A Deep Constrained and Synchronous Training Framework for Hybrid Precoding
To reduce the computational complexity and improve the achievable rate of hybrid precoding, we propose a deep constrained and synchronous training framework, which enables effective learning from the fully digital precoders and approaches the upper bound performance. The key innovation focuses on in...
Uloženo v:
| Vydáno v: | IEEE communications letters Ročník 26; číslo 6; s. 1288 - 1292 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1089-7798, 1558-2558 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | To reduce the computational complexity and improve the achievable rate of hybrid precoding, we propose a deep constrained and synchronous training framework, which enables effective learning from the fully digital precoders and approaches the upper bound performance. The key innovation focuses on integrating a constrained precoding network with synchronous loss to predict hybrid precoders that approximate the corresponding fully digital precoders, where the constrained neural network guarantees the unit module and total transmission power while the synchronous loss maximizes the achievable rate. Experimental results show that the hybrid precoder generated from the proposed framework outperforms the benchmark hybrid precoders and could save more than half the inference time. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1089-7798 1558-2558 |
| DOI: | 10.1109/LCOMM.2022.3162211 |