Graph Neural Networks: Architectures, Stability, and Transferability

Graph neural networks (GNNs) are information processing architectures for signals supported on graphs. They are presented here as generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters instead of banks of classical convolutiona...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the IEEE Ročník 109; číslo 5; s. 660 - 682
Hlavní autori: Ruiz, Luana, Gama, Fernando, Ribeiro, Alejandro
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9219, 1558-2256
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Graph neural networks (GNNs) are information processing architectures for signals supported on graphs. They are presented here as generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters instead of banks of classical convolutional filters. Otherwise, GNNs operate as CNNs. Filters are composed of pointwise nonlinearities and stacked in layers. It is shown that GNN architectures exhibit equivariance to permutation and stability to graph deformations. These properties help explain the good performance of GNNs that can be observed empirically. It is also shown that if graphs converge to a limit object, a graphon, GNNs converge to a corresponding limit object, a graphon neural network. This convergence justifies the transferability of GNNs across networks with different numbers of nodes. Concepts are illustrated by the application of GNNs to recommendation systems, decentralized collaborative control, and wireless communication networks.
AbstractList Graph neural networks (GNNs) are information processing architectures for signals supported on graphs. They are presented here as generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters instead of banks of classical convolutional filters. Otherwise, GNNs operate as CNNs. Filters are composed of pointwise nonlinearities and stacked in layers. It is shown that GNN architectures exhibit equivariance to permutation and stability to graph deformations. These properties help explain the good performance of GNNs that can be observed empirically. It is also shown that if graphs converge to a limit object, a graphon, GNNs converge to a corresponding limit object, a graphon neural network. This convergence justifies the transferability of GNNs across networks with different numbers of nodes. Concepts are illustrated by the application of GNNs to recommendation systems, decentralized collaborative control, and wireless communication networks.
Author Gama, Fernando
Ruiz, Luana
Ribeiro, Alejandro
Author_xml – sequence: 1
  givenname: Luana
  orcidid: 0000-0002-9666-1211
  surname: Ruiz
  fullname: Ruiz, Luana
  email: rubruiz@seas.upenn.edu
  organization: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 2
  givenname: Fernando
  orcidid: 0000-0001-6117-8193
  surname: Gama
  fullname: Gama, Fernando
  email: fgama@berkeley.edu
  organization: Electrical Engineering and Computer Sciences Department, University of California at Berkeley, Berkeley, CA, USA
– sequence: 3
  givenname: Alejandro
  orcidid: 0000-0003-4230-9906
  surname: Ribeiro
  fullname: Ribeiro, Alejandro
  email: aribeiro@seas.upenn.edu
  organization: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
BookMark eNp9kEFLw0AQhRepYFv9A3oJeG3qzG42yXorVatSrGg9h00yoakxqbsbpP_e1BYPHjw9GN73Br4B69VNTYydI4wRQV09Pr8spmMOHMcCpAwAjlgfpYx9zmXYY30AjH3FUZ2wgbVrABAyFH12MzN6s_KeqDW66sJ9NebdXnsTk61KR5lrDdmR9-p0Wlal2448Xefe0ujaFmQOx1N2XOjK0tkhh-zt7nY5vffni9nDdDL3M66k8wlRRXmhA5lFeRpBqgWiJJRBXMQ5FxRkIUmRYxgFgaQgopCLUBGmIAHiWAzZ5X53Y5rPlqxL1k1r6u5lwiUqFUGsVNeK963MNNYaKpKsdNqVTe2MLqsEIdk5S36cJTtnycFZh_I_6MaUH9ps_4cu9lBJRL-A6vwiD8U3UPR4gA
CODEN IEEPAD
CitedBy_id crossref_primary_10_1109_TSP_2023_3324221
crossref_primary_10_1109_TSP_2025_3534685
crossref_primary_10_1016_j_acha_2025_101773
crossref_primary_10_1016_j_dsp_2024_104528
crossref_primary_10_1016_j_ejor_2025_04_018
crossref_primary_10_1109_TSP_2021_3106857
crossref_primary_10_1109_MSP_2023_3262906
crossref_primary_10_1016_j_ins_2023_119001
crossref_primary_10_1109_LRA_2023_3280806
crossref_primary_10_1155_2021_5100809
crossref_primary_10_1109_TIM_2025_3545526
crossref_primary_10_1137_24M1651526
crossref_primary_10_1109_TSP_2022_3192606
crossref_primary_10_3390_su16219239
crossref_primary_10_1109_TSIPN_2021_3139336
crossref_primary_10_1109_TSP_2022_3223217
crossref_primary_10_2174_0115748936289520240828050951
crossref_primary_10_1109_TSP_2024_3378379
crossref_primary_10_1016_j_inffus_2022_11_018
crossref_primary_10_3390_app132212421
crossref_primary_10_1016_j_segan_2024_101469
crossref_primary_10_1109_TCCN_2024_3360517
crossref_primary_10_1109_TIM_2023_3241976
crossref_primary_10_1109_TSP_2023_3256536
crossref_primary_10_1109_JSTSP_2024_3350508
crossref_primary_10_1016_j_acha_2022_11_008
crossref_primary_10_1016_j_compchemeng_2023_108403
crossref_primary_10_1109_JIOT_2025_3547422
crossref_primary_10_1155_2021_9923364
crossref_primary_10_1109_TSP_2023_3300632
crossref_primary_10_1109_TWC_2022_3204794
crossref_primary_10_1109_ACCESS_2021_3084599
crossref_primary_10_1109_TSP_2022_3166401
crossref_primary_10_1109_ACCESS_2023_3269297
crossref_primary_10_1109_TPAMI_2023_3311912
crossref_primary_10_1109_TSP_2022_3159393
crossref_primary_10_1088_1361_6501_ad73fa
crossref_primary_10_1007_s43154_021_00046_5
crossref_primary_10_1016_j_comcom_2021_12_015
crossref_primary_10_1016_j_ins_2024_120422
crossref_primary_10_1109_JPROC_2024_3369017
crossref_primary_10_1109_TSP_2023_3340009
crossref_primary_10_1007_s13042_023_01822_9
crossref_primary_10_1016_j_engappai_2024_108959
crossref_primary_10_1109_TCSS_2023_3312395
crossref_primary_10_1016_j_comnet_2022_109358
crossref_primary_10_1016_j_epsr_2023_109903
crossref_primary_10_1016_j_apacoust_2024_109929
crossref_primary_10_1109_TAI_2025_3550458
crossref_primary_10_1051_ita_2024014
crossref_primary_10_1109_TSG_2023_3239740
crossref_primary_10_3390_sym15020535
crossref_primary_10_1007_s41109_021_00438_8
crossref_primary_10_1631_FITEE_2300009
crossref_primary_10_1002_aisy_202300036
crossref_primary_10_1109_JSAC_2023_3242703
crossref_primary_10_1007_s10479_023_05623_9
crossref_primary_10_1016_j_knosys_2024_112311
crossref_primary_10_1109_TSIPN_2023_3239695
crossref_primary_10_1109_TSP_2024_3349788
Cites_doi 10.1109/JPROC.2018.2820126
10.1109/TSP.2016.2614793
10.1007/978-3-319-66182-7_54
10.1109/DSW.2018.8439904
10.1145/3328526.3329638
10.1093/biomet/20A.1-2.32
10.1016/j.acha.2010.04.005
10.1002/cpa.21413
10.1007/978-3-030-03574-7_9
10.1109/TSP.2015.2424203
10.1109/TNSE.2018.2884235
10.4007/annals.2012.176.1.2
10.1016/j.acha.2019.06.003
10.1109/CDC.2003.1272911
10.1109/ICASSP.2011.5946304
10.1109/TSP.2017.2703660
10.1109/TSP.2018.2864654
10.1109/ICASSP.2019.8682836
10.1145/2827872
10.1109/MSP.2020.3014594
10.1016/j.crhy.2019.08.003
10.1016/B978-0-12-813677-5.00011-0
10.1109/TSP.2020.3033962
10.1137/1.9781611970104
10.1109/TSP.2020.3026980
10.1109/WI.2005.67
10.1109/CVPR.2019.00943
10.1109/TSP.2019.2904925
10.1109/ICASSP40776.2020.9054357
10.1109/TSP.2013.2238935
10.1007/978-3-030-04167-0_33
10.1109/TSP.2020.2988255
10.1109/MSP.2012.2235192
10.1109/TSP.2014.2321121
10.1109/TSP.2019.2955832
10.23919/EUSIPCO.2017.8081230
10.1109/TSP.2018.2887403
10.1109/ICASSP40776.2020.9053140
10.1145/3219819.3219890
10.1109/LRA.2019.2903261
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JPROC.2021.3055400
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2256
EndPage 682
ExternalDocumentID 10_1109_JPROC_2021_3055400
9356126
Genre orig-research
GrantInformation_xml – fundername: NSF HDR TRIPODS
  grantid: #1934960
GroupedDBID -DZ
-~X
.DC
0R~
123
1OL
29P
3EH
4.4
6IK
85S
97E
9M8
AAJGR
AAWTH
ABAZT
ABFSI
ABJNI
ABQJQ
ABVLG
ACBEA
ACGFS
AENEX
AETEA
AETIX
AFOGA
AGNAY
AGQYO
AGSQL
AHBIQ
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
FA8
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MVM
O9-
OCL
RIA
RIE
RIU
RNS
TAE
TN5
TWZ
UDY
UHB
UKR
UQL
VOH
WHG
XJT
XOL
YNT
ZCA
ZXP
ZY4
~02
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-e1197dfa45c7db70ba3115e1548f8d23e4c6e53d167445e47e62369e1b0500883
IEDL.DBID RIE
ISICitedReferencesCount 90
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000645896700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9219
IngestDate Sun Oct 05 00:12:14 EDT 2025
Sat Nov 29 06:01:43 EST 2025
Tue Nov 18 21:14:42 EST 2025
Wed Aug 27 02:29:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-e1197dfa45c7db70ba3115e1548f8d23e4c6e53d167445e47e62369e1b0500883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4230-9906
0000-0002-9666-1211
0000-0001-6117-8193
PQID 2519970899
PQPubID 85453
PageCount 23
ParticipantIDs crossref_primary_10_1109_JPROC_2021_3055400
proquest_journals_2519970899
crossref_citationtrail_10_1109_JPROC_2021_3055400
ieee_primary_9356126
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Proceedings of the IEEE
PublicationTitleAbbrev JPROC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
xu (ref27) 2019
ref56
ref12
ref59
ref58
ref14
ref53
ref55
ref11
gama (ref42) 2019
ref17
ref18
monti (ref6) 2017
wang (ref35) 2020
ruiz (ref50) 2020
ruiz (ref40) 2020
ref51
veli?kovi? (ref28) 2018
ref46
li (ref9) 2020
ref48
ref41
tolstaya (ref7) 2019; 100
kipf (ref15) 2017
defferrard (ref3) 2016
ref49
ref8
boukli hacene (ref34) 2019
ref4
ref5
assran (ref19) 2020
bishop (ref68) 2006
ref36
ref31
ref30
ref33
duvenaud (ref54) 2015
lovász (ref45) 2012; 60
ref39
ref38
lax (ref69) 2002
chen (ref43) 2019
bresson (ref32) 2017
isufi (ref16) 2020
joachims (ref1) 1997
ref71
du (ref25) 2017
ref70
oppenheim (ref63) 2010
ref24
ref67
ref23
ref26
ref64
ref66
ref22
levie (ref52) 2019
ref65
ref21
goodfellow (ref10) 2016
kingma (ref20) 2015
li (ref37) 2018
ref29
mikolov (ref2) 2013
bruna (ref13) 2014
vignac (ref44) 2020
ref60
wolfe (ref47) 2013
ref62
ref61
References_xml – start-page: 3697
  year: 2017
  ident: ref6
  article-title: Geometric matrix completion with recurrent multi-graph neural networks
  publication-title: Proc 31st Conf Neural Inf Process Syst
– ident: ref22
  doi: 10.1109/JPROC.2018.2820126
– ident: ref23
  doi: 10.1109/TSP.2016.2614793
– ident: ref53
  doi: 10.1007/978-3-319-66182-7_54
– start-page: 1
  year: 2018
  ident: ref28
  article-title: Graph attention networks
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref26
  doi: 10.1109/DSW.2018.8439904
– ident: ref49
  doi: 10.1145/3328526.3329638
– ident: ref67
  doi: 10.1093/biomet/20A.1-2.32
– ident: ref65
  doi: 10.1016/j.acha.2010.04.005
– ident: ref18
  doi: 10.1002/cpa.21413
– volume: 60
  year: 2012
  ident: ref45
  publication-title: Large Networks and Graph Limits
– ident: ref60
  doi: 10.1007/978-3-030-03574-7_9
– ident: ref66
  doi: 10.1109/TSP.2015.2424203
– ident: ref48
  doi: 10.1109/TNSE.2018.2884235
– year: 2010
  ident: ref63
  publication-title: Discrete-Time Signal Processing
– ident: ref46
  doi: 10.4007/annals.2012.176.1.2
– ident: ref41
  doi: 10.1016/j.acha.2019.06.003
– ident: ref70
  doi: 10.1109/CDC.2003.1272911
– start-page: 2224
  year: 2015
  ident: ref54
  article-title: Convolutional networks on graphs for learning molecular fingerprints
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref71
  doi: 10.1109/ICASSP.2011.5946304
– start-page: 143
  year: 1997
  ident: ref1
  article-title: A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization
  publication-title: Proc 14th Int Conf Mach Learn
– start-page: 1
  year: 2014
  ident: ref13
  article-title: Spectral networks and deep locally connected networks on graphs
  publication-title: Proc 2nd Int Conf Learn Represent
– ident: ref12
  doi: 10.1109/TSP.2017.2703660
– ident: ref4
  doi: 10.1109/TSP.2018.2864654
– year: 2019
  ident: ref34
  article-title: Attention based pruning for shift networks
  publication-title: arXiv 1905 12300
– year: 2017
  ident: ref32
  article-title: Residual gated graph ConvNets
  publication-title: arXiv 1711 07553
– ident: ref31
  doi: 10.1109/ICASSP.2019.8682836
– ident: ref17
  doi: 10.1145/2827872
– ident: ref59
  doi: 10.1109/MSP.2020.3014594
– ident: ref62
  doi: 10.1016/j.crhy.2019.08.003
– start-page: 1
  year: 2017
  ident: ref15
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref24
  doi: 10.1016/B978-0-12-813677-5.00011-0
– ident: ref30
  doi: 10.1109/TSP.2020.3033962
– ident: ref64
  doi: 10.1137/1.9781611970104
– ident: ref39
  doi: 10.1109/TSP.2020.3026980
– year: 2020
  ident: ref35
  article-title: Direct multi-hop attention based graph neural network
  publication-title: arXiv 2009 14332
– start-page: 1
  year: 2020
  ident: ref9
  article-title: Graph neural networks for decentralized multi-robot path planning
  publication-title: Proc IEEE/RSJ Int Conf Intell Robots and Syst
– ident: ref55
  doi: 10.1109/WI.2005.67
– year: 2019
  ident: ref52
  article-title: Transferability of spectral graph convolutional neural networks
  publication-title: arXiv 1907 12972
– start-page: 1
  year: 2020
  ident: ref19
  article-title: On the convergence of Nesterov's accelerated gradient method in stochastic settings
  publication-title: Proc 37th Int Conf Mach Learn
– year: 2006
  ident: ref68
  publication-title: Pattern Recognition and Machine Learning
– ident: ref36
  doi: 10.1109/CVPR.2019.00943
– year: 2002
  ident: ref69
  publication-title: Functional Analysis
– year: 2016
  ident: ref10
  publication-title: Deep Learning
– ident: ref33
  doi: 10.1109/TSP.2019.2904925
– start-page: 3844
  year: 2016
  ident: ref3
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Proc 30th Conf Neural Inf Process Syst
– ident: ref56
  doi: 10.1109/ICASSP40776.2020.9054357
– start-page: 1
  year: 2020
  ident: ref44
  article-title: Building powerful and equivariant graph neural networks with message-passing
  publication-title: Proc 34th Conf Neural Inf Process Syst
– start-page: 1
  year: 2020
  ident: ref40
  article-title: Graphon neural networks and the transferability of graph neural networks
  publication-title: Proc 34th Conf Neural Inf Process Syst
– year: 2020
  ident: ref50
  article-title: Graphon signal processing
  publication-title: arXiv 2003 05030
– start-page: 1
  year: 2019
  ident: ref27
  article-title: How powerful are graph neural networks?
  publication-title: Proc 7th Int Conf Learn Represent
– ident: ref11
  doi: 10.1109/TSP.2013.2238935
– start-page: 1
  year: 2015
  ident: ref20
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent
– ident: ref38
  doi: 10.1007/978-3-030-04167-0_33
– start-page: 1
  year: 2018
  ident: ref37
  article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting
  publication-title: Proc 6th Int Conf Learn Represent
– year: 2017
  ident: ref25
  article-title: Topology adaptive graph convolutional networks
  publication-title: arXiv 1710 10370
– ident: ref58
  doi: 10.1109/TSP.2020.2988255
– ident: ref21
  doi: 10.1109/MSP.2012.2235192
– year: 2020
  ident: ref16
  article-title: EdgeNets: Edge varying graph neural networks
  publication-title: arXiv 2001 07620
– year: 2013
  ident: ref47
  article-title: Nonparametric graphon estimation
  publication-title: arXiv 1309 5936
– ident: ref61
  doi: 10.1109/TSP.2014.2321121
– ident: ref29
  doi: 10.1109/TSP.2019.2955832
– ident: ref51
  doi: 10.23919/EUSIPCO.2017.8081230
– start-page: 1
  year: 2019
  ident: ref42
  article-title: Diffusion scattering transforms on graphs
  publication-title: Proc 7th Int Conf Learn Represent
– start-page: 1
  year: 2013
  ident: ref2
  article-title: Efficient estimation of word representations in vector space
  publication-title: Proc 1st Int Conf Learn Represent
– ident: ref14
  doi: 10.1109/TSP.2018.2887403
– ident: ref57
  doi: 10.1109/ICASSP40776.2020.9053140
– ident: ref5
  doi: 10.1145/3219819.3219890
– ident: ref8
  doi: 10.1109/LRA.2019.2903261
– volume: 100
  start-page: 1
  year: 2019
  ident: ref7
  article-title: Learning decentralized controllers for robot swarms with graph neural networks
  publication-title: Proc Conf Robot Learn
– start-page: 1
  year: 2019
  ident: ref43
  article-title: On the equivalence between graph isomorphism testing and function approximation with GNNs
  publication-title: Proc 33rd Conf Neural Inf Process Syst
SSID ssj0003563
Score 2.6755655
Snippet Graph neural networks (GNNs) are information processing architectures for signals supported on graphs. They are presented here as generalizations of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 660
SubjectTerms Artificial neural networks
Communication networks
Convergence
Convolutional neural networks
Data processing
Deep learning
Equivariance
Filter banks
graph filters
Graph neural networks
graph neural networks (GNNs)
graph signal processing (GSP)
graphon neural networks
graphons
Graphs
Information filters
Information processing
Neural networks
Permutations
Probability distribution
Recommender systems
Signal processing
Stability
Stability analysis
Training data
transferability
Wireless communications
Wireless networks
Title Graph Neural Networks: Architectures, Stability, and Transferability
URI https://ieeexplore.ieee.org/document/9356126
https://www.proquest.com/docview/2519970899
Volume 109
WOSCitedRecordID wos000645896700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2256
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003563
  issn: 0018-9219
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8NADA_b8EEf_JridEoffHPdbu211_NtqFN8mEMU9lZ61xQE6WTdBP97L9euDBTBt9LmSkmaS3JJfgG4lGGqmcy4K1mUuVzLwFUyQjczrkISIPd1EtlhE2IyiWYzOW1Ar-6FQURbfIZ9urS5_HSuV3RUNpA-zXIMm9AUIix7tepd1zwqs8lDo8BGDdcNMkwOHqfPTzcmFPSGfcK34tTNtmGE7FSVH1uxtS_jvf992T7sVn6kMyoFfwANzA9hZwNdsA239wRG7RD8hqGclPXexbUz2sgdFD3HuJu2QPar5yR56ljjleGiunkEr-O7l5sHtxqa4GpPBksXKS-YZgkPtEiVYCohPB2kyCSLUs9HrkMM_JS6D7gRhkDjAIUSh4oFxh-I_GNo5fMcT8ARXCUqCNETyjgB3FMsSk3AzBOWMC4y1YHhmouxrhDFabDFe2wjCyZjy_mYOB9XnO_AVb3mo8TT-JO6TbyuKSs2d6C7FlZcqVwRUwuuFJTFPP191Rls07vLasUutJaLFZ7Dlv5cvhWLC_s3fQMeucUx
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8NADA9zCuqDX1OcTu2Db67brb1-nG9jOqfOOWTC3krvmoIgm-xD8L_3cu3GQBF8K22OlqS5JJfkF4BL4SeKiZTbgoWpzZXwbClCtFPtKsQeclfFoRk2EfR64XAo-gWoLnthENEUn2GNLk0uPxmrOR2V1YVLsxz9NVj3OHdY1q213Hf1wyyf3NAqrBVx0SLDRP2h__Lc0sGg06gRwhWnfrYVM2TmqvzYjI2Fae_-79v2YCf3JK1mJvp9KODoALZX8AVLcHNHcNQWAXBoyl5W8T29tpor2YNp1dIOpymR_apa8SixjPlKcZLfPITX9u2g1bHzsQm2coQ3s5Eyg0kac08FiQyYjAlRByk2ScPEcZErHz03of4DrsURoHaBfIENyTztEYTuERRH4xEegxVwGUvPRyeQ2g3gjmRhokNmHrOY8SCVZWgsuBipHFOcRlu8Rya2YCIynI-I81HO-TJcLdd8ZIgaf1KXiNdLypzNZagshBXlSjeNqAlXBJTHPPl91QVsdgZP3ah733s8hS16T1a7WIHibDLHM9hQn7O36eTc_Fnfjn_IeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Neural+Networks%3A+Architectures%2C+Stability%2C+and+Transferability&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Ruiz%2C+Luana&rft.au=Gama%2C+Fernando&rft.au=Ribeiro%2C+Alejandro&rft.date=2021-05-01&rft.pub=IEEE&rft.issn=0018-9219&rft.volume=109&rft.issue=5&rft.spage=660&rft.epage=682&rft_id=info:doi/10.1109%2FJPROC.2021.3055400&rft.externalDocID=9356126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon