Deep Gaussian Mixture-Hidden Markov Model for Classification of EEG Signals

Electroencephalography (EEG) signals are complex dynamic phenomena that exhibit nonlinear and nonstationary behaviors. These characteristics tend to undermine the reliability of existing hand-crafted EEG features that ignore time-varying information and impair the performances of classification mode...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on emerging topics in computational intelligence Vol. 2; no. 4; pp. 278 - 287
Main Authors: Wang, Min, Abdelfattah, Sherif, Moustafa, Nour, Hu, Jiankun
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2471-285X, 2471-285X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Electroencephalography (EEG) signals are complex dynamic phenomena that exhibit nonlinear and nonstationary behaviors. These characteristics tend to undermine the reliability of existing hand-crafted EEG features that ignore time-varying information and impair the performances of classification models. In this paper, we propose a novel method that can automatically capture the nonstationary dynamics of EEG signals for diverse classification tasks. It consists of two components. The first component uses an autoregressive-deep variational autoencoder model for automatic feature extraction, and the second component uses a Gaussian mixture-hidden Markov model for EEG classification with the extracted features. We compare the performance of our proposed method and the state-of-the-art methods in two EEG classification tasks, subject, and event classification. Results show that our approach outperforms the others by averages of <inline-formula><tex-math notation="LaTeX">\text{15}\%\pm \text{6.3}</tex-math> </inline-formula> (p-value <inline-formula><tex-math notation="LaTeX"><\text{0.05}</tex-math></inline-formula>) and <inline-formula><tex-math notation="LaTeX">\text{22}\%\pm \text{5.7}</tex-math></inline-formula> (p-value <inline-formula><tex-math notation="LaTeX"><\text{0.05}</tex-math></inline-formula>) for subject and event classifications, respectively.
AbstractList Electroencephalography (EEG) signals are complex dynamic phenomena that exhibit nonlinear and nonstationary behaviors. These characteristics tend to undermine the reliability of existing hand-crafted EEG features that ignore time-varying information and impair the performances of classification models. In this paper, we propose a novel method that can automatically capture the nonstationary dynamics of EEG signals for diverse classification tasks. It consists of two components. The first component uses an autoregressive-deep variational autoencoder model for automatic feature extraction, and the second component uses a Gaussian mixture-hidden Markov model for EEG classification with the extracted features. We compare the performance of our proposed method and the state-of-the-art methods in two EEG classification tasks, subject, and event classification. Results show that our approach outperforms the others by averages of 15% ± 6.3 (p-value <; 0.05) and 22% ± 5.7 (p-value <; 0.05) for subject and event classifications, respectively.
Electroencephalography (EEG) signals are complex dynamic phenomena that exhibit nonlinear and nonstationary behaviors. These characteristics tend to undermine the reliability of existing hand-crafted EEG features that ignore time-varying information and impair the performances of classification models. In this paper, we propose a novel method that can automatically capture the nonstationary dynamics of EEG signals for diverse classification tasks. It consists of two components. The first component uses an autoregressive-deep variational autoencoder model for automatic feature extraction, and the second component uses a Gaussian mixture-hidden Markov model for EEG classification with the extracted features. We compare the performance of our proposed method and the state-of-the-art methods in two EEG classification tasks, subject, and event classification. Results show that our approach outperforms the others by averages of <inline-formula><tex-math notation="LaTeX">\text{15}\%\pm \text{6.3}</tex-math> </inline-formula> (p-value <inline-formula><tex-math notation="LaTeX"><\text{0.05}</tex-math></inline-formula>) and <inline-formula><tex-math notation="LaTeX">\text{22}\%\pm \text{5.7}</tex-math></inline-formula> (p-value <inline-formula><tex-math notation="LaTeX"><\text{0.05}</tex-math></inline-formula>) for subject and event classifications, respectively.
Author Abdelfattah, Sherif
Moustafa, Nour
Wang, Min
Hu, Jiankun
Author_xml – sequence: 1
  givenname: Min
  orcidid: 0000-0002-1580-6387
  surname: Wang
  fullname: Wang, Min
  email: min.wang@student.adfa.edu.au
  organization: School of Engineering and Information Technology, University of New South Wales Canberra at ADFA, Campbell, ACT, Australia
– sequence: 2
  givenname: Sherif
  surname: Abdelfattah
  fullname: Abdelfattah, Sherif
  email: Sherif.Abdelfattah@student.adfa.edu.au
  organization: School of Engineering and Information Technology, University of New South Wales Canberra at ADFA, Campbell, ACT, Australia
– sequence: 3
  givenname: Nour
  orcidid: 0000-0001-6127-9349
  surname: Moustafa
  fullname: Moustafa, Nour
  email: nour.moustafa@unsw.edu.au
  organization: School of Engineering and Information Technology, University of New South Wales Canberra at ADFA, Campbell, ACT, Australia
– sequence: 4
  givenname: Jiankun
  orcidid: 0000-0003-0230-1432
  surname: Hu
  fullname: Hu, Jiankun
  email: J.Hu@adfa.edu.au
  organization: School of Engineering and Information Technology, University of New South Wales Canberra at ADFA, Campbell, ACT, Australia
BookMark eNp9UE1PAjEUbAwmIvIH9NLE82K_drc9GkQgQjyIibembFtTXLfY7hr99xYwxnjwNO8lM-_NzCnoNb4xAJxjNMIYiavVZDWejwjCfEQ4EYLjI9AnrMQZ4flT79d8AoYxbhBCROSY5qwP7m6M2cKp6mJ0qoFL99F2wWQzp7VJqwov_h0uvTY1tD7Aca0S0bpKtc430Fs4mUzhg3tuVB3PwLFNYIbfOACPt8naLFvcT-fj60VWpbdtZgTTvGTlmmnNMCW0UAhpTS02hBXaEkKrPGdizRXPacEYxrbkjBpCrcXU0AG4PNzdBv_WmdjKje_CzoEkKT7OBSlYYpEDqwo-xmCs3Ab3qsKnxEjuepP73uSuN_ndWxLxP6LKtfusbVCu_l96cZA6Y8zPL85wUYqCfgGQ1HtF
CODEN ITETCU
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2919143
crossref_primary_10_1109_JSEN_2022_3194699
crossref_primary_10_3390_s23031390
crossref_primary_10_1109_TBME_2021_3137184
crossref_primary_10_1080_10447318_2022_2091561
crossref_primary_10_1109_ACCESS_2020_3016481
crossref_primary_10_3390_s21175746
crossref_primary_10_1016_j_enbuild_2021_111594
crossref_primary_10_1109_TETCI_2019_2907718
crossref_primary_10_3390_s21134391
crossref_primary_10_1007_s13721_020_00283_2
crossref_primary_10_3390_s23010062
crossref_primary_10_1109_TITS_2022_3189981
crossref_primary_10_1007_s00779_019_01250_z
crossref_primary_10_3390_act11060161
crossref_primary_10_3390_s25113389
crossref_primary_10_1049_iet_ipr_2020_0709
crossref_primary_10_1109_TETCI_2022_3189385
crossref_primary_10_1007_s13042_023_01910_w
crossref_primary_10_1016_j_future_2021_01_011
crossref_primary_10_1016_j_rcim_2023_102610
crossref_primary_10_1016_j_compbiomed_2021_104684
crossref_primary_10_1109_TNSRE_2020_3013429
crossref_primary_10_1007_s00521_020_05549_4
crossref_primary_10_3390_s22145111
crossref_primary_10_1080_21681163_2023_2250872
crossref_primary_10_1109_IOTM_003_2100061
crossref_primary_10_1109_JSEN_2022_3201015
crossref_primary_10_1155_2021_7568460
crossref_primary_10_1016_j_cmpb_2019_04_004
crossref_primary_10_1109_TIFS_2019_2916403
Cites_doi 10.1109/TAMD.2015.2431497
10.1111/j.2517-6161.1977.tb01600.x
10.1109/JBHI.2013.2294692
10.1198/106186001317243403
10.1088/1741-2560/11/3/035013
10.1016/j.neucom.2014.08.092
10.1109/TETCI.2017.2750761
10.1016/S0167-8655(01)00075-7
10.1109/ICACT.2015.7224883
10.1007/s12559-015-9365-5
10.1098/rspa.1998.0193
10.1136/jnnp.2005.069245
10.1109/TBME.2014.2317881
10.1515/9780691218632
10.1109/SMC.2016.7844773
10.1161/01.CIR.101.23.e215
10.1109/TPAMI.2010.125
10.1214/aoms/1177729694
10.1109/TBME.2004.827076
10.1017/CBO9780511984679
10.1109/TBME.2004.827072
10.1109/MCI.2015.2501545
10.1109/IJCNN.2002.1007657
10.1109/34.990138
10.1109/ICPR.2010.36
10.1109/SMC.2016.7844987
10.18637/jss.v032.i06
10.1109/TRE.2000.847807
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TETCI.2018.2829981
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2471-285X
EndPage 287
ExternalDocumentID 10_1109_TETCI_2018_2829981
8416796
Genre orig-research
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-e94d8747b4dd413236a00dd3f1e246df223c5549b8a85364411f7843e23ff13e3
IEDL.DBID RIE
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679686500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2471-285X
IngestDate Sun Sep 07 03:26:55 EDT 2025
Tue Nov 18 21:43:01 EST 2025
Sat Nov 29 05:12:06 EST 2025
Wed Aug 27 02:48:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-e94d8747b4dd413236a00dd3f1e246df223c5549b8a85364411f7843e23ff13e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6127-9349
0000-0003-0230-1432
0000-0002-1580-6387
PQID 2299159264
PQPubID 4437216
PageCount 10
ParticipantIDs crossref_primary_10_1109_TETCI_2018_2829981
ieee_primary_8416796
crossref_citationtrail_10_1109_TETCI_2018_2829981
proquest_journals_2299159264
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
hamilton (ref22) 1994; 2
ref34
ref12
ref37
ref15
ref14
ref31
ref11
ref10
viola (ref36) 2010
ref2
ref1
ref16
ref19
kingma (ref24) 0
bilmes (ref30) 1998; 4
chiappa (ref18) 2003
ref23
ref26
manning (ref27) 1999; 999
huang (ref5) 1998; 454
ref25
dempster (ref29) 1977; 39
ref21
goldberger (ref33) 2000; 101
ref28
(ref32) 0
ref8
ref7
ref9
ref4
ref3
ref6
sanei (ref20) 2013
solhjoo (ref17) 2005
bashivan (ref13) 0
References_xml – start-page: 1
  year: 2005
  ident: ref17
  article-title: Classification of chaotic signals using HMM classifiers: EEG-based mental task classification
  publication-title: Proc 13th Eur IEEE Signal Process Conf
– ident: ref11
  doi: 10.1109/TAMD.2015.2431497
– volume: 39
  start-page: 1
  year: 1977
  ident: ref29
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J Royal Statistical Society Series B (Methodological)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– start-page: 121
  year: 2010
  ident: ref36
  article-title: Using ICA for the analysis of multi-channel EEG data
  publication-title: Simultaneous EEG and fMRI Recording Analysis and Application Recording Analysis and Application
– ident: ref28
  doi: 10.1109/JBHI.2013.2294692
– ident: ref31
  doi: 10.1198/106186001317243403
– ident: ref35
  doi: 10.1088/1741-2560/11/3/035013
– ident: ref10
  doi: 10.1016/j.neucom.2014.08.092
– ident: ref3
  doi: 10.1109/TETCI.2017.2750761
– ident: ref15
  doi: 10.1016/S0167-8655(01)00075-7
– ident: ref7
  doi: 10.1109/ICACT.2015.7224883
– ident: ref4
  doi: 10.1007/s12559-015-9365-5
– volume: 454
  start-page: 703
  year: 1998
  ident: ref5
  article-title: The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series
  publication-title: Proc Roy Soc London
  doi: 10.1098/rspa.1998.0193
– ident: ref1
  doi: 10.1136/jnnp.2005.069245
– year: 0
  ident: ref32
– year: 2003
  ident: ref18
  article-title: HMM and IOHMM modeling of EEG rhythms for asynchronous BCI systems
– ident: ref8
  doi: 10.1109/TBME.2014.2317881
– volume: 4
  start-page: 126
  year: 1998
  ident: ref30
  article-title: A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models
  publication-title: Int Comput Sci Inst
– volume: 2
  year: 1994
  ident: ref22
  publication-title: Time Series Analysis
  doi: 10.1515/9780691218632
– volume: 999
  year: 1999
  ident: ref27
  publication-title: Foundations of Statistical Natural Language Processing
– year: 0
  ident: ref13
  article-title: Learning representations from EEG with deep recurrent-convolutional neural networks
  publication-title: Proc Int Conf Learn Represent
– ident: ref6
  doi: 10.1109/SMC.2016.7844773
– volume: 101
  start-page: 215e
  year: 2000
  ident: ref33
  article-title: Physiobank, physiotoolkit, and physionet
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref12
  doi: 10.1109/TPAMI.2010.125
– ident: ref23
  doi: 10.1214/aoms/1177729694
– ident: ref14
  doi: 10.1109/TBME.2004.827076
– ident: ref21
  doi: 10.1017/CBO9780511984679
– ident: ref34
  doi: 10.1109/TBME.2004.827072
– year: 2013
  ident: ref20
  publication-title: EEG Signal Processing
– ident: ref37
  doi: 10.1109/MCI.2015.2501545
– ident: ref19
  doi: 10.1109/IJCNN.2002.1007657
– ident: ref25
  doi: 10.1109/34.990138
– ident: ref16
  doi: 10.1109/ICPR.2010.36
– ident: ref9
  doi: 10.1109/SMC.2016.7844987
– ident: ref26
  doi: 10.18637/jss.v032.i06
– ident: ref2
  doi: 10.1109/TRE.2000.847807
– year: 0
  ident: ref24
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent
SSID ssj0002951354
Score 2.2381325
Snippet Electroencephalography (EEG) signals are complex dynamic phenomena that exhibit nonlinear and nonstationary behaviors. These characteristics tend to undermine...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 278
SubjectTerms autoencoder
Autoregressive models
Brain modeling
Classification
deep learning
EEG classification
Electroencephalography
Feature extraction
Gaussian mixture model
hidden Markov model
Hidden Markov models
Indexing
Machine learning
Markov analysis
Markov chains
Markov processes
Signal classification
Task analysis
time-series
Title Deep Gaussian Mixture-Hidden Markov Model for Classification of EEG Signals
URI https://ieeexplore.ieee.org/document/8416796
https://www.proquest.com/docview/2299159264
Volume 2
WOSCitedRecordID wos000679686500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF7a4sGLD6pYrbIHb5o27-weRVsrahGs0FtIsrNSLE3pC3--M5s0IIrgLYGdsDuT3fl2noxdBmkQgBaJFSZSW76AFLeUTKxEZwqiNEClZRKFn6LhUIzH8qXGrqtcGAAwwWfQoUfjy1d5tiZTWZdcZJEM66weRWGRq1XZU1yECl7gb_NibNkd9Ua3DxS8JTrkLpTC-aZ7TDOVHyewUSv9_f9N6IDtlfCR3xTyPmQ1mDXZ4x3AnN8n6yVlRPLnySe5BawBVQfB12TxkW84NT2bcoSo3PTBpAghIxSea97r3fPXyTuVUj5ib31c0cAqmyRYGS55ZYH0lcA7QeorhQrJ9cLEtpXytAOuHyqN6j9DyCBTkaBmJvTj6EigBFxPazKBHrPGLJ_BCeMSZwWeo4SMcGsHCs8faYNKPR3YHgKVFnO27IuzsoI4NbKYxuYmYcvYsDwmlscly1vsqqKZF_Uz_hzdJCZXI0v-tlh7K6W43GLL2EUKxGII6E5_pzpju_TtIlqvzRqrxRrO2U62WU2Wiwvz93wB6D_CEg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEB5qFfTFgypWq-bBN9269yaPor3ogWCFvi27m0SKpS298Oc7k24Logi-7UKGTWY2mS9zAtwGaRAozRMrTIS2fK5S3FIisRKdSRWlASotkyjciXo9PhiIlwLcb3NhlFIm-ExV6dH48uUkW5Kp7IFcZJEId2A38H3XXmdrbS0qLoIFL_A3mTG2eOjX-k8tCt_iVXIYCu580z6mncqPM9golvrR_6Z0DIc5gGSPa4mfQEGNS9B-VmrKGslyTjmRrDv8JMeA1aT6IPiazD4mK0Ztz0YMQSoznTApRsiIhU00q9Ua7HX4TsWUT-GtjitqWnmbBCvDJS8sJXzJ8VaQ-lKiSnK9MLFtKT3tKNcPpUYAkCFoEClPUDcT_nF0xFEGrqc1GUHPoDiejNU5MIGzUp4juYhwcwcSTyBhK5l6OrA9hCplcDbsi7O8hji1shjF5i5hi9iwPCaWxznLy3C3pZmuK2j8ObpETN6OzPlbhspGSnG-yeaxixSIxhDSXfxOdQP7zX63E3davfYlHNB31rF7FSguZkt1BXvZajGcz67Nn_QFLerFWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Gaussian+Mixture-Hidden+Markov+Model+for+Classification+of+EEG+Signals&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Wang%2C+Min&rft.au=Abdelfattah%2C+Sherif&rft.au=Nour+Moustafa&rft.au=Hu%2C+Jiankun&rft.date=2018-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2471-285X&rft.volume=2&rft.issue=4&rft_id=info:doi/10.1109%2FTETCI.2018.2829981&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon