A Robust Generalized-Maximum Likelihood Unscented Kalman Filter for Power System Dynamic State Estimation

This paper develops a new robust generalized maximum-likelihood-type unscented Kalman filter (GM-UKF) that is able to suppress observation and innovation outliers while filtering out non-Gaussian process and measurement noise. Because the errors of the real and reactive power measurements calculated...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of selected topics in signal processing Ročník 12; číslo 4; s. 578 - 592
Hlavní autoři: Zhao, Junbo, Mili, Lamine
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1932-4553, 1941-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper develops a new robust generalized maximum-likelihood-type unscented Kalman filter (GM-UKF) that is able to suppress observation and innovation outliers while filtering out non-Gaussian process and measurement noise. Because the errors of the real and reactive power measurements calculated using phasor measurement units (PMUs) follow long-tailed probability distributions, the conventional UKF provides strongly biased state estimates since it relies on the weighted least squares estimator. By contrast, the state estimates and residuals of our GM-UKF are proved to be roughly Gaussian, allowing the sigma points to reliably approximate the mean and the covariance matrices of the predicted and corrected state vectors. To develop our GM-UKF, we first derive a batch-mode regression form by processing the predictions and observations simultaneously, where the statistical linearization approach is used. We show that the set of equations so derived are equivalent to those of the unscented transformation. Then, a robust GM-estimator that minimizes a convex Huber cost function while using weights calculated via projection statistics (PSs) is proposed. The PSs are applied to a two-dimensional matrix that consists of a serially correlated predicted state and innovation vectors to detect observation and innovation outliers. These outliers are suppressed by the GM-estimator using the iteratively reweighted least squares algorithm. Finally, the asymptotic error covariance matrix of the GM-UKF state estimates is derived from the total influence function. Extensive simulation results carried out on IEEE New England 39-bus 10-machine test system verify the effectiveness and robustness of the proposed method.
AbstractList This paper develops a new robust generalized maximum-likelihood-type unscented Kalman filter (GM-UKF) that is able to suppress observation and innovation outliers while filtering out non-Gaussian process and measurement noise. Because the errors of the real and reactive power measurements calculated using phasor measurement units (PMUs) follow long-tailed probability distributions, the conventional UKF provides strongly biased state estimates since it relies on the weighted least squares estimator. By contrast, the state estimates and residuals of our GM-UKF are proved to be roughly Gaussian, allowing the sigma points to reliably approximate the mean and the covariance matrices of the predicted and corrected state vectors. To develop our GM-UKF, we first derive a batch-mode regression form by processing the predictions and observations simultaneously, where the statistical linearization approach is used. We show that the set of equations so derived are equivalent to those of the unscented transformation. Then, a robust GM-estimator that minimizes a convex Huber cost function while using weights calculated via projection statistics (PSs) is proposed. The PSs are applied to a two-dimensional matrix that consists of a serially correlated predicted state and innovation vectors to detect observation and innovation outliers. These outliers are suppressed by the GM-estimator using the iteratively reweighted least squares algorithm. Finally, the asymptotic error covariance matrix of the GM-UKF state estimates is derived from the total influence function. Extensive simulation results carried out on IEEE New England 39-bus 10-machine test system verify the effectiveness and robustness of the proposed method.
Author Zhao, Junbo
Mili, Lamine
Author_xml – sequence: 1
  givenname: Junbo
  orcidid: 0000-0002-8498-9666
  surname: Zhao
  fullname: Zhao, Junbo
  email: zjunbo@vt.edu
  organization: Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Northern Virginia Center, Falls Church, VA, USA
– sequence: 2
  givenname: Lamine
  orcidid: 0000-0001-6134-3945
  surname: Mili
  fullname: Mili, Lamine
  email: lmili@vt.edu
  organization: Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Northern Virginia Center, Falls Church, VA, USA
BookMark eNp9kE1P4zAQhq0VSEDhD7AXS5zTHX-kcY4IKLtQREXhHLnOWBgSG2xXbPn1pBTtgcOe5j3MMx_PAdnxwSMhxwzGjEH962pxv5iPOTA15opXfMJ-kH1WS1aAVHJnkwUvZFmKPXKQ0hNAWU2Y3CfulN6F5Spleokeo-7cO7bFjf7r-lVPZ-4ZO_cYQksffDLoM7b0Wne99nTquoyR2hDpPLwNabFOGXt6vva6d4Yuss5IL1J2vc4u-EOya3WX8OirjsjD9OL-7Hcxu738c3Y6Kwyvy1xgC5UxBiUKaRWzoEuA1khlAbgyMOGSSb0sFaKtgRnQcoLLWrcGrRUViBE52c59ieF1hSk3T2EV_bCy4aBYXVa8roYute0yMaQU0TbG5c87c9Suaxg0G7HNp9hmI7b5Ejug_Bv6Eocf4_r_0M8t5BDxH6CEUExI8QGaBYgH
CODEN IJSTGY
CitedBy_id crossref_primary_10_1016_j_epsr_2025_111419
crossref_primary_10_1109_TPWRS_2020_2965795
crossref_primary_10_1109_TPWRS_2019_2894769
crossref_primary_10_1002_tee_24229
crossref_primary_10_1016_j_ijepes_2020_105962
crossref_primary_10_1016_j_sigpro_2024_109838
crossref_primary_10_1017_aer_2025_10069
crossref_primary_10_3390_axioms12111040
crossref_primary_10_3390_jmse12071095
crossref_primary_10_3390_en13102456
crossref_primary_10_1016_j_ijepes_2020_106412
crossref_primary_10_3390_act12020070
crossref_primary_10_3390_electronics13010114
crossref_primary_10_1109_TCBB_2022_3173969
crossref_primary_10_1109_TPWRS_2020_3028047
crossref_primary_10_1109_TSG_2019_2957799
crossref_primary_10_1109_JSYST_2019_2936595
crossref_primary_10_1016_j_sigpro_2023_109271
crossref_primary_10_3390_electronics14153059
crossref_primary_10_1049_iet_gtd_2018_7110
crossref_primary_10_1109_TPWRS_2023_3263203
crossref_primary_10_1049_sil2_12075
crossref_primary_10_3390_electronics13112177
crossref_primary_10_1109_TIV_2024_3429331
crossref_primary_10_1016_j_neucom_2018_10_051
crossref_primary_10_1109_LSP_2018_2879453
crossref_primary_10_1109_JAS_2023_123795
crossref_primary_10_1049_rpg2_12851
crossref_primary_10_1109_TVT_2022_3163207
crossref_primary_10_1016_j_isatra_2022_02_047
crossref_primary_10_1109_TPWRS_2019_2939098
crossref_primary_10_1109_TII_2019_2917940
crossref_primary_10_1016_j_asr_2025_06_002
crossref_primary_10_1016_j_jtice_2020_04_009
crossref_primary_10_1109_ACCESS_2020_3031978
crossref_primary_10_1109_TMECH_2024_3435128
crossref_primary_10_1016_j_sigpro_2021_108150
crossref_primary_10_3390_s24072351
crossref_primary_10_1109_TIM_2022_3157005
crossref_primary_10_1016_j_sigpro_2021_108394
crossref_primary_10_1109_TPWRS_2019_2945778
crossref_primary_10_1016_j_jprocont_2022_11_013
crossref_primary_10_1109_TSP_2019_2908910
crossref_primary_10_1109_LSP_2020_2973116
crossref_primary_10_1109_TNSE_2021_3093535
crossref_primary_10_1109_TIM_2021_3137553
crossref_primary_10_3390_electronics13234727
crossref_primary_10_1109_TII_2022_3165890
crossref_primary_10_1109_JSYST_2022_3197426
crossref_primary_10_1002_2050_7038_12714
crossref_primary_10_1109_JSEN_2022_3143885
crossref_primary_10_1016_j_ijepes_2022_108898
crossref_primary_10_1109_TIM_2022_3189743
crossref_primary_10_1109_TIM_2022_3160562
crossref_primary_10_1109_TIM_2021_3079556
crossref_primary_10_1088_1361_6501_ace643
crossref_primary_10_1016_j_ijepes_2024_109948
crossref_primary_10_1109_JSYST_2022_3171751
crossref_primary_10_1109_TIM_2025_3550601
crossref_primary_10_1109_MSP_2021_3134635
crossref_primary_10_1109_TPWRS_2019_2909000
crossref_primary_10_1109_TSG_2018_2870327
crossref_primary_10_1109_ACCESS_2025_3529853
crossref_primary_10_1109_LSP_2022_3221852
crossref_primary_10_1109_TAES_2023_3266176
crossref_primary_10_1007_s00773_020_00763_0
crossref_primary_10_1088_1361_6501_accebe
crossref_primary_10_1109_TIM_2024_3502877
crossref_primary_10_1109_TPWRS_2021_3079395
crossref_primary_10_1109_ACCESS_2021_3092748
crossref_primary_10_1109_LSENS_2022_3225235
crossref_primary_10_3390_s25061741
crossref_primary_10_1016_j_robot_2020_103661
crossref_primary_10_1016_j_epsr_2023_109123
crossref_primary_10_1109_TPWRS_2019_2939192
crossref_primary_10_1016_j_epsr_2022_108370
crossref_primary_10_1109_JIOT_2024_3351850
crossref_primary_10_1109_LCSYS_2021_3068703
crossref_primary_10_1016_j_segan_2022_100712
crossref_primary_10_1049_iet_gtd_2018_5074
crossref_primary_10_1109_TIM_2020_2999757
crossref_primary_10_1109_TPWRS_2019_2953256
crossref_primary_10_1109_JAS_2021_1004350
crossref_primary_10_1109_TSTE_2021_3118030
crossref_primary_10_23919_PCMP_2023_000307
crossref_primary_10_3390_app14093952
crossref_primary_10_1016_j_jfranklin_2020_08_012
crossref_primary_10_1016_j_sigpro_2025_110008
crossref_primary_10_1049_stg2_12168
crossref_primary_10_1049_gtd2_12976
crossref_primary_10_1109_LSP_2019_2922620
crossref_primary_10_1016_j_epsr_2018_07_019
crossref_primary_10_1109_TII_2022_3202522
crossref_primary_10_3390_s20195459
crossref_primary_10_1109_TIM_2023_3328095
Cites_doi 10.1109/TPWRS.2002.805016
10.1049/iet-rsn.2009.0170
10.1007/978-1-4612-5604-5
10.1002/0471725250
10.1109/TSG.2016.2548244
10.1109/TAC.2002.800742
10.1109/TPWRS.2017.2679121
10.1109/TPWRS.2018.2790390
10.1109/TSG.2017.2761452
10.1109/TSP.2009.2039731
10.1109/9.847726
10.1109/TPWRS.2011.2145396
10.1109/PESGM.2015.7286337
10.1016/j.epsr.2013.05.016
10.1109/TPWRS.2014.2331317
10.1109/TPWRS.2013.2251482
10.1214/aos/1032181171
10.1109/TPWRS.2014.2347047
10.1080/01621459.1992.10476254
10.1049/iet-smt.2011.0169
10.1109/TSG.2014.2345698
10.1109/TPWRS.2016.2628344
10.1109/TPWRS.2017.2785344
10.1016/j.dsp.2015.09.004
10.1109/LSP.2017.2669238
10.1109/59.780909
10.1109/59.910791
10.1109/TSP.2007.894262
10.1029/94JC00572
10.1109/59.496203
10.1109/TPWRS.2013.2281323
10.1109/TPWRD.2017.2762927
10.1109/TPWRS.2011.2175255
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
H8D
L7M
DOI 10.1109/JSTSP.2018.2827261
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0484
EndPage 592
ExternalDocumentID 10_1109_JSTSP_2018_2827261
8338134
Genre orig-research
GrantInformation_xml – fundername: Advanced Grid Modeling program of the U.S. Department of Energy (DOE) Office of Electricity Delivery & Energy Reliability
– fundername: National Science Foundation; U.S. National Science Foundation
  grantid: ECCS-1711191
  funderid: 10.13039/100000001
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
7SP
8FD
H8D
L7M
RIG
ID FETCH-LOGICAL-c295t-ed07ccce4e34f81f0a500dc48f0028c062414ab58eef901c0a46eb9adceff3703
IEDL.DBID RIE
ISICitedReferencesCount 118
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440807600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-4553
IngestDate Mon Jun 30 10:20:16 EDT 2025
Sat Nov 29 04:10:32 EST 2025
Tue Nov 18 22:14:45 EST 2025
Wed Aug 27 08:31:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-ed07ccce4e34f81f0a500dc48f0028c062414ab58eef901c0a46eb9adceff3703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8498-9666
0000-0001-6134-3945
PQID 2081957297
PQPubID 75721
PageCount 15
ParticipantIDs ieee_primary_8338134
proquest_journals_2081957297
crossref_citationtrail_10_1109_JSTSP_2018_2827261
crossref_primary_10_1109_JSTSP_2018_2827261
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of selected topics in signal processing
PublicationTitleAbbrev JSTSP
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
hampel (ref33) 1986
ref37
ref15
ref14
ref31
ref30
ref11
ref32
ref10
ref2
ref1
ref17
ref38
ref16
huang (ref5) 0
ref19
ref18
ref24
ref23
ref26
evensen (ref21) 1994; 99
ref25
ref20
ref22
(ref35) 2015
ref28
ref27
ref29
ref8
ref7
(ref36) 2003
ref9
ref4
ref3
ref6
sauer (ref34) 1998
References_xml – ident: ref3
  doi: 10.1109/TPWRS.2002.805016
– ident: ref22
  doi: 10.1049/iet-rsn.2009.0170
– start-page: 376
  year: 0
  ident: ref5
  article-title: Feasibility studies of applying Kalman filter techniques to power system dynamic state estimation
  publication-title: Proc IEEE 8th Int Power Engineering Conf
– ident: ref32
  doi: 10.1007/978-1-4612-5604-5
– year: 1998
  ident: ref34
  publication-title: Power System Dynamics and Stability
– ident: ref30
  doi: 10.1002/0471725250
– year: 2015
  ident: ref35
  article-title: Benchmark systems for small-signal stability analysis and control
  publication-title: IEEE PES Piscataway
– ident: ref10
  doi: 10.1109/TSG.2016.2548244
– ident: ref28
  doi: 10.1109/TAC.2002.800742
– ident: ref1
  doi: 10.1109/TPWRS.2017.2679121
– ident: ref14
  doi: 10.1109/TPWRS.2018.2790390
– ident: ref26
  doi: 10.1109/TSG.2017.2761452
– ident: ref13
  doi: 10.1109/TSP.2009.2039731
– ident: ref27
  doi: 10.1109/9.847726
– ident: ref4
  doi: 10.1109/TPWRS.2011.2145396
– ident: ref11
  doi: 10.1109/PESGM.2015.7286337
– ident: ref6
  doi: 10.1016/j.epsr.2013.05.016
– ident: ref19
  doi: 10.1109/TPWRS.2014.2331317
– ident: ref17
  doi: 10.1109/TPWRS.2013.2251482
– ident: ref38
  doi: 10.1214/aos/1032181171
– ident: ref15
  doi: 10.1109/TPWRS.2014.2347047
– ident: ref37
  doi: 10.1080/01621459.1992.10476254
– ident: ref23
  doi: 10.1049/iet-smt.2011.0169
– year: 2003
  ident: ref36
  article-title: Modeling of gas turbines and steam turbines in combined cycle power plants
– ident: ref20
  doi: 10.1109/TSG.2014.2345698
– ident: ref7
  doi: 10.1109/TPWRS.2016.2628344
– ident: ref18
  doi: 10.1109/TPWRS.2017.2785344
– ident: ref25
  doi: 10.1016/j.dsp.2015.09.004
– year: 1986
  ident: ref33
  publication-title: Robust Statistics The Approach Based on Influence Functions
– ident: ref24
  doi: 10.1109/LSP.2017.2669238
– ident: ref16
  doi: 10.1109/59.780909
– ident: ref2
  doi: 10.1109/59.910791
– ident: ref31
  doi: 10.1109/TSP.2007.894262
– volume: 99
  start-page: 143
  year: 1994
  ident: ref21
  article-title: Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics
  publication-title: J Geophys Res
  doi: 10.1029/94JC00572
– ident: ref29
  doi: 10.1109/59.496203
– ident: ref8
  doi: 10.1109/TPWRS.2013.2281323
– ident: ref12
  doi: 10.1109/TPWRD.2017.2762927
– ident: ref9
  doi: 10.1109/TPWRS.2011.2175255
SSID ssj0057614
Score 2.5403185
Snippet This paper develops a new robust generalized maximum-likelihood-type unscented Kalman filter (GM-UKF) that is able to suppress observation and innovation...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 578
SubjectTerms Computer simulation
Covariance matrices
Covariance matrix
cyber attacks
Data analysis
Dynamic state estimation
Estimates
Filtration
Forecasting
Gaussian process
Influence functions
Innovations
Kalman filters
Least squares
Mathematical analysis
Matrix methods
Noise measurement
non-Gaussian noise
outliers
Outliers (statistics)
Phasor measurement units
Power measurement
Power system dynamics
Predictions
Reactive power
robust estimation
Robustness
Simulation
State estimation
State vectors
Statistical analysis
Technological innovation
total influence function
unscented Kalman filter
Title A Robust Generalized-Maximum Likelihood Unscented Kalman Filter for Power System Dynamic State Estimation
URI https://ieeexplore.ieee.org/document/8338134
https://www.proquest.com/docview/2081957297
Volume 12
WOSCitedRecordID wos000440807600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1941-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057614
  issn: 1932-4553
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1q8aAHv6pYrbIHb5o2abZJ9li0RVBLUQu9hc1mAsE2lbYR8dc7u0mLogjecsiGkLe7815m5w3ARSRdqW2qaCG1pcW5iixi-dKKdCzxk8T1RdFswh8MgvFYDCtwta6FQURz-Ayb-tLk8uOZyvWvslZAespx-QZs-L5X1Gqtdl2izU6ZQW5bvNNxVwUytmjRFH8a6lNcQZMEht_2nG9ByHRV-bEVm_jS3_3fm-3BTskjWbcAfh8qmB3A9hd3wRqkXfY4i_LFkpXe0ukHxtaDfE-n-ZTdpy84SbWpMRtlxtIJY3YnJ1OZsX6qc-iM-Cwb6i5qrPA1ZzdF-3pmGCrr0e5QFD4ewqjfe76-tcrOCpZqi87Swtj2lVLI0eVJ4CS27osQKx4kWoMp26O4zmXUCRATIgzKltzDSMhYoYbPdo-gms0yPAZmC1RxEpHGJnCJfEkRkETxvICYX5wItw7O6lOHqrQd190vJqGRH7YIDTyhhics4anD5XrMa2G68efdNQ3I-s4Sizo0VoiG5bpc0DidNyRB4Z_8PuoUtvSziyN-Dagu5zmewaZ6W6aL-bmZcp9Ih9PL
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gXrwLa7PHLxpNW3TR46iLorrsvgAbyVNp1Dc7Yq7K-Kvd5J2F0URvPXQ0NIvyXxfJ_MNwGGqfGVsqmghecoRQqcOsXzlpCaWRHnuR7JqNhG12_HTk-xMwfGkFgYR7eEzPDGXNpef9fXI_Co7jUlPub6YhtlACI9X1VrjfZeIs1vnkD1HBIE_LpHh8pQm-X3HnOOKT0hiRF7ofgtDtq_Kj83YRpjm8v_ebQWWaibJziroV2EKyzVY_OIvuA7FGbvrp6PBkNXu0sUHZs6tei96ox5rFc_YLYytMXssrakTZuxGdXuqZM3CZNEZMVrWMX3UWOVszi6qBvbMclR2SftDVfq4AY_Ny4fzK6fureBoTwZDBzMeaa1RoC_y2M256YyQaRHnRoVpHlJkFyoNYsScKIPmSoSYSpVpNAByfxNmyn6JW8C4RJ3lKalsgpfol5IxiZQwjIn7Zbn0G-COP3Wia-Nx0_-im1gBwmVi4UkMPEkNTwOOJmNeKtuNP-9eN4BM7qyxaMDuGNGkXpkDGmcyhyQpou3fRx3A_NXDbStpXbdvdmDBPKc68LcLM8PXEe7BnH4bFoPXfTv9PgFzi9cS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Generalized-Maximum+Likelihood+Unscented+Kalman+Filter+for+Power+System+Dynamic+State+Estimation&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Zhao%2C+Junbo&rft.au=Mili%2C+Lamine&rft.date=2018-08-01&rft.pub=IEEE&rft.issn=1932-4553&rft.volume=12&rft.issue=4&rft.spage=578&rft.epage=592&rft_id=info:doi/10.1109%2FJSTSP.2018.2827261&rft.externalDocID=8338134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon