LSTM-DNN Based Autoencoder Network for Nonlinear Hyperspectral Image Unmixing

Blind hyperspectral unmixing is an important technique in hyperspectral image analysis, aiming at estimating endmembers and their respective fractional abundances. Consider the limitations of using the linear model, nonlinear unmixing methods have been studied under different model assumptions. Howe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of selected topics in signal processing Ročník 15; číslo 2; s. 295 - 309
Hlavní autoři: Zhao, Min, Yan, Longbin, Chen, Jie
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1932-4553, 1941-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Blind hyperspectral unmixing is an important technique in hyperspectral image analysis, aiming at estimating endmembers and their respective fractional abundances. Consider the limitations of using the linear model, nonlinear unmixing methods have been studied under different model assumptions. However, existing nonlinear unmixing algorithms do not fully exploit spectral and spatial correlation information. This paper proposes a nonsymmetric autoencoder network to overcome this issue. The proposed scheme benefits from the universal modeling ability of deep neural networks and enables to learn the nonlinear relation from the data. Particularly, the long short-term memory network (LSTM) structure is included to capture spectral correlation information, and a spatial regularization is introduced to improve the spatial continuity of results. An attention mechanism is also used to further enhance the unmixing performance. Experiments with synthetic and real data are conducted to illustrate the effectiveness of the proposed method.
AbstractList Blind hyperspectral unmixing is an important technique in hyperspectral image analysis, aiming at estimating endmembers and their respective fractional abundances. Consider the limitations of using the linear model, nonlinear unmixing methods have been studied under different model assumptions. However, existing nonlinear unmixing algorithms do not fully exploit spectral and spatial correlation information. This paper proposes a nonsymmetric autoencoder network to overcome this issue. The proposed scheme benefits from the universal modeling ability of deep neural networks and enables to learn the nonlinear relation from the data. Particularly, the long short-term memory network (LSTM) structure is included to capture spectral correlation information, and a spatial regularization is introduced to improve the spatial continuity of results. An attention mechanism is also used to further enhance the unmixing performance. Experiments with synthetic and real data are conducted to illustrate the effectiveness of the proposed method.
Author Zhao, Min
Chen, Jie
Yan, Longbin
Author_xml – sequence: 1
  givenname: Min
  orcidid: 0000-0003-3258-8358
  surname: Zhao
  fullname: Zhao, Min
  email: minzhao@mail.nwpu.edu.cn
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Longbin
  surname: Yan
  fullname: Yan, Longbin
  email: yanlongbin@mail.nwpu.edu.cn
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Jie
  orcidid: 0000-0003-2306-8860
  surname: Chen
  fullname: Chen, Jie
  email: dr.jie.chen@ieee.org
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
BookMark eNp9kM9PwjAUxxuDiYD-A3pZ4nnYru3WHRF_gAE0Ac5Lu72R4mhnO6L89w4hHjx4et_D9_Pey6eHOsYaQOia4AEhOL17WSwXb4MIR2RAMY9oTM5Ql6SMhJgJ1jlkGoWMc3qBet5vMOZJTFgXzaaL5Sx8mM-De-mhCIa7xoLJbQEumEPzad17UNo2W1NpA9IF430NzteQN05WwWQr1xCszFZ_abO-ROelrDxcnWYfrZ4el6NxOH19noyG0zCPUt6EQKKEpYwqQVJeEExKweKcSaEKmlJJC56o9jsqRU6FSBXhwBIaF0oqlXDFaB_dHvfWzn7swDfZxu6caU9mEUtpjBnDSdsSx1burPcOyizXjWy0Ne3rusoIzg7ysh952UFedpLXotEftHZ6K93-f-jmCGkA-AVa8TFNEvoNs757lw
CODEN IJSTGY
CitedBy_id crossref_primary_10_3390_rs17172968
crossref_primary_10_1109_JSTARS_2021_3126755
crossref_primary_10_1016_j_asr_2022_06_028
crossref_primary_10_1109_JSTARS_2022_3188565
crossref_primary_10_1007_s10772_022_09962_z
crossref_primary_10_1109_TGRS_2024_3422495
crossref_primary_10_1109_JSTARS_2022_3168333
crossref_primary_10_1109_JSTARS_2025_3584232
crossref_primary_10_1109_TCI_2023_3321985
crossref_primary_10_3390_rs15245694
crossref_primary_10_1016_j_compag_2023_108382
crossref_primary_10_1109_JSTARS_2021_3132283
crossref_primary_10_1109_TGRS_2022_3202490
crossref_primary_10_1109_ACCESS_2021_3099631
crossref_primary_10_1109_TGRS_2023_3324018
crossref_primary_10_1109_TMC_2024_3475634
crossref_primary_10_1109_JSTARS_2024_3387750
crossref_primary_10_1109_TGRS_2024_3360714
crossref_primary_10_1109_TGRS_2024_3363427
crossref_primary_10_1109_TGRS_2025_3551119
crossref_primary_10_1109_JSTARS_2021_3126664
crossref_primary_10_1109_TCI_2024_3369410
crossref_primary_10_1109_TGRS_2024_3393570
crossref_primary_10_1109_JSTARS_2022_3175257
crossref_primary_10_1109_TGRS_2025_3540378
crossref_primary_10_1109_JSEN_2022_3143852
crossref_primary_10_1109_TIP_2024_3374093
crossref_primary_10_3390_rs14163947
crossref_primary_10_1016_j_inffus_2025_103712
crossref_primary_10_1109_JSTARS_2024_3359647
crossref_primary_10_1109_TGRS_2023_3304484
crossref_primary_10_1080_22797254_2023_2277213
crossref_primary_10_1109_TGRS_2022_3168712
crossref_primary_10_1109_JSTARS_2021_3140154
crossref_primary_10_1109_JSTSP_2022_3179806
crossref_primary_10_1016_j_eswa_2023_119904
crossref_primary_10_1109_TGRS_2023_3321839
crossref_primary_10_3788_IRLA20250131
crossref_primary_10_1109_JSEN_2024_3373477
crossref_primary_10_1109_JSTARS_2025_3593668
crossref_primary_10_1109_TGRS_2024_3377472
crossref_primary_10_3390_rs15102619
crossref_primary_10_1177_00202940221109778
crossref_primary_10_32604_cmc_2022_027936
crossref_primary_10_1109_JSTARS_2025_3593442
Cites_doi 10.1109/TIP.2015.2468177
10.1109/ICASSP.2013.6638947
10.1109/JSTSP.2010.2088377
10.1080/01431160802558659
10.1109/79.974727
10.1109/TGRS.2015.2453915
10.1109/JSTARS.2012.2194696
10.1109/JSTARS.2014.2320576
10.1109/TIP.2012.2187668
10.1162/neco.1997.9.8.1735
10.3390/rs11050529
10.1109/LGRS.2018.2841400
10.1109/IGARSS.2017.8127062
10.3115/v1/D14-1179
10.1109/TGRS.2018.2868690
10.1016/j.neucom.2018.02.105
10.1109/JSTARS.2017.2655112
10.1109/IGARSS.2019.8900297
10.1109/TSP.2012.2222390
10.1109/TGRS.2018.2856929
10.1109/LGRS.2012.2189934
10.1016/0034-4257(94)90107-4
10.18653/v1/D16-1244
10.1109/LGRS.2018.2857804
10.1109/JSTARS.2019.2905099
10.1109/IGARSS.2011.6049492
10.1016/j.rse.2007.07.028
10.1109/TGRS.2005.844293
10.1109/36.911111
10.1109/ACCESS.2018.2818280
10.1109/JSTARS.2020.2966512
10.1109/TIP.2016.2627815
10.1109/TIP.2014.2314022
10.1109/TGRS.2008.918089
10.1109/TGRS.2018.2827407
10.1109/MSP.2013.2279731
10.1179/174313110X12771950995716
10.1126/science.260.5107.509
10.1109/TGRS.2018.2890633
10.1109/TGRS.2011.2160950
10.1109/TGRS.2018.2849692
10.1109/LGRS.2019.2900733
10.1109/TGRS.2016.2636241
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
H8D
L7M
DOI 10.1109/JSTSP.2021.3052361
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0484
EndPage 309
ExternalDocumentID 10_1109_JSTSP_2021_3052361
9326377
Genre orig-research
GrantInformation_xml – fundername: Northwestern Polytechnical University
  funderid: 10.13039/501100002663
– fundername: Higher Education Discipline Innovation Project; 111 Project
  grantid: B18041
  funderid: 10.13039/501100013314
– fundername: National Key Research and Development Program of China
  grantid: 2018AAA0102200
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
7SP
8FD
H8D
L7M
ID FETCH-LOGICAL-c295t-e1274943b8195d101f846c4a8bd393a3d57b6143a8c3889b15e4736dbabb75b43
IEDL.DBID RIE
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000622098600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-4553
IngestDate Mon Jun 30 10:17:44 EDT 2025
Sat Nov 29 04:10:33 EST 2025
Tue Nov 18 20:45:57 EST 2025
Wed Aug 27 02:30:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-e1274943b8195d101f846c4a8bd393a3d57b6143a8c3889b15e4736dbabb75b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2306-8860
0000-0003-3258-8358
PQID 2493604407
PQPubID 75721
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_JSTSP_2021_3052361
proquest_journals_2493604407
crossref_primary_10_1109_JSTSP_2021_3052361
ieee_primary_9326377
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of selected topics in signal processing
PublicationTitleAbbrev JSTSP
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref38
ref16
ref19
ref18
luo (ref35) 2013; 10
bahdanau (ref41) 2014
borsoi (ref26) 2019; 6
ref46
ref24
ref45
ref23
graves (ref39) 2013
ref47
ref25
ref20
ref42
ref22
ref44
ref21
ref43
ref28
ref27
mnih (ref40) 0
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref46
  doi: 10.1109/TIP.2015.2468177
– ident: ref31
  doi: 10.1109/ICASSP.2013.6638947
– ident: ref44
  doi: 10.1109/JSTSP.2010.2088377
– ident: ref9
  doi: 10.1080/01431160802558659
– year: 2014
  ident: ref41
  article-title: Neural machine translation by jointly learning to align and translate
– ident: ref5
  doi: 10.1109/79.974727
– ident: ref37
  doi: 10.1109/TGRS.2015.2453915
– ident: ref1
  doi: 10.1109/JSTARS.2012.2194696
– ident: ref7
  doi: 10.1109/JSTARS.2014.2320576
– ident: ref11
  doi: 10.1109/TIP.2012.2187668
– ident: ref38
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref14
  doi: 10.3390/rs11050529
– ident: ref25
  doi: 10.1109/LGRS.2018.2841400
– ident: ref23
  doi: 10.1109/IGARSS.2017.8127062
– ident: ref30
  doi: 10.3115/v1/D14-1179
– ident: ref21
  doi: 10.1109/TGRS.2018.2868690
– ident: ref32
  doi: 10.1016/j.neucom.2018.02.105
– ident: ref17
  doi: 10.1109/JSTARS.2017.2655112
– year: 2013
  ident: ref39
  article-title: Generating sequences with recurrent neural networks
– ident: ref27
  doi: 10.1109/IGARSS.2019.8900297
– ident: ref13
  doi: 10.1109/TSP.2012.2222390
– ident: ref24
  doi: 10.1109/TGRS.2018.2856929
– volume: 10
  start-page: 24
  year: 2013
  ident: ref35
  article-title: Empirical automatic estimation of the number of endmembers in hyperspectral images
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2012.2189934
– start-page: 2204
  year: 0
  ident: ref40
  article-title: Recurrent models of visual attention
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref8
  doi: 10.1016/0034-4257(94)90107-4
– ident: ref42
  doi: 10.18653/v1/D16-1244
– ident: ref19
  doi: 10.1109/LGRS.2018.2857804
– ident: ref47
  doi: 10.1109/JSTARS.2019.2905099
– ident: ref10
  doi: 10.1109/IGARSS.2011.6049492
– volume: 6
  start-page: 374
  year: 2019
  ident: ref26
  article-title: Deep generative endmember modeling: An application to unsupervised spectral unmixing
  publication-title: I IEEE Transactions on Computers
– ident: ref2
  doi: 10.1016/j.rse.2007.07.028
– ident: ref43
  doi: 10.1109/TGRS.2005.844293
– ident: ref6
  doi: 10.1109/36.911111
– ident: ref22
  doi: 10.1109/ACCESS.2018.2818280
– ident: ref28
  doi: 10.1109/JSTARS.2020.2966512
– ident: ref45
  doi: 10.1109/TIP.2016.2627815
– ident: ref36
  doi: 10.1109/TIP.2014.2314022
– ident: ref34
  doi: 10.1109/TGRS.2008.918089
– ident: ref33
  doi: 10.1109/TGRS.2018.2827407
– ident: ref4
  doi: 10.1109/MSP.2013.2279731
– ident: ref3
  doi: 10.1179/174313110X12771950995716
– ident: ref12
  doi: 10.1126/science.260.5107.509
– ident: ref20
  doi: 10.1109/TGRS.2018.2890633
– ident: ref18
  doi: 10.1109/TGRS.2011.2160950
– ident: ref16
  doi: 10.1109/TGRS.2018.2849692
– ident: ref29
  doi: 10.1109/LGRS.2019.2900733
– ident: ref15
  doi: 10.1109/TGRS.2016.2636241
SSID ssj0057614
Score 2.5230083
Snippet Blind hyperspectral unmixing is an important technique in hyperspectral image analysis, aiming at estimating endmembers and their respective fractional...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 295
SubjectTerms Algorithms
Artificial neural networks
attention recurrent neural network
autoencoder network
Correlation
Decoding
Hyperspectral imaging
Hyperspectral unmixing
Image analysis
Mathematical model
Neural networks
nonlinear unmixing
Regularization
Spectral correlation
Task analysis
Three-dimensional displays
Title LSTM-DNN Based Autoencoder Network for Nonlinear Hyperspectral Image Unmixing
URI https://ieeexplore.ieee.org/document/9326377
https://www.proquest.com/docview/2493604407
Volume 15
WOSCitedRecordID wos000622098600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057614
  issn: 1932-4553
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH6oeNCDuzg6Sg7eNNo2TZMc3QaFmSK44K00S2HAmZHOjPjzfWk7g6II3npIHuV7eVvyFoDjArWetYrTogg4jQtpqTKWUyEdWjuTy7xKonnuijSVLy_qfgFO57Uwzrkq-cyd-c_qLd-OzNRflZ17X4MJsQiLQiR1rdZM66LbHDYvyBGNOWezAplAneMRf7jHUDAKz5i_BU3Cb0aomqryQxVX9qWz_r8_24C1xo8kFzXjN2HBDbdg9Ut3wW3odR8ee_Q6TcklmipLLqaTkW9baV1J0jr7m6DLStK6W0ZeklsMSuvayxJp3w1Q15Cn4aD_gfR24Klz83h1S5vpCdREik-oCzHgVDHT_qXMouQVHvw4l9oyxXJmudCIGculYVIqHXIXC5ZYnWstuI7ZLiwNR0O3B0RK43ELbaCjWFsnE5Rc9AS1iQLNi7AF4QzOzDStxf2Ei9esCjEClVUsyDwLsoYFLTiZ73mrG2v8uXrbgz5f2eDdgvaMa1kje-MMA0qW-EnaYv_3XQew4mnXuddtWJqUU3cIy-Z90h-XR9Wx-gT3CMhR
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH64gXpwF-s6B286NsnMNDNHVyq2QbCKt5BZAoK2Elvx5_smSYuiCN5ymCV8b-Yt8zaAwxy5nrVK0DwPBOW5tFQZK2gsHUo7k8msDKJ56MRJIh8f1e0UHE9yYZxzZfCZO_GfpS_fDszIP5U1va7B4ngaZgXnUVBla435LirOYe1DjigXgo1TZALVxEN-d4vGYBSeMP8O2gq_iaGyr8oPZlxKmKvl__3bCizVmiQ5rUi_ClOuvwaLX-oLrkO3c9fr0oskIWcorCw5HQ0HvnCldQVJqvhvgkorSap6GVlB2miWVtmXBa59_YLchtz3X54-cL0NuL-67J23ad0_gZpIiSF1IZqcijPtfWUW717u4eeZ1JYpljErYo2YsUwaJqXSoXA8Zi2rM61joTnbhJn-oO-2gEhpPG6hDXTEtXWyhXcXdUFtokCLPGxAOIYzNXVxcd_j4jktjYxApSUJUk-CtCZBA44mc16r0hp_jl73oE9G1ng3YHdMtbS-fW8pmpSs5Xtpx9u_zzqA-Xav20k718nNDiz4fapI7F2YGRYjtwdz5n349Fbsl0fsE5A2y5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LSTM-DNN+Based+Autoencoder+Network+for+Nonlinear+Hyperspectral+Image+Unmixing&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Zhao%2C+Min&rft.au=Yan%2C+Longbin&rft.au=Chen%2C+Jie&rft.date=2021-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1932-4553&rft.eissn=1941-0484&rft.volume=15&rft.issue=2&rft.spage=295&rft_id=info:doi/10.1109%2FJSTSP.2021.3052361&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon