Multi-Objective DNN-Based Precoder for MIMO Communications

This paper introduces a unified deep neural network (DNN)-based precoder for two-user multiple-input multiple-output (MIMO) networks with five objectives: data transmission, energy harvesting, simultaneous wireless information and power transfer, physical layer (PHY) security, and multicasting. Firs...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on communications Ročník 69; číslo 7; s. 4476 - 4488
Hlavní autoři: Zhang, Xinliang, Vaezi, Mojtaba
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0090-6778, 1558-0857
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper introduces a unified deep neural network (DNN)-based precoder for two-user multiple-input multiple-output (MIMO) networks with five objectives: data transmission, energy harvesting, simultaneous wireless information and power transfer, physical layer (PHY) security, and multicasting. First, a rotation-based precoder is developed to solve the above problems independently. Rotation-based precoding is a new precoding and power allocation scheme that beats existing solutions for PHY security and multicasting and is reliable in different antenna settings. Next, a DNN-based precoder is designed to unify the solution for all objectives. The proposed DNN concurrently learns the solutions given by conventional methods, i.e., analytical or rotation-based solutions. A binary vector is designed as an input feature to distinguish the objectives. Numerical results demonstrate that, compared to the conventional solutions, the proposed DNN-based precoder reduces on-the-fly computational complexity more than an order of magnitude while reaching near-optimal performance (99.45% of the averaged optimal solutions). The new precoder is also more robust to the variations of the numbers of antennas at the receivers.
AbstractList This paper introduces a unified deep neural network (DNN)-based precoder for two-user multiple-input multiple-output (MIMO) networks with five objectives: data transmission, energy harvesting, simultaneous wireless information and power transfer, physical layer (PHY) security, and multicasting. First, a rotation-based precoder is developed to solve the above problems independently. Rotation-based precoding is a new precoding and power allocation scheme that beats existing solutions for PHY security and multicasting and is reliable in different antenna settings. Next, a DNN-based precoder is designed to unify the solution for all objectives. The proposed DNN concurrently learns the solutions given by conventional methods, i.e., analytical or rotation-based solutions. A binary vector is designed as an input feature to distinguish the objectives. Numerical results demonstrate that, compared to the conventional solutions, the proposed DNN-based precoder reduces on-the-fly computational complexity more than an order of magnitude while reaching near-optimal performance (99.45% of the averaged optimal solutions). The new precoder is also more robust to the variations of the numbers of antennas at the receivers.
Author Zhang, Xinliang
Vaezi, Mojtaba
Author_xml – sequence: 1
  givenname: Xinliang
  orcidid: 0000-0002-0672-2907
  surname: Zhang
  fullname: Zhang, Xinliang
  email: xzhang4@villanova.edu
  organization: Department of Electrical and Computer Engineering, Villanova University, Villanova, PA, USA
– sequence: 2
  givenname: Mojtaba
  orcidid: 0000-0003-3357-4660
  surname: Vaezi
  fullname: Vaezi, Mojtaba
  email: mvaezi@villanova.edu
  organization: Department of Electrical and Computer Engineering, Villanova University, Villanova, PA, USA
BookMark eNp9kD1PwzAQhi1UJNrCH4AlEnPK2Y4Tmw3CV6WmYSiz5cSO5KqNi50g8e9JP8TAwHQ3vM-9umeCRq1rDULXGGYYg7hb5WVRzAgQPKOQYUbTMzTGjPEYOMtGaAwgIE6zjF-gSQhrAEiA0jG6L_pNZ-OyWpu6s18melou40cVjI7evamdNj5qnI-KeVFGudtu-9bWqrOuDZfovFGbYK5Oc4o-Xp5X-Vu8KF_n-cMirolgXWyyimndQFIpLQjWmBKDE6ZIVVE17KKpWJo2hBENOsWK8yQRGNcYK9KwTNEpuj3e3Xn32ZvQybXrfTtUSsIYpmnCRTqkyDFVexeCN43cebtV_ltikHtH8uBI7h3Jk6MB4n-g2naH7zqv7OZ_9OaIWmPMb5eggmcA9AckdnS9
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_TCOMM_2021_3105569
crossref_primary_10_1007_s41060_025_00880_2
crossref_primary_10_1109_ACCESS_2021_3116613
crossref_primary_10_1109_COMST_2022_3151028
crossref_primary_10_1109_JPROC_2024_3472501
crossref_primary_10_1109_TVT_2023_3267660
crossref_primary_10_1109_TWC_2025_3560116
crossref_primary_10_1002_ett_4454
Cites_doi 10.1109/IEEECONF44664.2019.9048966
10.1007/978-3-642-35289-8_3
10.1109/JSAC.2013.130906
10.1109/LCOMM.2018.2859392
10.1109/ISIT.2004.1365211
10.1109/TSP.2012.2210710
10.1109/TSP.2006.872578
10.1109/GCWkshps45667.2019.9024579
10.1109/TWC.2017.2729541
10.1109/CACSD.2002.1036966
10.1109/TIT.2011.2111750
10.1109/ICC40277.2020.9149424
10.1109/TCOMM.2019.2947418
10.1016/0893-6080(89)90020-8
10.1186/1687-1499-2014-57
10.1109/LSP.2019.2946088
10.1109/TIFS.2015.2477050
10.1109/TWC.2018.2808490
10.1109/TWC.2015.2496236
10.1109/ICC.2015.7248870
10.1002/9781119562306
10.1109/TIT.2008.2011448
10.1109/23.589532
10.1109/ISIT.2012.6283927
10.1109/ICCV.2015.123
10.1109/TCCN.2017.2758370
10.1109/TWC.2013.031813.120224
10.1109/TVT.2017.2681942
10.1038/nature14539
10.1109/TCOMM.2017.2722478
10.1109/TCOMM.2020.3036439
10.1109/ICC.2019.8761681
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2021.3071536
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 4488
ExternalDocumentID 10_1109_TCOMM_2021_3071536
9398700
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-e7b5ddf04bad921d132e145a2bb3a32e9fb566f252d0d61a8844911c11a2f57a3
IEDL.DBID RIE
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673485300019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0090-6778
IngestDate Mon Jun 30 10:09:33 EDT 2025
Sat Nov 29 04:08:21 EST 2025
Tue Nov 18 22:28:57 EST 2025
Wed Aug 27 02:40:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-e7b5ddf04bad921d132e145a2bb3a32e9fb566f252d0d61a8844911c11a2f57a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3357-4660
0000-0002-0672-2907
PQID 2551364896
PQPubID 85472
PageCount 13
ParticipantIDs crossref_primary_10_1109_TCOMM_2021_3071536
ieee_primary_9398700
crossref_citationtrail_10_1109_TCOMM_2021_3071536
proquest_journals_2551364896
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref34
ref12
ref37
ref15
ref14
liu (ref27) 2009; 55
ref31
ref33
ref11
ref32
ref10
(ref2) 2020
ref39
golub (ref30) 2012
ref17
ref16
ref19
ref18
lecun (ref13) 2015; 521
grant (ref36) 2014
zhang (ref1) 2020
ref24
ref23
cover (ref3) 2006
zoph (ref26) 2016
ref25
ref20
ref22
ref21
ref28
ref29
ref8
ref7
kingma (ref41) 2014
ref9
ref4
shirish keskar (ref43) 2016
nocedal (ref38) 2006
goyal (ref42) 2017
ref6
ref5
goodfellow (ref40) 2016; 1
lecun (ref35) 2012; 7700
References_xml – ident: ref23
  doi: 10.1109/IEEECONF44664.2019.9048966
– volume: 7700
  start-page: 9
  year: 2012
  ident: ref35
  article-title: Efficient backprop
  publication-title: Neural Networks Tricks Trade
  doi: 10.1007/978-3-642-35289-8_3
– ident: ref7
  doi: 10.1109/JSAC.2013.130906
– year: 2006
  ident: ref3
  publication-title: Elements of Information Theory
– year: 2014
  ident: ref41
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– year: 2014
  ident: ref36
  publication-title: CVX Matlab Software for Disciplined Convex Programming Version 2 1
– ident: ref19
  doi: 10.1109/LCOMM.2018.2859392
– ident: ref31
  doi: 10.1109/ISIT.2004.1365211
– ident: ref12
  doi: 10.1109/TSP.2012.2210710
– ident: ref11
  doi: 10.1109/TSP.2006.872578
– ident: ref17
  doi: 10.1109/GCWkshps45667.2019.9024579
– year: 2020
  ident: ref2
  publication-title: COVID-19 Impact on Digital Communications in the U S 2020
– year: 2016
  ident: ref26
  article-title: Neural architecture search with reinforcement learning
  publication-title: arXiv 1611 01578
– ident: ref9
  doi: 10.1109/TWC.2017.2729541
– ident: ref39
  doi: 10.1109/CACSD.2002.1036966
– ident: ref32
  doi: 10.1109/TIT.2011.2111750
– ident: ref15
  doi: 10.1109/ICC40277.2020.9149424
– ident: ref20
  doi: 10.1109/TCOMM.2019.2947418
– ident: ref25
  doi: 10.1016/0893-6080(89)90020-8
– volume: 1
  year: 2016
  ident: ref40
  publication-title: Deep Learning
– year: 2017
  ident: ref42
  article-title: Accurate, large minibatch SGD: Training ImageNet in 1 hour
  publication-title: arXiv 1706 02677
– ident: ref24
  doi: 10.1186/1687-1499-2014-57
– ident: ref29
  doi: 10.1109/LSP.2019.2946088
– ident: ref10
  doi: 10.1109/TIFS.2015.2477050
– ident: ref21
  doi: 10.1109/TWC.2018.2808490
– ident: ref37
  doi: 10.1109/TWC.2015.2496236
– ident: ref28
  doi: 10.1109/ICC.2015.7248870
– year: 2012
  ident: ref30
  publication-title: Matrix Computations
– ident: ref18
  doi: 10.1002/9781119562306
– volume: 55
  start-page: 2547
  year: 2009
  ident: ref27
  article-title: A note on the secrecy capacity of the multiple-antenna wiretap channel
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2008.2011448
– year: 2020
  ident: ref1
  article-title: A DNN-based multi-objective precoding for Gaussian MIMO networks
  publication-title: Proc IEEE Global Communications Conf GLOBECOM
– ident: ref34
  doi: 10.1109/23.589532
– ident: ref6
  doi: 10.1109/ISIT.2012.6283927
– ident: ref33
  doi: 10.1109/ICCV.2015.123
– ident: ref22
  doi: 10.1109/TCCN.2017.2758370
– ident: ref4
  doi: 10.1109/TWC.2013.031813.120224
– ident: ref5
  doi: 10.1109/TVT.2017.2681942
– year: 2006
  ident: ref38
  publication-title: Numerical Optimization
– volume: 521
  start-page: 436
  year: 2015
  ident: ref13
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref14
  doi: 10.1109/TCOMM.2017.2722478
– year: 2016
  ident: ref43
  article-title: On large-batch training for deep learning: Generalization gap and sharp minima
  publication-title: arXiv 1609 04836
– ident: ref8
  doi: 10.1109/TCOMM.2020.3036439
– ident: ref16
  doi: 10.1109/ICC.2019.8761681
SSID ssj0004033
Score 2.4589942
Snippet This paper introduces a unified deep neural network (DNN)-based precoder for two-user multiple-input multiple-output (MIMO) networks with five objectives: data...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4476
SubjectTerms Antennas
Artificial neural networks
beamforming
Data transmission
Deep learning
Energy harvesting
MIMO
MIMO communication
Multicast communication
Multicasting
Multiple objective analysis
Optimization
physical layer
Power transfer
Precoding
Robustness (mathematics)
Rotation
Security
SWIPT
Wireless communication
wiretap channel
Title Multi-Objective DNN-Based Precoder for MIMO Communications
URI https://ieeexplore.ieee.org/document/9398700
https://www.proquest.com/docview/2551364896
Volume 69
WOSCitedRecordID wos000673485300019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0857
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004033
  issn: 0090-6778
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKxQADr4IoFJSBDdw6juMHGxQqkEjaoUjdIie2JRBqUR_8fmwnLVQgJDYPthV9ftx98X13AFxoypiJtIaWLAtIYsntmSMSImpcbhFBCu1X-omlKR-NxKAGrlZaGK21Dz7Tbdf0b_lqUizcr7KOiCxDRpagbzBGS63WlwYSRVXGSRfOzvhSIINEZ9jtJ4mlgjhs2x1tjzhdM0K-qsqPq9jbl97u_75sD-xUfmRwUy78Pqjp8QHY_pZdsAGuvbgW9vPX8lIL7tIU3lqrpYKB48FKTwPrsgbJY9IP1oQis0Pw3Lsfdh9gVSoBFljEc6hZHitlEMmlEjhUlmPq0CKP8zySti1Mbv02g2OskKKh5JwQe80VYSixiZmMjkB9PBnrYxBQyQ2PneC2MCTmUlpOZNxzDTJa4Jw1QbjELiuqPOKunMVb5vkEEpnHO3N4ZxXeTXC5GvNeZtH4s3fDIbzqWYHbBK3lEmXVQZtl2BWooYQLevL7qFOw5eYuI2xboD6fLvQZ2Cw-5i-z6bnfQ5-FRMDe
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5VBQkYeBVEoUAGNgg4jpPYbFCoWtGkHYrULXJiWwKhFvXB78d20kIFQmLzYMvR58fdF993B3AhwyhSvpSuJsvMJQGn-swR7qJQmdwijOTSrnQ3ShI6HLJ-Ba6WWhgppQ0-k9emad_yxTifm19lN8zXDBlpgr4WEM17CrXWlwoS-WXOSRPQHtGFRAaxm0GzF8eaDGLvWu9pfcjDFTNk66r8uIythWnt_O_bdmG79CSdu2Lp96AiR_uw9S2_YA1urbzW7WWvxbXmPCSJe6_tlnD6hgkLOXG00-rEnbjnrEhFpgfw3HocNNtuWSzBzTELZq6MskAIhUjGBcOe0CxTehp7nGU-122mMu25KRxggUTocUoJ0Rdd7nkcqyDi_iFUR-ORPAIn5FTRwEhuc0UCyrlmRco82CAlGc6iOngL7NK8zCRuClq8pZZRIJZavFODd1riXYfL5Zj3Io_Gn71rBuFlzxLcOjQWS5SWR22aYlOiJiSUhce_jzqHjfYg7qbdTvJ0AptmniLetgHV2WQuT2E9_5i9TCdndj99ArxkxCU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Objective+DNN-Based+Precoder+for+MIMO+Communications&rft.jtitle=IEEE+transactions+on+communications&rft.au=Zhang%2C+Xinliang&rft.au=Vaezi%2C+Mojtaba&rft.date=2021-07-01&rft.pub=IEEE&rft.issn=0090-6778&rft.volume=69&rft.issue=7&rft.spage=4476&rft.epage=4488&rft_id=info:doi/10.1109%2FTCOMM.2021.3071536&rft.externalDocID=9398700
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon