Bayesian Nonparametric Causal Inference: Information Rates and Learning Algorithms

We investigate the problem of estimating the causal effect of a treatment on individual subjects from observational data; this is a central problem in various application domains, including healthcare, social sciences, and online advertising. Within the Neyman-Rubin potential outcomes model, we use...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of selected topics in signal processing Ročník 12; číslo 5; s. 1031 - 1046
Hlavní autoři: Alaa, Ahmed M., van der Schaar, Mihaela
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1932-4553, 1941-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We investigate the problem of estimating the causal effect of a treatment on individual subjects from observational data; this is a central problem in various application domains, including healthcare, social sciences, and online advertising. Within the Neyman-Rubin potential outcomes model, we use the Kullback-Leibler (KL) divergence between the estimated and true distributions as a measure of accuracy of the estimate, and we define the information rate of the Bayesian causal inference procedure as the (asymptotic equivalence class of the) expected value of the KL divergence between the estimated and true distributions as a function of the number of samples. Using Fano's method, we establish a fundamental limit on the information rate that can be achieved by any Bayesian estimator, and show that this fundamental limit is independent of the selection bias in the observational data. We characterize the Bayesian priors on the potential (factual and counterfactual) outcomes that achieve the optimal information rate. We go on to propose a prior adaptation procedure (which we call the information-based empirical Bayes procedure) that optimizes the Bayesian prior by maximizing an information-theoretic criterion on the recovered causal effects rather than maximizing the marginal likelihood of the observed (factual) data. Building on our analysis, we construct an information-optimal Bayesian causal inference algorithm. This algorithm embeds the potential outcomes in a vector-valued reproducing Kernel Hilbert space, and uses a multitask Gaussian process prior over that space to infer the individualized causal effects. We show that for such a prior, the proposed information-based empirical Bayes method adapts the smoothness of the multitask Gaussian process to the true smoothness of the causal effect function by balancing a tradeoff between the factual bias and the counterfactual variance. We conduct experiments on a well-known real-world dataset and show that our model significantly outperforms the state-of-the-art causal inference models.
AbstractList We investigate the problem of estimating the causal effect of a treatment on individual subjects from observational data; this is a central problem in various application domains, including healthcare, social sciences, and online advertising. Within the Neyman-Rubin potential outcomes model, we use the Kullback-Leibler (KL) divergence between the estimated and true distributions as a measure of accuracy of the estimate, and we define the information rate of the Bayesian causal inference procedure as the (asymptotic equivalence class of the) expected value of the KL divergence between the estimated and true distributions as a function of the number of samples. Using Fano's method, we establish a fundamental limit on the information rate that can be achieved by any Bayesian estimator, and show that this fundamental limit is independent of the selection bias in the observational data. We characterize the Bayesian priors on the potential (factual and counterfactual) outcomes that achieve the optimal information rate. We go on to propose a prior adaptation procedure (which we call the information-based empirical Bayes procedure) that optimizes the Bayesian prior by maximizing an information-theoretic criterion on the recovered causal effects rather than maximizing the marginal likelihood of the observed (factual) data. Building on our analysis, we construct an information-optimal Bayesian causal inference algorithm. This algorithm embeds the potential outcomes in a vector-valued reproducing Kernel Hilbert space, and uses a multitask Gaussian process prior over that space to infer the individualized causal effects. We show that for such a prior, the proposed information-based empirical Bayes method adapts the smoothness of the multitask Gaussian process to the true smoothness of the causal effect function by balancing a tradeoff between the factual bias and the counterfactual variance. We conduct experiments on a well-known real-world dataset and show that our model significantly outperforms the state-of-the-art causal inference models.
Author Alaa, Ahmed M.
van der Schaar, Mihaela
Author_xml – sequence: 1
  givenname: Ahmed M.
  orcidid: 0000-0001-9936-7141
  surname: Alaa
  fullname: Alaa, Ahmed M.
  email: ahmedmalaa@ucla.edu
  organization: Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA, USA
– sequence: 2
  givenname: Mihaela
  surname: van der Schaar
  fullname: van der Schaar, Mihaela
  email: mihaela.vanderschaar@eng.ox.ac.uk
  organization: Department of Engineering Science, University of Oxford, Oxford, U.K
BookMark eNp9kE1PwkAQhjcGEwH9A3pp4rm4H9126w2JHxiiBvDczLZTXEK3uFsO_HtbIB48eJr3MM87mWdAera2SMg1oyPGaHr3ulguPkacMjXiKlJc0DPSZ2nEQhqpqNdlwcNISnFBBt6vKZVJzKI-mT_AHr0BG7zVdgsOKmycyYMJ7Dxsgqkt0aHN8b6LtaugMbUN5tCgD8AWwQzBWWNXwXizqp1pvip_Sc5L2Hi8Os0h-Xx6XE5ewtn783QynoU5T2UTYkLLnCkUKSujWIMSSV4ornSpEs6gjPOCayi0BJpqigXEKaMCJGqNWupUDMntsXfr6u8d-iZb1ztn25MZZ0y2fZLKdksdt3JXe--wzHLTHL5oHJhNxmjWGcwOBrPOYHYy2KL8D7p1pgK3_x-6OUIGEX8BJVSiIil-AFP2gCg
CODEN IJSTGY
CitedBy_id crossref_primary_10_1002_int_22573
crossref_primary_10_1093_aje_kwab047
crossref_primary_10_1016_j_eswa_2022_117116
crossref_primary_10_1109_TIM_2024_3488141
crossref_primary_10_1057_s41270_023_00237_3
crossref_primary_10_1109_ACCESS_2019_2932390
crossref_primary_10_3390_electronics13214236
crossref_primary_10_1109_COMST_2019_2943405
crossref_primary_10_1002_cpt_1907
crossref_primary_10_1109_TSP_2025_3585825
Cites_doi 10.1073/pnas.1510489113
10.1002/sim.6265
10.1109/18.54897
10.1002/sim.4322
10.1073/pnas.1303102110
10.1109/TIT.2017.2773474
10.1214/08-EJS273
10.1006/jmva.1997.1659
10.1214/15-AOS1341
10.1080/01621459.1984.10478078
10.1198/jcgs.2010.08162
10.1214/074921708000000156
10.1109/TIT.2007.915707
10.1214/aos/1018031206
10.1561/2200000036
10.1214/aos/1017939142
10.1090/S0002-9939-1966-0193624-0
10.2202/1557-4679.1308
10.1214/aos/1176345969
10.1007/BF00050848
10.1257/aer.p20171038
10.2139/ssrn.3048177
10.1037/h0037350
10.1007/s11749-007-0075-5
10.1214/009053607000000613
10.1214/009053604000000300
10.1214/11-AOS920
10.1214/15-EJS1078
10.1007/978-94-017-2973-4_7
10.1002/sim.7623
10.3982/ECTA11293
10.1080/10485252.2017.1339309
10.1214/aos/1176345206
10.1177/0081175012452652
10.1080/10618600.2017.1356325
10.1070/SM1967v002n03ABEH002343
10.1007/3-540-44581-1_27
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
H8D
L7M
DOI 10.1109/JSTSP.2018.2848230
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0484
EndPage 1046
ExternalDocumentID 10_1109_JSTSP_2018_2848230
8387845
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: ECCS1462245; ECCS1533983; ECCS1407712
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
7SP
8FD
H8D
L7M
RIG
ID FETCH-LOGICAL-c295t-e70fc18e391f46ba837cd828bf8721af6cd2badb5a09b0eda69103a5ebbeb5b93
IEDL.DBID RIE
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446341300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-4553
IngestDate Mon Jun 30 10:18:47 EDT 2025
Tue Nov 18 21:07:00 EST 2025
Sat Nov 29 04:10:32 EST 2025
Wed Aug 27 02:36:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-e70fc18e391f46ba837cd828bf8721af6cd2badb5a09b0eda69103a5ebbeb5b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9936-7141
PQID 2115837505
PQPubID 75721
PageCount 16
ParticipantIDs ieee_primary_8387845
proquest_journals_2115837505
crossref_citationtrail_10_1109_JSTSP_2018_2848230
crossref_primary_10_1109_JSTSP_2018_2848230
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of selected topics in signal processing
PublicationTitleAbbrev JSTSP
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
raskutti (ref41) 2009
ref52
ref11
ref54
schölkopf (ref56) 2001
ref17
ref19
tran (ref6) 2016
kallus (ref10) 2017
ref51
alaa (ref15) 2017
ref46
ref45
ref48
ref47
ref42
rasmussen (ref53) 2006; 1
ref44
ref43
bonilla (ref55) 2008
ref49
johansson (ref18) 2016
ref8
bernardo (ref34) 1998; 6
barron (ref22) 1999; 27
ref4
ref3
cover (ref32) 2012
li (ref9) 2017
atan (ref14) 0
ref35
ref37
bottou (ref2) 2013; 14
ref36
van der vaart (ref31) 0; 3
ref33
ref1
ref39
alaa (ref5) 2017
ref38
wager (ref7) 2017
xie (ref20) 2013; 110
pati (ref50) 2015; 16
shalit (ref30) 2017
linero (ref24) 2017
matthews (ref58) 2017; 18
ref26
ref25
vaart (ref28) 2011; 12
hahn (ref16) 2017
ref21
ref27
ref29
rockova (ref23) 2017
vosburg (ref40) 1966; 17
References_xml – ident: ref36
  doi: 10.1073/pnas.1510489113
– ident: ref4
  doi: 10.1002/sim.6265
– start-page: 1789
  year: 2017
  ident: ref10
  article-title: Recursive partitioning for personalization using observational data
  publication-title: Proc Int Conf Mach Learn
– year: 2017
  ident: ref5
  article-title: Bayesian inference of individualized treatment effects using multi-task Gaussian processes
  publication-title: Adv Neural Inf Process Syst
– ident: ref37
  doi: 10.1109/18.54897
– volume: 1
  year: 2006
  ident: ref53
  publication-title: Gaussian Processes for Machine Learning
– ident: ref1
  doi: 10.1002/sim.4322
– start-page: 3076
  year: 2017
  ident: ref30
  article-title: Estimating individual treatment effect: Generalization bounds and algorithms
  publication-title: Proc 34th Int Conf Mach Learn
– year: 0
  ident: ref14
  article-title: Deep-treat: Learning optimal personalized treatments from observational data using neural networks
  publication-title: Proc Assoc Adv Artif Intell
– volume: 110
  start-page: 6262
  year: 2013
  ident: ref20
  article-title: Population heterogeneity and causal inference
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.1303102110
– volume: 16
  start-page: 2837
  year: 2015
  ident: ref50
  article-title: Optimal Bayesian estimation in random covariate design with a rescaled Gaussian process prior.
  publication-title: J Mach Learn Res
– year: 2017
  ident: ref23
  article-title: Posterior concentration for Bayesian regression trees and their ensembles
  publication-title: arXiv 1708 08734
– ident: ref35
  doi: 10.1109/TIT.2017.2773474
– start-page: 3020
  year: 2016
  ident: ref18
  article-title: Learning representations for counterfactual inference
  publication-title: Proc Int Conf Mach Learn
– year: 2017
  ident: ref15
  article-title: Deep counterfactual networks with propensity-dropout
  publication-title: Proc ICML Workshop Principled Approaches Deep Learn
– volume: 12
  start-page: 2095
  year: 2011
  ident: ref28
  article-title: Information rates of nonparametric Gaussian process methods
  publication-title: J Mach Learn Res
– ident: ref49
  doi: 10.1214/08-EJS273
– ident: ref46
  doi: 10.1006/jmva.1997.1659
– volume: 14
  start-page: 3207
  year: 2013
  ident: ref2
  article-title: Counterfactual reasoning and learning systems: The example of computational advertising
  publication-title: J Mach Learn Res
– ident: ref51
  doi: 10.1214/15-AOS1341
– ident: ref11
  doi: 10.1080/01621459.1984.10478078
– ident: ref8
  doi: 10.1198/jcgs.2010.08162
– ident: ref48
  doi: 10.1214/074921708000000156
– ident: ref33
  doi: 10.1109/TIT.2007.915707
– volume: 27
  start-page: 536
  year: 1999
  ident: ref22
  article-title: The consistency of posterior distributions in nonparametric problems
  publication-title: Ann Statist
  doi: 10.1214/aos/1018031206
– start-page: 153
  year: 2008
  ident: ref55
  article-title: Multi-task Gaussian process prediction
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2017
  ident: ref24
  article-title: Bayesian regression tree ensembles that adapt to smoothness and sparsity
  publication-title: arXiv 1707 09461
– ident: ref54
  doi: 10.1561/2200000036
– start-page: 930
  year: 2017
  ident: ref9
  article-title: Matching on balanced nonlinear representations for treatment effects estimation
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1563
  year: 2009
  ident: ref41
  article-title: Lower bounds on minimax rates for nonparametric regression with additive sparsity and smoothness
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 6
  year: 1998
  ident: ref34
  article-title: Information-theoretic characterization of bayes performance and the choice of priors in parametric and nonparametric problems
  publication-title: Bayesian Statistics
– ident: ref29
  doi: 10.1214/aos/1017939142
– volume: 17
  start-page: 665
  year: 1966
  ident: ref40
  article-title: Metric entropy of certain classes of Lipschitz functions
  publication-title: Proc Amer Math Soc
  doi: 10.1090/S0002-9939-1966-0193624-0
– ident: ref57
  doi: 10.2202/1557-4679.1308
– ident: ref26
  doi: 10.1214/aos/1176345969
– ident: ref43
  doi: 10.1007/BF00050848
– ident: ref17
  doi: 10.1257/aer.p20171038
– year: 2017
  ident: ref16
  article-title: Bayesian regression tree models for causal inference: Regularization, confounding, and heterogeneous effects
  doi: 10.2139/ssrn.3048177
– ident: ref12
  doi: 10.1037/h0037350
– year: 2016
  ident: ref6
  article-title: Model criticism for Bayesian causal inference
– year: 2012
  ident: ref32
  publication-title: Elements of Information Theory
– ident: ref45
  doi: 10.1007/s11749-007-0075-5
– volume: 3
  year: 0
  ident: ref31
  publication-title: Asymptotic Statistics
– ident: ref47
  doi: 10.1214/009053607000000613
– ident: ref42
  doi: 10.1214/009053604000000300
– year: 2017
  ident: ref7
  article-title: Estimation and inference of heterogeneous treatment effects using random forests
  publication-title: J Amer Statist Assoc
– ident: ref52
  doi: 10.1214/11-AOS920
– ident: ref25
  doi: 10.1214/15-EJS1078
– ident: ref39
  doi: 10.1007/978-94-017-2973-4_7
– ident: ref19
  doi: 10.1002/sim.7623
– ident: ref13
  doi: 10.3982/ECTA11293
– ident: ref44
  doi: 10.1080/10485252.2017.1339309
– volume: 18
  start-page: 1299
  year: 2017
  ident: ref58
  article-title: Gpflow: A Gaussian process library using tensorflow
  publication-title: J Mach Learn Res
– ident: ref27
  doi: 10.1214/aos/1176345206
– ident: ref3
  doi: 10.1177/0081175012452652
– ident: ref21
  doi: 10.1080/10618600.2017.1356325
– ident: ref38
  doi: 10.1070/SM1967v002n03ABEH002343
– start-page: 416
  year: 2001
  ident: ref56
  article-title: A generalized representer theorem
  publication-title: Computational Learning Theory
  doi: 10.1007/3-540-44581-1_27
SSID ssj0057614
Score 2.4127903
Snippet We investigate the problem of estimating the causal effect of a treatment on individual subjects from observational data; this is a central problem in various...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1031
SubjectTerms Algorithms
Asymptotic methods
Bayes methods
Bayesian analysis
Bayesian nonparametrics
Bias
causal effect inference
Data models
Divergence
Domains
Empirical analysis
Estimation
Gaussian process
Gaussian processes
Hilbert space
Inference
Inference algorithms
Information rates
Information theory
Machine learning
Maximization
multitask learning
Nonparametric statistics
Optimization
selection bias
Signal processing algorithms
Smoothness
Title Bayesian Nonparametric Causal Inference: Information Rates and Learning Algorithms
URI https://ieeexplore.ieee.org/document/8387845
https://www.proquest.com/docview/2115837505
Volume 12
WOSCitedRecordID wos000446341300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057614
  issn: 1932-4553
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4g8aAHX2hE0ezBmxa27bbdekMi0QshqAm3Zp9IAsXwMPHfu1u2RKMx8dbDTrOd2Z1HZ74ZgCssCbd95bwgJNIj1CceCwLhmZukpYqpoFgXwyaSXo8Oh2m_AjcbLIxSqig-U037WOTy5Uys7K-yFg1pQkm0BVtJEq-xWqXWNW6z7zLIgUeiKCwBMjhtmSP-1LdVXLRplLHNLH0zQsVUlR-quLAv3f3_7ewA9pwfidprwR9CReVHsPulu2ANBnfsQ1mMJOrNctvie2qnZwnUYauFIX0soX63yGGSrIzQwDqfiOUSudarI9SejGbz8fJ1ujiGl-79c-fBcyMUPBGk0dJTCdbCpypMfU1izkw4KqQJsrimJvRjOhYy4EzyiOGUYyVZbNyHkEWKc8UjnoYnUM1nuToFpBVJhBAKM0ZJaExa6BNNBY815qkJI-vglzzNhOsvbsdcTLIizsBpVsghs3LInBzqcL2heVt31_hzdc1yfrPSMb0OjVJ0mbuAi8xsKDIfa_y7s9-pzmHHvntdl9eA6nK-UhewLd6X48X8sjhbnz1CzXE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gXrwVcVq1T1409RNskk33rQoLdZSqkJvYZ9aqKn0Ifjv3U03RVEEbznskM3M7jwy880AnGJJuO0r5wUhkR6hPvFYEAjP3CQtVUwFxTofNlFrt2mvl3QW4HyOhVFK5cVnqmof81y-HIqp_VV2QUNaoyRahGU7OcuhtQq9axxn3-WQA49EUVhAZHByYQ75Q8fWcdGqUcc2t_TNDOVzVX4o49zC3G7-b29bsOE8SXQ1E_02LKhsB9a_9BcsQfeafSiLkkTtYWabfL_a-VkC1dl0bEibBdjvEjlUkpUS6lr3E7FMItd89RldDZ6Ho_7k5XW8C0-3N4_1hueGKHgiSKKJp2pYC5-qMPE1iTkzAamQJszimprgj-lYyIAzySOGE46VZLFxIEIWKc4Vj3gS7sFSNszUPiCtSE0IoTBjlITGqIU-0VTwWGOemECyDH7B01S4DuN20MUgzSMNnKS5HFIrh9TJoQxnc5q3WX-NP1eXLOfnKx3Ty1ApRJe6KzhOzYYi87HGwzv4neoEVhuP96201WzfHcKafc-sSq8CS5PRVB3Binif9Mej4_ycfQIaKtC6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Nonparametric+Causal+Inference%3A+Information+Rates+and+Learning+Algorithms&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Alaa%2C+Ahmed+M.&rft.au=van+der+Schaar%2C+Mihaela&rft.date=2018-10-01&rft.pub=IEEE&rft.issn=1932-4553&rft.volume=12&rft.issue=5&rft.spage=1031&rft.epage=1046&rft_id=info:doi/10.1109%2FJSTSP.2018.2848230&rft.externalDocID=8387845
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon