Deep Gaussian Mixture-Hidden Markov Model for Classification of EEG Signals
Electroencephalography (EEG) signals are complex dynamic phenomena that exhibit nonlinear and nonstationary behaviors. These characteristics tend to undermine the reliability of existing hand-crafted EEG features that ignore time-varying information and impair the performances of classification mode...
Uložené v:
| Vydané v: | IEEE transactions on emerging topics in computational intelligence Ročník 2; číslo 4; s. 278 - 287 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2471-285X, 2471-285X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!