MaTEA), for many-task optimization. In the proposed MaTEA, an adaptive selection mechanism is proposed to select suitable "assisted" task for a given task by considering the similarity between tasks and the accumulated rewards of knowledge transfer during the evolution. Besides, a knowledge transfer schema via crossover is adopted to exchange information among tasks to improve the search efficiency. In addition, to facilitate measuring similarity between tasks and transferring knowledge among tasks that arrive at different time instances, multiple archives are integrated with the proposed MaTEA. Experiments on both single-objective and multi-objective optimization problems have demonstrated that the proposed MaTEA can outperform the state-of-the-art multi-task evolutionary algorithms, in terms of search efficiency and solution accuracy. Besides, the proposed MaTEA is also capable of solving dynamic many-task optimization where tasks arrive at different time instances. |
|---|---|
| AbstractList | Multi-task optimization is an emerging research topic in computational intelligence community. In this paper, we propose a novel evolutionary framework, many-task evolutionary algorithm (MaTEA), for many-task optimization. In the proposed MaTEA, an adaptive selection mechanism is proposed to select suitable “assisted” task for a given task by considering the similarity between tasks and the accumulated rewards of knowledge transfer during the evolution. Besides, a knowledge transfer schema via crossover is adopted to exchange information among tasks to improve the search efficiency. In addition, to facilitate measuring similarity between tasks and transferring knowledge among tasks that arrive at different time instances, multiple archives are integrated with the proposed MaTEA. Experiments on both single-objective and multi-objective optimization problems have demonstrated that the proposed MaTEA can outperform the state-of-the-art multi-task evolutionary algorithms, in terms of search efficiency and solution accuracy. Besides, the proposed MaTEA is also capable of solving dynamic many-task optimization where tasks arrive at different time instances. |
| Author | Feng, Liang Zhong, Jinghui Chen, Yongliang Zhang, Jun |
| Author_xml | – sequence: 1 givenname: Yongliang orcidid: 0000-0002-2483-8890 surname: Chen fullname: Chen, Yongliang email: chanwl0629@gmail.com organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Jinghui orcidid: 0000-0003-0113-3430 surname: Zhong fullname: Zhong, Jinghui email: jinghuizhong@gmail.com organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Liang orcidid: 0000-0002-8356-7242 surname: Feng fullname: Feng, Liang email: liangf@cqu.edu.cn organization: College of Computer Science, Chongqing University, Chongqing, China – sequence: 4 givenname: Jun orcidid: 0000-0001-7835-9871 surname: Zhang fullname: Zhang, Jun email: junzhang@ieee.org organization: Victoria University, Melbourne, VIC, Australia |
| BookMark | eNp9kEtPwzAQhC1UJErpH4BLJM4paydO7GOoKFQU9VIkbpYdOyJ9xMVOi8qvx30IIQ6cdg_z7ezMJeo0tjEIXWMYYAz8bvYwG44HBDAfEI4zoPgMdUma45gw-tb5tV-gvvdzACCc4oSmXfRcNFGh5bqttyYqXPkeZnwvvdHRw9YuN21tG-l20cjJlfm0bhFV1kUvstnFM-kX0TSQq_pL7nVX6LySS2_6p9lDr6Pw2lM8mT6Oh8UkLoNtGxvNpcQqwwSIZkYrk0ma8aqiecY4z5mCFINWSjPKIadKV0qnChLDVSaxTnro9nh37ezHxvhWzO3GNcFSkBRySCFkDSpyVJXOeu9MJdauXoUsAoPY9yYOvYl9b-LUW4DYH6is20O41sl6-T96c0RrY8yPF8tJzpMk-QapuX1w |
| CODEN | ITETCU |
| CitedBy_id | crossref_primary_10_1007_s11227_025_07787_6 crossref_primary_10_1109_TEVC_2023_3339506 crossref_primary_10_1109_TETCI_2021_3051970 crossref_primary_10_1007_s10489_022_03626_w crossref_primary_10_1007_s12293_021_00347_4 crossref_primary_10_1109_TC_2025_3558077 crossref_primary_10_1109_TEVC_2023_3258491 crossref_primary_10_1109_TEVC_2023_3291874 crossref_primary_10_1016_j_knosys_2025_113931 crossref_primary_10_1109_TEVC_2022_3187512 crossref_primary_10_1109_TASE_2024_3498064 crossref_primary_10_1016_j_ins_2024_121214 crossref_primary_10_3389_fnbot_2019_00109 crossref_primary_10_1016_j_eswa_2024_126321 crossref_primary_10_1109_JAS_2024_124545 crossref_primary_10_1109_TCYB_2020_3043509 crossref_primary_10_1109_TEVC_2022_3147568 crossref_primary_10_1007_s11227_024_06016_w crossref_primary_10_1109_TEVC_2023_3330265 crossref_primary_10_1109_TCYB_2022_3222101 crossref_primary_10_1109_TCYB_2020_2981733 crossref_primary_10_1109_TETCI_2024_3437202 crossref_primary_10_1109_TETCI_2024_3369314 crossref_primary_10_1007_s12065_024_00999_4 crossref_primary_10_1109_TCC_2023_3315014 crossref_primary_10_1109_TCYB_2020_2980888 crossref_primary_10_1109_TCYB_2022_3196887 crossref_primary_10_1007_s12065_022_00788_x crossref_primary_10_1016_j_ins_2021_09_021 crossref_primary_10_1016_j_aei_2023_102343 crossref_primary_10_1109_TCYB_2023_3234969 crossref_primary_10_1109_TETCI_2023_3281876 crossref_primary_10_1016_j_eswa_2023_120110 crossref_primary_10_1016_j_knosys_2025_113361 crossref_primary_10_1109_MCI_2021_3108310 crossref_primary_10_1109_TEVC_2024_3417325 crossref_primary_10_1016_j_eswa_2025_129459 crossref_primary_10_1016_j_ins_2025_121908 crossref_primary_10_1016_j_asoc_2023_110182 crossref_primary_10_1016_j_asoc_2024_112040 crossref_primary_10_1016_j_jocs_2024_102361 crossref_primary_10_1109_TEVC_2023_3279775 crossref_primary_10_1016_j_asoc_2024_111232 crossref_primary_10_1016_j_future_2023_03_034 crossref_primary_10_1016_j_ins_2022_10_099 crossref_primary_10_1109_TEVC_2021_3139437 crossref_primary_10_1109_TEVC_2023_3263871 crossref_primary_10_1109_TSMC_2024_3520526 crossref_primary_10_1109_TETCI_2021_3127523 crossref_primary_10_1109_MCI_2022_3155325 crossref_primary_10_1109_TSMC_2025_3541002 crossref_primary_10_1109_TSC_2024_3463423 crossref_primary_10_1109_TEVC_2021_3065707 crossref_primary_10_1109_TCYB_2020_3029176 crossref_primary_10_1109_TETCI_2023_3296747 crossref_primary_10_1109_TEVC_2022_3227120 crossref_primary_10_1016_j_swevo_2023_101394 crossref_primary_10_1109_TEVC_2024_3355781 crossref_primary_10_1109_TEVC_2022_3210783 crossref_primary_10_1007_s12293_022_00374_9 crossref_primary_10_1016_j_asoc_2023_110070 crossref_primary_10_1007_s12293_025_00464_4 crossref_primary_10_1109_TEVC_2021_3068157 crossref_primary_10_1016_j_ins_2022_09_020 crossref_primary_10_1016_j_knosys_2023_110906 crossref_primary_10_3390_math9080864 crossref_primary_10_1109_TEVC_2023_3348475 crossref_primary_10_1016_j_ins_2021_09_007 crossref_primary_10_1016_j_ins_2023_119568 crossref_primary_10_7717_peerj_cs_1192 crossref_primary_10_1016_j_ins_2023_119961 crossref_primary_10_3389_fnins_2019_01396 crossref_primary_10_1016_j_knosys_2022_110214 crossref_primary_10_1016_j_eswa_2024_123932 crossref_primary_10_3390_app13010602 crossref_primary_10_1016_j_aei_2023_101984 crossref_primary_10_1109_TCYB_2023_3273625 crossref_primary_10_1109_TNNLS_2021_3130896 crossref_primary_10_1007_s00521_025_11534_6 crossref_primary_10_1016_j_asoc_2024_111605 crossref_primary_10_1109_TEVC_2022_3160196 crossref_primary_10_1016_j_swevo_2024_101798 crossref_primary_10_2118_219732_PA crossref_primary_10_1109_TEVC_2024_3373131 crossref_primary_10_1109_TCYB_2020_3036393 crossref_primary_10_1109_TCYB_2025_3561518 crossref_primary_10_1109_TETCI_2024_3381512 crossref_primary_10_1016_j_eswa_2024_124618 crossref_primary_10_1016_j_eswa_2022_119025 crossref_primary_10_1109_TETCI_2022_3205384 crossref_primary_10_1109_TETCI_2023_3236633 crossref_primary_10_3390_electronics10232945 crossref_primary_10_1109_TCYB_2020_2969025 crossref_primary_10_1109_TEVC_2020_3023480 crossref_primary_10_1109_TEVC_2024_3370937 crossref_primary_10_1016_j_ymssp_2024_112256 crossref_primary_10_1007_s12293_024_00431_5 crossref_primary_10_1109_TEVC_2021_3101697 crossref_primary_10_1016_j_ins_2022_03_020 crossref_primary_10_1109_TEVC_2021_3107435 crossref_primary_10_1016_j_asoc_2023_110780 crossref_primary_10_1016_j_eswa_2023_120529 crossref_primary_10_1109_TEVC_2021_3098523 crossref_primary_10_1007_s12559_024_10386_x crossref_primary_10_1016_j_eswa_2025_127599 crossref_primary_10_1109_TCYB_2021_3090769 crossref_primary_10_1109_TSMC_2025_3577732 crossref_primary_10_3390_app15179746 crossref_primary_10_1109_TETCI_2021_3115518 crossref_primary_10_1109_TETCI_2024_3359070 crossref_primary_10_1109_TETCI_2024_3360331 crossref_primary_10_1109_TEVC_2024_3398436 crossref_primary_10_1016_j_asoc_2023_110545 crossref_primary_10_1109_TCYB_2022_3232113 crossref_primary_10_1016_j_swevo_2022_101203 crossref_primary_10_1038_s41598_024_70145_8 |
| Cites_doi | 10.1109/TEVC.2005.846356 10.1109/TEVC.2017.2669638 10.1109/MHS.1995.494215 10.1109/CEC.2013.6557606 10.1109/TENCON.2016.7848632 10.1109/TEVC.2015.2458037 10.1109/TEVC.2017.2785351 10.1007/s12559-016-9395-7 10.1007/978-1-4614-6940-7_15 10.1109/TNN.1998.712192 10.1109/CIS.2017.00050 10.1016/j.swevo.2012.05.001 10.1109/4235.585888 10.1109/TEVC.2007.892759 10.1109/TCYB.2016.2554622 10.1109/TETCI.2017.2769104 10.1109/TCYB.2018.2845361 10.1109/CEC.2017.7969579 10.1214/aoms/1177729694 10.1109/4235.996017 10.1109/TEVC.2017.2682274 10.1109/CEC.2017.7969407 10.1109/TCYB.2014.2307319 10.1109/CEC.2018.8477722 10.1109/CEC.2018.8477830 10.1023/A:1008202821328 10.1162/106365600568202 10.1016/j.vlsi.2008.04.003 10.1109/CEC.2017.7969596 10.1109/72.265956 10.1007/s40747-016-0011-y 10.1109/CEC.2001.934295 10.1109/TEVC.2017.2783441 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TETCI.2019.2916051 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 2471-285X |
| EndPage | 384 |
| ExternalDocumentID | 10_1109_TETCI_2019_2916051 8727933 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61602181; 61876025 funderid: 10.13039/501100001809 – fundername: Guangdong Introducing Innovative and Enterpreneurial grantid: 2017ZT07X183 – fundername: National Training Program of Innovation and Entrepreneurship for Undergraduates grantid: 201810561127 |
| GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c295t-ed9aa1b61202d8edbe6a569ff57689978b0410dbbd859075bdfbd4b03e9b6a1d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 175 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000682799900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2471-285X |
| IngestDate | Sun Nov 30 04:20:26 EST 2025 Sat Nov 29 05:12:07 EST 2025 Tue Nov 18 22:23:59 EST 2025 Wed Aug 27 02:37:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-ed9aa1b61202d8edbe6a569ff57689978b0410dbbd859075bdfbd4b03e9b6a1d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2483-8890 0000-0003-0113-3430 0000-0002-8356-7242 0000-0001-7835-9871 |
| PQID | 2407040285 |
| PQPubID | 4437216 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2407040285 crossref_primary_10_1109_TETCI_2019_2916051 ieee_primary_8727933 crossref_citationtrail_10_1109_TETCI_2019_2916051 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-01 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on emerging topics in computational intelligence |
| PublicationTitleAbbrev | TETCI |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 da (ref21) 0 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref38 ref16 ref19 ref24 ref23 zitzler (ref5) 2001 ref26 ong (ref25) 2016; 8 ref20 zhou (ref29) 0 ref22 potter (ref35) 0 zhong (ref18) 0 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 |
| References_xml | – ident: ref3 doi: 10.1109/TEVC.2005.846356 – ident: ref12 doi: 10.1109/TEVC.2017.2669638 – year: 0 ident: ref18 article-title: Multifactorial genetic programming for symbolic regression problems publication-title: IEEE Trans Syst Man Cybern Syst – ident: ref26 doi: 10.1109/MHS.1995.494215 – ident: ref10 doi: 10.1109/CEC.2013.6557606 – ident: ref11 doi: 10.1109/TENCON.2016.7848632 – ident: ref14 doi: 10.1109/TEVC.2015.2458037 – ident: ref19 doi: 10.1109/TEVC.2017.2785351 – volume: 8 start-page: 125 year: 2016 ident: ref25 article-title: Evolutionary multitasking: A computer science view of cognitive multitasking publication-title: Cogn Comput doi: 10.1007/s12559-016-9395-7 – ident: ref9 doi: 10.1007/978-1-4614-6940-7_15 – ident: ref37 doi: 10.1109/TNN.1998.712192 – ident: ref36 doi: 10.1109/CIS.2017.00050 – ident: ref4 doi: 10.1016/j.swevo.2012.05.001 – ident: ref1 doi: 10.1109/4235.585888 – ident: ref8 doi: 10.1109/TEVC.2007.892759 – year: 2001 ident: ref5 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm – ident: ref16 doi: 10.1109/TCYB.2016.2554622 – ident: ref24 doi: 10.1109/TETCI.2017.2769104 – ident: ref31 doi: 10.1109/TCYB.2018.2845361 – ident: ref23 doi: 10.1109/CEC.2017.7969579 – ident: ref20 doi: 10.1214/aoms/1177729694 – ident: ref7 doi: 10.1109/4235.996017 – ident: ref30 doi: 10.1109/TEVC.2017.2682274 – ident: ref17 doi: 10.1109/CEC.2017.7969407 – ident: ref38 doi: 10.1109/TCYB.2014.2307319 – ident: ref33 doi: 10.1109/CEC.2018.8477722 – ident: ref34 doi: 10.1109/CEC.2018.8477830 – ident: ref27 doi: 10.1023/A:1008202821328 – year: 0 ident: ref21 article-title: Evolutionary multitasking for single-objective continuous optimization: Benchmark problems, performance metric, and baseline results publication-title: arXiv preprint arXiv 1706 03470 – ident: ref22 doi: 10.1162/106365600568202 – ident: ref13 doi: 10.1016/j.vlsi.2008.04.003 – start-page: 249 year: 0 ident: ref35 article-title: A cooperative coevolutionary approach to function optimization publication-title: Proc Int Conf Parallel Problem Solving Nature – ident: ref28 doi: 10.1109/CEC.2017.7969596 – start-page: 1 year: 0 ident: ref29 article-title: Evolutionary multitasking in combinatorial search spaces: A case study in capacitated vehicle routing problem publication-title: Proc IEEE Symp Series Comput Intell – ident: ref2 doi: 10.1109/72.265956 – ident: ref15 doi: 10.1007/s40747-016-0011-y – ident: ref6 doi: 10.1109/CEC.2001.934295 – ident: ref32 doi: 10.1109/TEVC.2017.2783441 |
| SSID | ssj0002951354 |
| Score | 2.527722 |
| Snippet | Multi-task optimization is an emerging research topic in computational intelligence community. In this paper, we propose a novel evolutionary framework,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 369 |
| SubjectTerms | adaptive strategy Archives & records Artificial intelligence Crossovers dynamic control Evolutionary algorithm Evolutionary algorithms Evolutionary computation Genetic algorithms Knowledge management Knowledge transfer many-task optimization multi-task optimization Multiple objective analysis Optimization Similarity Sociology Statistics Task analysis |
| Title | An Adaptive Archive-Based Evolutionary Framework for Many-Task Optimization |
| URI | https://ieeexplore.ieee.org/document/8727933 https://www.proquest.com/docview/2407040285 |
| Volume | 4 |
| WOSCitedRecordID | wos000682799900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 2471-285X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002951354 issn: 2471-285X databaseCode: RIE dateStart: 20170101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FUMXXgVRKMgDG6R13vFYUCsQUBiK1C3yKwvQVn1J_HvOjhsJgZDYMpyj-M65u-98D4BLP-AasbHwhK8QoBRUe0gpPC1YhjpTykLZJq6P6WiUTSbspQbXVS2M1tomn-muebR3-Wom1yZU1svQ2CIAr0M9TZOyVquKpwToKoRxtK2Loaw3Hoxv703yFusG6ATR2P9me-wwlR8a2JqV4d7_Pmgfdp37SPqlvA-gpqeH0DQeY9lwuQUP_SnpKz43aoy4vrLeDdoqRQYbd8744pMMt1lZBN1W8oQ6wRvz5Rt5xpUfrjjzCF6HuL07z01M8CTuf-VpxTj3BXotNFCZVkInPE5YURhUwRAwChr5VAmhshhRcSxUIVQkaKiZSLivwmNoTGdTfQIkVExmXEUyDFmUJvhiE3vksUx4hhiKtsHf8jKXrp24mWrxnltYQVlu-Z8b_ueO_224qtbMy2Yaf1K3DMcrSsfsNnS2Isvd_7bMDS5FdRRk8envq86gGRikbOMnHWisFmt9Djtyg-JZXNij9AVD_Mhp |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmsjFFxpR1B686UL3yfaIBgLhoQdMuG362osKBIHEf--0FBKjMfG2h-lmO9OdmW86D4BbP-AasbHwhK8QoORUe0gpPC1YijpTylzZJq79xnCYjsfsuQD321oYrbVNPtM182jv8tVULk2orJ6isUUAvgO7ZnKWq9baRlQCdBbCONpUxlBWH7VGj12TvsVqAbpBNPa_WR87TuWHDraGpX34v086ggPnQJLmWuLHUNCTEygZn3HdcrkMveaENBWfGUVGXGdZ7wGtlSKtlTtpfP5J2pu8LIKOKxmgVvBG_OOVPOHKd1eeeQovbdxex3MzEzyJ-194WjHOfYF-Cw1UqpXQCY8TlucGVzCEjIJGPlVCqDRGXBwLlQsVCRpqJhLuq_AMipPpRJ8DCRWTKVeRDEMWNRJ8sYk-8lgmPEUURSvgb3iZSddQ3My1eMsssKAss_zPDP8zx_8K3G3XzNbtNP6kLhuObykdsytQ3Ygsc3_cR2aQKSqkII0vfl91A_ud0aCf9bvD3iWUAoObbTSlCsXFfKmvYE-uUFTza3usvgDfmMuy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adaptive+Archive-Based+Evolutionary+Framework+for+Many-Task+Optimization&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Chen%2C+Yongliang&rft.au=Zhong%2C+Jinghui&rft.au=Feng%2C+Liang&rft.au=Zhang%2C+Jun&rft.date=2020-06-01&rft.pub=IEEE&rft.eissn=2471-285X&rft.volume=4&rft.issue=3&rft.spage=369&rft.epage=384&rft_id=info:doi/10.1109%2FTETCI.2019.2916051&rft.externalDocID=8727933 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon |