Deep Learning With Edge Computing: A Review

Deep learning is currently widely used in a variety of applications, including computer vision and natural language processing. End devices, such as smartphones and Internet-of-Things sensors, are generating data that need to be analyzed in real time using deep learning or used to train deep learnin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE Jg. 107; H. 8; S. 1655 - 1674
Hauptverfasser: Chen, Jiasi, Ran, Xukan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9219, 1558-2256
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deep learning is currently widely used in a variety of applications, including computer vision and natural language processing. End devices, such as smartphones and Internet-of-Things sensors, are generating data that need to be analyzed in real time using deep learning or used to train deep learning models. However, deep learning inference and training require substantial computation resources to run quickly. Edge computing, where a fine mesh of compute nodes are placed close to end devices, is a viable way to meet the high computation and low-latency requirements of deep learning on edge devices and also provides additional benefits in terms of privacy, bandwidth efficiency, and scalability. This paper aims to provide a comprehensive review of the current state of the art at the intersection of deep learning and edge computing. Specifically, it will provide an overview of applications where deep learning is used at the network edge, discuss various approaches for quickly executing deep learning inference across a combination of end devices, edge servers, and the cloud, and describe the methods for training deep learning models across multiple edge devices. It will also discuss open challenges in terms of systems performance, network technologies and management, benchmarks, and privacy. The reader will take away the following concepts from this paper: understanding scenarios where deep learning at the network edge can be useful, understanding common techniques for speeding up deep learning inference and performing distributed training on edge devices, and understanding recent trends and opportunities.
AbstractList Deep learning is currently widely used in a variety of applications, including computer vision and natural language processing. End devices, such as smartphones and Internet-of-Things sensors, are generating data that need to be analyzed in real time using deep learning or used to train deep learning models. However, deep learning inference and training require substantial computation resources to run quickly. Edge computing, where a fine mesh of compute nodes are placed close to end devices, is a viable way to meet the high computation and low-latency requirements of deep learning on edge devices and also provides additional benefits in terms of privacy, bandwidth efficiency, and scalability. This paper aims to provide a comprehensive review of the current state of the art at the intersection of deep learning and edge computing. Specifically, it will provide an overview of applications where deep learning is used at the network edge, discuss various approaches for quickly executing deep learning inference across a combination of end devices, edge servers, and the cloud, and describe the methods for training deep learning models across multiple edge devices. It will also discuss open challenges in terms of systems performance, network technologies and management, benchmarks, and privacy. The reader will take away the following concepts from this paper: understanding scenarios where deep learning at the network edge can be useful, understanding common techniques for speeding up deep learning inference and performing distributed training on edge devices, and understanding recent trends and opportunities.
Author Chen, Jiasi
Ran, Xukan
Author_xml – sequence: 1
  givenname: Jiasi
  orcidid: 0000-0001-9923-9027
  surname: Chen
  fullname: Chen, Jiasi
  email: jiasi@cs.ucr.edu
  organization: Department of Computer Science and Engineering, University of California at Riverside, Riverside, CA, USA
– sequence: 2
  givenname: Xukan
  surname: Ran
  fullname: Ran, Xukan
  organization: Department of Computer Science and Engineering, University of California at Riverside, Riverside, CA, USA
BookMark eNp9kE1Lw0AQhhepYFv9A3oJeJTU_cgku95KWr8oVIricdkkk7qlTeJmq_jvTW3x4MHTwMz7zDDPgPSqukJCzhkdMUbV9ePTYp6OOGVqxBVnKkmOSJ8ByJBziHukTymT4W5yQgZtu6KUCohFn1xNEJtghsZVtloGr9a_BdNiiUFab5qt73o3wThY4IfFz1NyXJp1i2eHOiQvt9Pn9D6cze8e0vEszLkCHxZlwgRkIJKCQqkizGOGWZQBFArj2AiTq0hIA5QrGWUouOGgIIuNoYXMSjEkl_u9javft9h6vaq3rupOas6T7hGhFO9Scp_KXd22DkudW2-8rSvvjF1rRvVOjf5Ro3dq9EFNh_I_aOPsxriv_6GLPWQR8ReQSSykBPENGytvTw
CODEN IEEPAD
CitedBy_id crossref_primary_10_1007_s10586_024_04413_7
crossref_primary_10_1109_JIOT_2024_3462722
crossref_primary_10_1177_16878132251347390
crossref_primary_10_1016_j_procs_2025_07_180
crossref_primary_10_1109_TSMC_2023_3297771
crossref_primary_10_3390_electronics11244157
crossref_primary_10_1016_j_comcom_2020_05_035
crossref_primary_10_1029_2024WR038931
crossref_primary_10_3390_agriculture12071033
crossref_primary_10_1109_ACCESS_2019_2950287
crossref_primary_10_3390_s24144589
crossref_primary_10_1109_TGCN_2022_3186879
crossref_primary_10_3390_app14093876
crossref_primary_10_1109_TBCAS_2022_3181808
crossref_primary_10_1145_3597936
crossref_primary_10_3390_math11041055
crossref_primary_10_1109_TVCG_2025_3574194
crossref_primary_10_1109_MNET_2024_3520166
crossref_primary_10_1109_TNNLS_2022_3154443
crossref_primary_10_1145_3543069
crossref_primary_10_3390_mi14071367
crossref_primary_10_1002_ett_4458
crossref_primary_10_1109_TCC_2022_3177649
crossref_primary_10_1109_JSYST_2020_2991814
crossref_primary_10_1038_s41467_022_29171_1
crossref_primary_10_1016_j_procir_2020_03_081
crossref_primary_10_1007_s00607_021_00953_7
crossref_primary_10_1109_ACCESS_2023_3287093
crossref_primary_10_1002_spe_3301
crossref_primary_10_1088_1742_6596_2456_1_012035
crossref_primary_10_3389_fpsyg_2022_843493
crossref_primary_10_3390_electronics11182939
crossref_primary_10_1016_j_measen_2024_101177
crossref_primary_10_1109_TCSI_2023_3329337
crossref_primary_10_1145_3594539
crossref_primary_10_1007_s11517_022_02696_9
crossref_primary_10_1016_j_actaastro_2023_08_001
crossref_primary_10_1016_j_asoc_2021_107162
crossref_primary_10_1109_TCOMM_2024_3486979
crossref_primary_10_1109_TMC_2022_3154644
crossref_primary_10_1002_adma_202303481
crossref_primary_10_1109_ACCESS_2022_3165744
crossref_primary_10_1109_TMM_2023_3348662
crossref_primary_10_3390_s23041911
crossref_primary_10_1109_ACCESS_2025_3587626
crossref_primary_10_1093_comjnl_bxab188
crossref_primary_10_1007_s00521_023_08712_9
crossref_primary_10_1016_j_comcom_2021_07_020
crossref_primary_10_1016_j_future_2022_03_030
crossref_primary_10_1016_j_compag_2024_109032
crossref_primary_10_1016_j_iot_2025_101686
crossref_primary_10_1109_JIOT_2021_3067382
crossref_primary_10_3390_agronomy14091878
crossref_primary_10_1109_OJCOMS_2024_3522103
crossref_primary_10_1109_TVT_2022_3219058
crossref_primary_10_1016_j_future_2020_06_007
crossref_primary_10_1109_JSEN_2023_3313155
crossref_primary_10_1016_j_sysarc_2024_103181
crossref_primary_10_1016_j_comnet_2024_110823
crossref_primary_10_1016_j_neucom_2025_130835
crossref_primary_10_1007_s11227_025_07799_2
crossref_primary_10_1109_JSAC_2022_3228558
crossref_primary_10_1007_s11265_023_01895_3
crossref_primary_10_1109_ACCESS_2022_3220694
crossref_primary_10_1109_TC_2020_3021199
crossref_primary_10_1109_TMC_2022_3177569
crossref_primary_10_1016_j_asoc_2022_109856
crossref_primary_10_1109_JSAC_2022_3227102
crossref_primary_10_1109_TWC_2023_3303232
crossref_primary_10_1016_j_envsoft_2025_106524
crossref_primary_10_3389_fnins_2024_1457623
crossref_primary_10_1186_s40537_020_00303_y
crossref_primary_10_1002_cpe_7919
crossref_primary_10_3390_s20092533
crossref_primary_10_1109_TMC_2025_3539356
crossref_primary_10_1109_JIOT_2020_3004077
crossref_primary_10_3390_s20205796
crossref_primary_10_1109_JIOT_2023_3318647
crossref_primary_10_1016_j_mtsust_2025_101098
crossref_primary_10_23919_AISE_2005_000007
crossref_primary_10_1016_j_iot_2025_101677
crossref_primary_10_1088_1741_2552_abf521
crossref_primary_10_3390_electronics11152379
crossref_primary_10_1109_TMC_2024_3443260
crossref_primary_10_1109_TPDS_2023_3332333
crossref_primary_10_1109_IOTM_001_2200152
crossref_primary_10_1109_JEDS_2024_3508759
crossref_primary_10_1109_ACCESS_2021_3094741
crossref_primary_10_1109_JIOT_2024_3492066
crossref_primary_10_1109_JIOT_2025_3557408
crossref_primary_10_3390_jimaging10120326
crossref_primary_10_1109_TKDE_2024_3377710
crossref_primary_10_1093_nsr_nwae441
crossref_primary_10_1016_j_iot_2024_101143
crossref_primary_10_3390_electronics14122397
crossref_primary_10_1016_j_scs_2023_104815
crossref_primary_10_3390_s21144946
crossref_primary_10_1109_TCAD_2021_3075420
crossref_primary_10_1016_j_suscom_2023_100870
crossref_primary_10_1088_1361_6501_aca991
crossref_primary_10_1109_ACCESS_2023_3234761
crossref_primary_10_1016_j_neucom_2021_04_141
crossref_primary_10_1016_j_iot_2024_101158
crossref_primary_10_1109_TCSVT_2024_3466524
crossref_primary_10_1016_j_iot_2024_101272
crossref_primary_10_1109_JPROC_2022_3153408
crossref_primary_10_1109_TC_2023_3310678
crossref_primary_10_1587_transele_2024LHP0003
crossref_primary_10_1109_JSSC_2022_3140753
crossref_primary_10_1016_j_trc_2022_103982
crossref_primary_10_1109_TWC_2023_3241841
crossref_primary_10_1007_s10791_025_09509_1
crossref_primary_10_1016_j_snb_2022_132363
crossref_primary_10_1109_TCOMM_2024_3418901
crossref_primary_10_3390_s23094258
crossref_primary_10_1007_s10586_024_04893_7
crossref_primary_10_1016_j_future_2022_02_024
crossref_primary_10_1007_s11063_022_10951_1
crossref_primary_10_1109_COMST_2023_3319952
crossref_primary_10_1016_j_ifacol_2022_12_042
crossref_primary_10_1016_j_spc_2022_05_022
crossref_primary_10_1017_aer_2024_23
crossref_primary_10_1109_TETC_2021_3054761
crossref_primary_10_1007_s11356_022_19358_w
crossref_primary_10_1016_j_procs_2024_09_443
crossref_primary_10_1016_j_image_2025_117306
crossref_primary_10_1109_TNNLS_2021_3104860
crossref_primary_10_1109_TPDS_2022_3177782
crossref_primary_10_1145_3698767
crossref_primary_10_3390_ijgi10020081
crossref_primary_10_1109_COMST_2023_3323091
crossref_primary_10_3389_fnmol_2022_999605
crossref_primary_10_1109_TIFS_2023_3312973
crossref_primary_10_1109_TFUZZ_2022_3163909
crossref_primary_10_1109_JIOT_2021_3131407
crossref_primary_10_1038_s41598_024_56522_3
crossref_primary_10_3390_en14123654
crossref_primary_10_1007_s11235_024_01185_8
crossref_primary_10_1109_ACCESS_2025_3577908
crossref_primary_10_1016_j_comnet_2022_109380
crossref_primary_10_1109_TMC_2024_3427709
crossref_primary_10_1109_JIOT_2025_3557431
crossref_primary_10_1109_ACCESS_2024_3351308
crossref_primary_10_3390_electronics11234007
crossref_primary_10_1109_COMST_2022_3200740
crossref_primary_10_1109_TGCN_2022_3208819
crossref_primary_10_1109_TMC_2025_3540017
crossref_primary_10_1016_j_sysarc_2021_102062
crossref_primary_10_1109_JIOT_2024_3446640
crossref_primary_10_34133_plantphenomics_0062
crossref_primary_10_1016_j_nexres_2025_100424
crossref_primary_10_3390_app122010619
crossref_primary_10_1016_j_comnet_2022_109032
crossref_primary_10_1109_JSEN_2023_3285618
crossref_primary_10_1109_TNNLS_2021_3082304
crossref_primary_10_1016_j_neunet_2025_108127
crossref_primary_10_1109_TII_2022_3163137
crossref_primary_10_1155_er_8824853
crossref_primary_10_1109_JSTSP_2023_3312914
crossref_primary_10_1016_j_rser_2021_111051
crossref_primary_10_11648_j_ajnc_20251402_13
crossref_primary_10_1039_D4MH01676A
crossref_primary_10_3390_electronics14091802
crossref_primary_10_3390_fi16090329
crossref_primary_10_1142_S0219455424501608
crossref_primary_10_1016_j_engappai_2023_106407
crossref_primary_10_1109_ACCESS_2022_3210584
crossref_primary_10_3390_s22145405
crossref_primary_10_1016_j_sysarc_2021_102198
crossref_primary_10_1109_ACCESS_2021_3099311
crossref_primary_10_1109_TGCN_2021_3058657
crossref_primary_10_1049_ipr2_12449
crossref_primary_10_1109_JPROC_2022_3223186
crossref_primary_10_3390_fire6080315
crossref_primary_10_3390_math11010156
crossref_primary_10_1007_s10009_023_00695_1
crossref_primary_10_1016_j_entcom_2024_100781
crossref_primary_10_1039_D3MH01253K
crossref_primary_10_1109_ACCESS_2023_3265357
crossref_primary_10_3390_s22093208
crossref_primary_10_1140_epjb_s10051_024_00703_6
crossref_primary_10_1109_JPROC_2021_3056006
crossref_primary_10_1109_JIOT_2025_3555153
crossref_primary_10_1109_LGRS_2021_3072028
crossref_primary_10_1109_TMC_2024_3357218
crossref_primary_10_1016_j_neucom_2021_01_122
crossref_primary_10_1145_3512798_3512821
crossref_primary_10_1088_2634_4386_ad8c78
crossref_primary_10_3390_s24103098
crossref_primary_10_3390_electronics12051154
crossref_primary_10_1109_JIOT_2025_3584811
crossref_primary_10_3390_app112411807
crossref_primary_10_1016_j_displa_2024_102883
crossref_primary_10_1016_j_future_2022_01_013
crossref_primary_10_1016_j_inffus_2020_10_014
crossref_primary_10_1109_JIOT_2025_3566284
crossref_primary_10_1016_j_comnet_2025_111468
crossref_primary_10_1109_ACCESS_2024_3373691
crossref_primary_10_3390_electronics14122401
crossref_primary_10_1109_ACCESS_2021_3118731
crossref_primary_10_1109_ACCESS_2023_3268763
crossref_primary_10_1016_j_phycom_2024_102460
crossref_primary_10_3390_app15073863
crossref_primary_10_3390_s23177310
crossref_primary_10_3390_app11104607
crossref_primary_10_1016_j_sysarc_2020_101830
crossref_primary_10_1016_j_prevetmed_2024_106300
crossref_primary_10_1145_3464428
crossref_primary_10_3390_data10070116
crossref_primary_10_3390_s23052766
crossref_primary_10_1109_TMC_2024_3475634
crossref_primary_10_1016_j_ecoinf_2023_102065
crossref_primary_10_1109_JIOT_2020_3038848
crossref_primary_10_1063_5_0211040
crossref_primary_10_1007_s10015_021_00683_1
crossref_primary_10_1080_0951192X_2023_2189312
crossref_primary_10_1109_ACCESS_2023_3280411
crossref_primary_10_1109_ACCESS_2023_3314381
crossref_primary_10_1109_JSTARS_2025_3536175
crossref_primary_10_3390_info12040146
crossref_primary_10_3390_s21134412
crossref_primary_10_1016_j_compag_2022_107200
crossref_primary_10_1016_j_phycom_2022_101620
crossref_primary_10_1109_TCCN_2021_3103511
crossref_primary_10_1109_JPROC_2022_3226481
crossref_primary_10_1016_j_iot_2024_101375
crossref_primary_10_1109_JIOT_2020_2981338
crossref_primary_10_1007_s10462_024_11033_5
crossref_primary_10_1016_j_engappai_2025_110371
crossref_primary_10_3390_app15147738
crossref_primary_10_3390_pr13061917
crossref_primary_10_1109_COMST_2022_3199544
crossref_primary_10_1109_TMC_2024_3411295
crossref_primary_10_32628_CSEIT251112250
crossref_primary_10_1109_TCOMM_2021_3066495
crossref_primary_10_1109_ACCESS_2024_3477293
crossref_primary_10_1109_TC_2021_3135752
crossref_primary_10_3390_electronics10232958
crossref_primary_10_1016_j_ndteint_2022_102703
crossref_primary_10_1145_3486674
crossref_primary_10_1109_TETCI_2020_3007905
crossref_primary_10_3390_electronics11172700
crossref_primary_10_1109_JETCAS_2020_3040300
crossref_primary_10_1109_JPROC_2024_3437365
crossref_primary_10_1109_JIOT_2023_3333293
crossref_primary_10_1109_JSEN_2024_3502539
crossref_primary_10_1007_s12145_025_01863_4
crossref_primary_10_3390_rs13214370
crossref_primary_10_26599_TST_2023_9010086
crossref_primary_10_1109_TMC_2024_3418613
crossref_primary_10_1007_s43995_024_00060_6
crossref_primary_10_1038_s41746_024_01005_y
crossref_primary_10_1109_ACCESS_2020_3000867
crossref_primary_10_1109_ACCESS_2021_3066559
crossref_primary_10_1007_s10586_024_04732_9
crossref_primary_10_1145_3464419
crossref_primary_10_3390_s25175302
crossref_primary_10_1155_2022_7863972
crossref_primary_10_1109_ACCESS_2020_3011705
crossref_primary_10_1007_s10723_023_09658_x
crossref_primary_10_1109_TNNLS_2022_3190451
crossref_primary_10_1007_s11036_024_02317_9
crossref_primary_10_3390_en16104060
crossref_primary_10_1109_TMC_2022_3157957
crossref_primary_10_1145_3476990
crossref_primary_10_1145_3591867
crossref_primary_10_1109_JSAC_2021_3118432
crossref_primary_10_1109_TMC_2025_3564390
crossref_primary_10_3390_drones7100620
crossref_primary_10_3390_s22051854
crossref_primary_10_3390_fi14020054
crossref_primary_10_3390_sym14122524
crossref_primary_10_1016_j_jisa_2024_103786
crossref_primary_10_3390_app10134567
crossref_primary_10_3389_fnins_2022_1018006
crossref_primary_10_3389_frai_2025_1640549
crossref_primary_10_1002_cpe_8253
crossref_primary_10_1109_MWC_011_2300344
crossref_primary_10_1109_JIOT_2020_3020911
crossref_primary_10_1109_ACCESS_2024_3487073
crossref_primary_10_1007_s10586_025_05386_x
crossref_primary_10_1177_16878132241281470
crossref_primary_10_7717_peerj_cs_2306
crossref_primary_10_1007_s10845_025_02679_1
crossref_primary_10_3390_nano14070562
crossref_primary_10_1088_1361_6579_ad37ee
crossref_primary_10_1098_rsos_230806
crossref_primary_10_1109_JIOT_2024_3486351
crossref_primary_10_1109_JSAC_2021_3118403
crossref_primary_10_1109_TC_2021_3107196
crossref_primary_10_3390_fi13010005
crossref_primary_10_1007_s00521_024_10718_w
crossref_primary_10_1109_TSUSC_2025_3542563
crossref_primary_10_1109_TCSS_2024_3395467
crossref_primary_10_3390_rs13214387
crossref_primary_10_1109_TCSII_2022_3224022
crossref_primary_10_1016_j_ipm_2023_103544
crossref_primary_10_1109_ACCESS_2021_3074180
crossref_primary_10_1002_cpe_8002
crossref_primary_10_1007_s11432_024_4205_8
crossref_primary_10_1109_ACCESS_2024_3458420
crossref_primary_10_1109_ACCESS_2021_3124029
crossref_primary_10_1109_TMC_2021_3114193
crossref_primary_10_1109_MCE_2024_3506502
crossref_primary_10_1109_OJCOMS_2025_3555947
crossref_primary_10_1016_j_future_2021_07_031
crossref_primary_10_1109_TPDS_2024_3506588
crossref_primary_10_3390_agronomy15010242
crossref_primary_10_1109_ACCESS_2020_3029127
crossref_primary_10_1016_j_ultras_2025_107598
crossref_primary_10_1016_j_csi_2021_103521
crossref_primary_10_3390_en13164208
crossref_primary_10_1109_TSC_2025_3576692
crossref_primary_10_1109_LRA_2022_3219306
crossref_primary_10_1016_j_adhoc_2021_102727
crossref_primary_10_1145_3570604
crossref_primary_10_1038_s41598_025_90764_z
crossref_primary_10_1016_j_jisa_2023_103483
crossref_primary_10_1109_TSP_2024_3351469
crossref_primary_10_1016_j_scs_2022_104059
crossref_primary_10_1109_ACCESS_2021_3059251
crossref_primary_10_1109_COMST_2020_2970550
crossref_primary_10_1016_j_aei_2024_102514
crossref_primary_10_1002_alr_23458
crossref_primary_10_1049_cdt2_6214436
crossref_primary_10_1007_s11277_024_11443_2
crossref_primary_10_1145_3461699
crossref_primary_10_2139_ssrn_5052124
crossref_primary_10_1016_j_future_2024_03_014
crossref_primary_10_1109_JSEN_2023_3347616
crossref_primary_10_1007_s00607_025_01418_x
crossref_primary_10_1016_j_asoc_2020_106582
crossref_primary_10_1109_ACCESS_2024_3454812
crossref_primary_10_1109_JIOT_2024_3365957
crossref_primary_10_1109_TMC_2022_3172402
crossref_primary_10_3390_electronics10161912
crossref_primary_10_3390_s21041064
crossref_primary_10_1109_ACCESS_2024_3475996
crossref_primary_10_1109_ACCESS_2024_3349978
crossref_primary_10_1016_j_comcom_2023_06_010
crossref_primary_10_1109_JIOT_2023_3263290
crossref_primary_10_1109_JIOT_2021_3102945
crossref_primary_10_3390_s22197382
crossref_primary_10_1109_TWC_2023_3335302
crossref_primary_10_3788_AI_2025_10003
crossref_primary_10_1016_j_smhl_2021_100249
crossref_primary_10_1145_3527155
crossref_primary_10_1145_3679201
crossref_primary_10_1109_ACCESS_2020_2982411
crossref_primary_10_1109_COMST_2020_3035427
crossref_primary_10_1016_j_procs_2025_03_273
crossref_primary_10_1038_s41598_024_82272_3
crossref_primary_10_1007_s11042_023_14383_4
crossref_primary_10_1109_ACCESS_2021_3084689
crossref_primary_10_1109_TSC_2021_3109094
crossref_primary_10_1109_JIOT_2025_3527750
crossref_primary_10_1109_TGCN_2024_3373911
crossref_primary_10_3390_s25154586
crossref_primary_10_1109_LGRS_2021_3055795
crossref_primary_10_1016_j_engappai_2024_109475
crossref_primary_10_1007_s10723_023_09730_6
crossref_primary_10_12688_digitaltwin_17632_2
crossref_primary_10_32604_cmes_2024_048932
crossref_primary_10_1109_ACCESS_2020_3037717
crossref_primary_10_3390_s21155082
crossref_primary_10_3390_s24175633
crossref_primary_10_2478_eces_2023_0029
crossref_primary_10_1109_TCCN_2021_3056707
crossref_primary_10_3390_app15137533
crossref_primary_10_38124_ijisrt_25jul835
crossref_primary_10_1016_j_procs_2022_12_267
crossref_primary_10_1109_MWC_001_2000466
crossref_primary_10_1145_3439602_3439618
crossref_primary_10_3390_technologies12110212
crossref_primary_10_3390_wevj13060101
crossref_primary_10_1016_j_adhoc_2023_103156
crossref_primary_10_3390_math13050887
crossref_primary_10_1016_j_neunet_2022_06_038
crossref_primary_10_3390_app15042127
crossref_primary_10_1007_s12008_024_01943_7
crossref_primary_10_1109_TON_2024_3522073
crossref_primary_10_3390_app12157679
crossref_primary_10_1007_s10462_025_11346_z
crossref_primary_10_1109_JIOT_2024_3432975
crossref_primary_10_1109_TCOMM_2023_3338738
crossref_primary_10_1109_TII_2023_3324939
crossref_primary_10_1109_TSP_2021_3090323
crossref_primary_10_1016_j_compchemeng_2021_107508
crossref_primary_10_1016_j_iot_2020_100314
crossref_primary_10_1109_MNET_011_1900450
crossref_primary_10_3389_fdata_2022_787421
crossref_primary_10_1016_j_comcom_2024_01_031
crossref_primary_10_1109_TWC_2024_3523517
crossref_primary_10_1109_JIOT_2023_3313514
crossref_primary_10_3390_s21134496
crossref_primary_10_1016_j_vlsi_2020_05_002
crossref_primary_10_1007_s11518_024_5604_1
crossref_primary_10_1016_j_vlsi_2023_102127
crossref_primary_10_1016_j_cej_2024_153382
crossref_primary_10_1109_MSP_2021_3125282
crossref_primary_10_1109_JIOT_2021_3112715
crossref_primary_10_3390_electronics11172678
crossref_primary_10_1016_j_compeleceng_2024_109202
crossref_primary_10_1016_j_eswa_2022_117823
crossref_primary_10_1080_15567036_2022_2119309
crossref_primary_10_38124_ijsrmt_v3i6_677
crossref_primary_10_1016_j_neucom_2023_02_011
crossref_primary_10_1016_j_resconrec_2025_108311
crossref_primary_10_3390_aerospace10010078
crossref_primary_10_1109_TNSE_2021_3055835
crossref_primary_10_3103_S8756699021020047
crossref_primary_10_3390_technologies12060081
crossref_primary_10_1109_ACCESS_2023_3267964
crossref_primary_10_1016_j_jpdc_2022_06_006
crossref_primary_10_1109_TRPMS_2025_3530774
crossref_primary_10_1016_j_buildenv_2024_112217
crossref_primary_10_1109_ACCESS_2022_3158319
crossref_primary_10_1109_LCOMM_2020_3032517
crossref_primary_10_3390_s23031522
crossref_primary_10_1016_j_cor_2023_106294
crossref_primary_10_1016_j_egyr_2025_08_049
crossref_primary_10_3390_jcm12144830
crossref_primary_10_1088_1361_6552_ac2670
crossref_primary_10_1007_s13132_024_02087_5
crossref_primary_10_3390_electronics14142796
crossref_primary_10_1007_s11554_021_01102_1
crossref_primary_10_1145_3469029
crossref_primary_10_46810_tdfd_1529139
crossref_primary_10_1109_JIOT_2021_3088875
crossref_primary_10_1109_ACCESS_2025_3555201
crossref_primary_10_1016_j_engappai_2020_103840
crossref_primary_10_1016_j_ultras_2022_106776
crossref_primary_10_1016_j_optlastec_2024_111766
crossref_primary_10_1109_JPROC_2023_3247480
crossref_primary_10_1145_3582080
crossref_primary_10_1109_TWC_2024_3497167
crossref_primary_10_1016_j_ins_2024_121265
crossref_primary_10_3390_a13050125
crossref_primary_10_1109_OJCAS_2025_3546067
crossref_primary_10_1007_s11227_023_05663_9
crossref_primary_10_1109_TPAMI_2025_3570545
crossref_primary_10_1364_JOCN_498951
crossref_primary_10_1109_ACCESS_2023_3263392
crossref_primary_10_1016_j_robot_2021_103780
crossref_primary_10_1145_3527169
crossref_primary_10_1109_JIOT_2020_2983660
crossref_primary_10_1016_j_future_2024_107600
crossref_primary_10_1016_j_neucom_2025_130485
crossref_primary_10_1109_ACCESS_2025_3530297
crossref_primary_10_1109_JIOT_2023_3268771
crossref_primary_10_1016_j_cosrev_2024_100668
crossref_primary_10_3389_fnins_2022_937782
crossref_primary_10_1109_JSAC_2023_3242730
crossref_primary_10_1162_neco_a_01518
crossref_primary_10_3390_math12142263
crossref_primary_10_1109_TPDS_2021_3135441
crossref_primary_10_1038_s41598_024_72125_4
crossref_primary_10_1109_TVT_2024_3444815
crossref_primary_10_1109_ACCESS_2021_3109733
crossref_primary_10_3390_electronics13244953
crossref_primary_10_1007_s11432_023_3957_4
crossref_primary_10_1109_JIOT_2023_3280746
crossref_primary_10_3390_fi16100365
crossref_primary_10_3390_app13137872
crossref_primary_10_1145_3612918
crossref_primary_10_1016_j_comnet_2021_108327
crossref_primary_10_1016_j_future_2025_107914
crossref_primary_10_3390_app13084982
crossref_primary_10_1088_1742_6596_1646_1_012016
crossref_primary_10_1126_sciadv_adu4323
crossref_primary_10_3390_iot4040021
crossref_primary_10_1109_ACCESS_2024_3440631
crossref_primary_10_1109_TCOMM_2024_3476073
crossref_primary_10_1109_TIM_2022_3205644
crossref_primary_10_1109_TMC_2023_3267805
crossref_primary_10_1109_ACCESS_2025_3544107
crossref_primary_10_1016_j_adhoc_2022_103044
crossref_primary_10_1088_2631_7990_ad94b8
crossref_primary_10_1016_j_adhoc_2020_102152
crossref_primary_10_1109_TWC_2022_3183632
crossref_primary_10_1016_j_fmre_2025_09_014
crossref_primary_10_1109_JIOT_2020_2994200
crossref_primary_10_3390_info14060318
crossref_primary_10_1109_JIOT_2022_3162581
crossref_primary_10_1109_MIS_2022_3214614
crossref_primary_10_1145_3542819
crossref_primary_10_3390_s21238071
crossref_primary_10_1016_j_sftr_2025_100761
crossref_primary_10_3390_s22176710
crossref_primary_10_3390_jlpea12020028
crossref_primary_10_1109_ACCESS_2021_3069210
crossref_primary_10_3389_fendo_2024_1338743
crossref_primary_10_1016_j_jpdc_2023_05_001
crossref_primary_10_1016_j_comnet_2024_110641
crossref_primary_10_1109_TIM_2024_3351239
crossref_primary_10_1145_3546192
crossref_primary_10_1109_LSENS_2023_3271988
crossref_primary_10_3390_s23063330
crossref_primary_10_1109_TCC_2022_3160129
crossref_primary_10_1002_aelm_202200378
crossref_primary_10_1109_TSC_2022_3155447
crossref_primary_10_1007_s11276_019_02181_6
crossref_primary_10_1016_j_vlsi_2025_102508
crossref_primary_10_1145_3506718
crossref_primary_10_1145_3593044
crossref_primary_10_1109_JBHI_2020_3007661
crossref_primary_10_1007_s42514_022_00091_2
crossref_primary_10_1186_s13638_022_02152_0
crossref_primary_10_1109_COMST_2020_2988367
crossref_primary_10_1016_j_neucom_2021_09_045
crossref_primary_10_1007_s11227_022_04463_x
crossref_primary_10_1016_j_compag_2024_108792
crossref_primary_10_1155_2020_6661022
crossref_primary_10_3390_electronics13142846
crossref_primary_10_1016_j_tifs_2025_105017
crossref_primary_10_1109_ACCESS_2022_3178999
crossref_primary_10_1109_JSTARS_2024_3389641
crossref_primary_10_1109_TNSE_2021_3054244
crossref_primary_10_1145_3665898
crossref_primary_10_1109_JIOT_2021_3107431
crossref_primary_10_1109_ACCESS_2023_3322370
crossref_primary_10_1109_TCC_2023_3258982
crossref_primary_10_1145_3448416
crossref_primary_10_1109_JPROC_2020_3033753
crossref_primary_10_1145_3503954_3503956
crossref_primary_10_1145_3494998
crossref_primary_10_1186_s13677_023_00493_9
crossref_primary_10_1109_COMST_2021_3135829
crossref_primary_10_1109_ACCESS_2021_3131396
crossref_primary_10_3390_pr13041144
crossref_primary_10_1016_j_trd_2022_103439
crossref_primary_10_1109_TCOMM_2022_3229033
crossref_primary_10_1016_j_atech_2025_101330
crossref_primary_10_3390_s23031388
crossref_primary_10_1038_s41598_023_31694_6
crossref_primary_10_1587_nolta_12_412
crossref_primary_10_1109_JETCAS_2020_3033155
crossref_primary_10_3390_jsan13060080
crossref_primary_10_58564_IJSER_2_4_2023_125
crossref_primary_10_1109_ACCESS_2022_3190538
crossref_primary_10_1109_TCC_2022_3175725
crossref_primary_10_1109_ACCESS_2020_3037108
crossref_primary_10_1109_ACCESS_2021_3081353
crossref_primary_10_1016_j_oceaneng_2024_117539
crossref_primary_10_1007_s11227_022_04819_3
crossref_primary_10_1016_j_future_2023_11_038
crossref_primary_10_1016_j_tej_2020_106883
crossref_primary_10_1080_00207543_2022_2058432
crossref_primary_10_1016_j_engappai_2024_109648
crossref_primary_10_1109_COMST_2023_3244674
crossref_primary_10_1109_JIOT_2025_3550162
crossref_primary_10_3788_PI_2025_C04
crossref_primary_10_3390_computers13110297
crossref_primary_10_1109_TNSE_2021_3054583
crossref_primary_10_1109_TVLSI_2025_3543445
crossref_primary_10_1007_s11063_022_11058_3
crossref_primary_10_1109_TKDE_2023_3269017
crossref_primary_10_1007_s11263_020_01379_y
crossref_primary_10_1109_TCDS_2023_3275587
crossref_primary_10_1063_5_0237090
crossref_primary_10_1109_TSP_2020_3046971
crossref_primary_10_3390_ani12040437
crossref_primary_10_32604_cmc_2023_039487
crossref_primary_10_1016_j_jpdc_2022_04_004
crossref_primary_10_1109_JETCAS_2020_3015509
crossref_primary_10_1109_JIOT_2022_3182394
crossref_primary_10_1109_JLT_2025_3534275
crossref_primary_10_32604_cmes_2023_023684
crossref_primary_10_3233_XST_230429
crossref_primary_10_3390_electronics9010153
crossref_primary_10_1145_3530884
crossref_primary_10_1109_JIOT_2024_3439852
crossref_primary_10_1016_j_compag_2025_109908
crossref_primary_10_1016_j_teler_2024_100116
crossref_primary_10_1145_3764930
crossref_primary_10_1155_2022_2890473
crossref_primary_10_1109_TVLSI_2024_3375111
crossref_primary_10_1002_ett_4706
crossref_primary_10_1109_ACCESS_2022_3203394
crossref_primary_10_1016_j_psep_2025_107402
crossref_primary_10_1016_j_icte_2022_07_002
crossref_primary_10_3390_s21217298
crossref_primary_10_1016_j_ress_2023_109850
crossref_primary_10_1145_3555802
crossref_primary_10_3390_s21041031
crossref_primary_10_1007_s10922_023_09770_z
crossref_primary_10_1109_COMST_2022_3218527
crossref_primary_10_1007_s11276_021_02554_w
crossref_primary_10_1109_JSEN_2024_3469539
crossref_primary_10_1016_j_bspc_2023_105263
crossref_primary_10_1109_TNSE_2021_3067454
crossref_primary_10_3390_s23125672
crossref_primary_10_1186_s13635_023_00142_3
crossref_primary_10_1016_j_cose_2025_104455
crossref_primary_10_1109_TIFS_2023_3262149
crossref_primary_10_1016_j_cosrev_2020_100303
crossref_primary_10_1109_TSP_2023_3244092
crossref_primary_10_1109_ACCESS_2022_3202172
crossref_primary_10_1111_coin_12592
crossref_primary_10_1016_j_aej_2024_08_031
crossref_primary_10_4103_jpi_jpi_112_20
crossref_primary_10_1109_JPROC_2023_3306773
crossref_primary_10_1145_3479432
crossref_primary_10_1111_exsy_12836
crossref_primary_10_1007_s40747_021_00498_4
crossref_primary_10_1016_j_eswa_2024_124599
crossref_primary_10_1109_TNET_2021_3093452
crossref_primary_10_3390_electronics13152988
crossref_primary_10_1016_j_patcog_2021_108146
crossref_primary_10_1109_JIOT_2020_2983278
crossref_primary_10_1088_1741_2552_abf473
crossref_primary_10_1145_3524069
crossref_primary_10_1109_TGCN_2022_3146487
crossref_primary_10_1109_TMM_2024_3521704
crossref_primary_10_1016_j_sysarc_2022_102634
crossref_primary_10_1109_COMST_2024_3393230
crossref_primary_10_1109_JIOT_2023_3239944
crossref_primary_10_1016_j_comcom_2020_08_005
crossref_primary_10_1016_j_neunet_2023_10_006
crossref_primary_10_1155_dsn_5651009
crossref_primary_10_1007_s10586_021_03440_y
crossref_primary_10_1109_ACCESS_2021_3050670
crossref_primary_10_1007_s13721_025_00600_7
Cites_doi 10.1145/3211332.3211336
10.1145/2733373.2807412
10.1109/COMST.2017.2745201
10.1109/CVPR.2017.351
10.1109/SEC.2018.00016
10.1109/NCA.2017.8171350
10.1145/2872887.2750389
10.1145/2647868.2654889
10.1145/3097895.3097903
10.1109/TETC.2014.2369958
10.1109/MCOM.2017.1700168
10.1109/INFOCOM.2018.8486403
10.1109/CVPR.2014.220
10.1145/2789168.2790123
10.1109/JIOT.2016.2579198
10.1109/TSC.2017.2662008
10.1145/3195970.3196023
10.1145/2999572.2999604
10.1145/3038912.3052577
10.1109/MICRO.2018.00023
10.1145/3230543.3230574
10.1145/3300061.3300116
10.1007/978-3-319-46448-0_2
10.1145/3020078.3021745
10.1109/MCI.2018.2840738
10.1145/3132211.3134445
10.1145/3081333.3081360
10.1145/3132211.3134460
10.1145/3132211.3134458
10.1145/3089801.3089805
10.1145/2594368.2594383
10.1007/s11263-015-0816-y
10.1145/3093336.3037698
10.1109/IPDPSW.2018.00098
10.1109/CVPR.2017.690
10.1109/ICDCS.2017.226
10.1145/2906388.2906396
10.1109/ICCV.2015.279
10.1109/TCAD.2018.2858384
10.1145/3196494.3196522
10.1109/IPSN.2016.7460664
10.1109/MNET.2018.1800109
10.1145/2462456.2464448
10.1145/3132211.3134459
10.1109/ICPR.2016.7900006
10.1145/3081333.3081347
10.1145/2994551.2994564
10.1109/MPRV.2009.82
10.1016/S0893-6080(98)00116-6
10.1145/2810103.2813687
10.1145/3229625.3229629
10.1109/COMST.2018.2844341
10.1109/CVPR.2018.00559
10.1145/3097895.3097896
10.1109/ICCV.2013.257
10.1162/neco.1997.9.8.1735
10.1109/MNET.2018.1700202
10.1109/MCOM.2018.1701277
10.1145/3240765.3243473
10.1109/SEC.2018.00014
10.1145/2976749.2978318
10.18653/v1/N16-1030
10.1109/JPROC.2017.2761740
10.1145/3133956.3134056
10.1145/2809695.2809711
10.1145/1999995.2000000
10.1007/11681878_14
10.1109/MC.2017.9
10.14722/ndss.2018.23204
10.1109/INFCOM.2012.6195689
10.1145/3219819.3220106
10.1145/2996864
10.1109/SP.2017.41
10.1109/SP.2017.12
10.23919/DATE.2017.7927211
10.1109/SEC.2016.38
10.1109/5.726791
10.1109/INFOCOM.2018.8485905
10.1145/2999572.2999602
10.1145/3123266.3123389
10.1145/1814433.1814441
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JPROC.2019.2921977
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2256
EndPage 1674
ExternalDocumentID 10_1109_JPROC_2019_2921977
8763885
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CNS-1817216
  funderid: 10.13039/100000001
GroupedDBID -DZ
-~X
.DC
0R~
123
1OL
29P
3EH
4.4
6IK
85S
97E
9M8
AAJGR
AAWTH
ABAZT
ABFSI
ABJNI
ABQJQ
ABVLG
ACBEA
ACGFS
AENEX
AETEA
AETIX
AFOGA
AGNAY
AGQYO
AGSQL
AHBIQ
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
FA8
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MVM
O9-
OCL
RIA
RIE
RIU
RNS
TAE
TN5
TWZ
UDY
UHB
UKR
UQL
VOH
WHG
XJT
XOL
YNT
ZCA
ZXP
ZY4
~02
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-df7135b537d05f94ec61eb4b55d9e66a3ac9438a502984be32a2595b6aa0d8bf3
IEDL.DBID RIE
ISICitedReferencesCount 916
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000497973300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9219
IngestDate Sun Nov 30 03:55:52 EST 2025
Tue Nov 18 21:38:55 EST 2025
Sat Nov 29 06:01:42 EST 2025
Wed Aug 27 02:44:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-df7135b537d05f94ec61eb4b55d9e66a3ac9438a502984be32a2595b6aa0d8bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9923-9027
PQID 2270183992
PQPubID 85453
PageCount 20
ParticipantIDs ieee_primary_8763885
crossref_citationtrail_10_1109_JPROC_2019_2921977
proquest_journals_2270183992
crossref_primary_10_1109_JPROC_2019_2921977
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Proceedings of the IEEE
PublicationTitleAbbrev JPROC
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref58
ref53
ref52
(ref35) 0
zhang (ref124) 2015
goyal (ref139) 2017; abs 1706 2677
ref50
ruder (ref15) 2016; abs 1609 4747
(ref46) 2017
lin (ref129) 2017; abs 1712 1887
blot (ref131) 2016
(ref26) 0
iandola (ref70) 2016
gilad-bachrach (ref116) 2016
ref41
ref44
dean (ref121) 2012
jindal (ref65) 2018
ren (ref36) 2015
he (ref103) 2015; abs 1512 3385
ref8
(ref30) 0
ref9
ref4
ref101
szegedy (ref102) 2014; abs 1409 4842
zhong (ref55) 2017; abs 1712 8132
(ref43) 0
ref37
ref148
ref149
ref33
ref146
ref147
kusupati (ref47) 2018
(ref5) 0
ref39
ref38
ha (ref143) 2017
ovtcharov (ref82) 0
zhang (ref135) 2018
krizhevsky (ref99) 2012
(ref85) 0
(ref24) 0
dwork (ref150) 2006
ref23
saputra (ref54) 2018; abs 1812 5374
ref20
hsieh (ref127) 2017
(ref108) 0
ref27
(ref32) 0
anil (ref128) 2018; abs 1804 3235
zhang (ref93) 2017
(ref29) 0
papineni (ref16) 2002
jiang (ref95) 2018
ref13
liu (ref34) 2017
ref12
ref126
ref96
ref11
ref98
drolia (ref10) 2017
ref17
ref19
blog (ref6) 0
ref18
(ref31) 0
chinchali (ref51) 2018
simonyan (ref100) 2014; abs 1409 1556
jin (ref132) 2016
(ref83) 0
ref133
ref134
ref92
goodfellow (ref7) 2016; 1
ref94
mcmahan (ref125) 2016
(ref45) 0
ref130
loc huynh (ref78) 2017
ref91
ref90
ref89
ref137
ref138
ref88
ref136
ref87
(ref79) 0
teerapittayanon (ref110) 2017; abs 1709 1686
ref144
ref145
ref81
(ref86) 0
ref142
ref84
(ref48) 0
(ref40) 0
ref140
ref141
ref80
yao (ref77) 2018
kumar (ref59) 2017; 70
ref109
ref106
howard (ref21) 2017
ref107
han (ref71) 2015
lavalle (ref66) 2016
ref104
tan (ref22) 2018
ref74
ref105
ref76
ref2
ref1
huang (ref97) 2015; abs 1508 1991
chen (ref123) 2016; abs 1604 981
ref111
ref112
ref73
ref72
hinton (ref75) 2015
(ref28) 0
ref68
ref67
ref117
ref69
ref118
abadi (ref25) 2016; abs 1603 4467
ref64
ref115
ref63
ref113
ref114
jeans (ref3) 2019
ryan (ref49) 1998
ref60
ref122
ref62
ref120
ref61
wu (ref42) 2016
juvekar (ref119) 2018
shokri (ref14) 2015
References_xml – ident: ref23
  doi: 10.1145/3211332.3211336
– ident: ref101
  doi: 10.1145/2733373.2807412
– year: 0
  ident: ref6
  publication-title: Edge Computing at Chick-Fil-A
– year: 2016
  ident: ref131
  article-title: Gossip training for deep learning
  publication-title: arXiv 1611 09726
– ident: ref9
  doi: 10.1109/COMST.2017.2745201
– ident: ref17
  doi: 10.1109/CVPR.2017.351
– year: 0
  ident: ref108
  publication-title: Arcore Overview
– ident: ref38
  doi: 10.1109/SEC.2018.00016
– ident: ref130
  doi: 10.1109/NCA.2017.8171350
– volume: 1
  year: 2016
  ident: ref7
  publication-title: Deep Learning
– ident: ref80
  doi: 10.1145/2872887.2750389
– ident: ref27
  doi: 10.1145/2647868.2654889
– ident: ref111
  doi: 10.1145/3097895.3097903
– year: 2016
  ident: ref66
  publication-title: Virtual Reality
– year: 0
  ident: ref24
  publication-title: TensorFlow™
– ident: ref52
  doi: 10.1109/TETC.2014.2369958
– ident: ref58
  doi: 10.1109/MCOM.2017.1700168
– ident: ref126
  doi: 10.1109/INFOCOM.2018.8486403
– ident: ref105
  doi: 10.1109/CVPR.2014.220
– ident: ref37
  doi: 10.1145/2789168.2790123
– ident: ref8
  doi: 10.1109/JIOT.2016.2579198
– year: 0
  ident: ref86
  publication-title: Qualcomm Neural Processing SDK for AI
– start-page: 943
  year: 1998
  ident: ref49
  article-title: Intrusion detection with neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– year: 0
  ident: ref79
  publication-title: Edge TPU
– ident: ref92
  doi: 10.1109/TSC.2017.2662008
– ident: ref118
  doi: 10.1145/3195970.3196023
– ident: ref140
  doi: 10.1109/NCA.2017.8171350
– year: 0
  ident: ref35
  publication-title: AWS Deeplens
– year: 2018
  ident: ref22
  article-title: MnasNet: Platform-aware neural architecture search for mobile
  publication-title: arXiv 1807 11626
– ident: ref148
  doi: 10.1145/2999572.2999604
– ident: ref56
  doi: 10.1145/3038912.3052577
– year: 0
  ident: ref43
  publication-title: Google duplex An AI system for accomplishing real-world tasks over the phone
– year: 0
  ident: ref5
  publication-title: AT&T Multi-Access Edge Computing
– ident: ref133
  doi: 10.1109/MICRO.2018.00023
– ident: ref94
  doi: 10.1145/3230543.3230574
– ident: ref33
  doi: 10.1145/3300061.3300116
– ident: ref69
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref73
  doi: 10.1145/3020078.3021745
– ident: ref39
  doi: 10.1109/MCI.2018.2840738
– ident: ref145
  doi: 10.1145/3132211.3134445
– start-page: 311
  year: 2002
  ident: ref16
  article-title: BLEU: A method for automatic evaluation of machine translation
  publication-title: Proc Annual Meeting of the Assoc Computational Linguistics
– ident: ref12
  doi: 10.1145/3081333.3081360
– year: 2016
  ident: ref70
  article-title: SqueezeNet: Alexnet-level accuracy with 50x fewer parameters and <0.5 MB model size
  publication-title: arXiv 1602 07360
– ident: ref144
  doi: 10.1145/3132211.3134460
– volume: abs 1409 1556
  start-page: 1
  year: 2014
  ident: ref100
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: CoRR
– start-page: 1223
  year: 2012
  ident: ref121
  article-title: Large scale distributed deep networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref67
  doi: 10.1145/3132211.3134458
– ident: ref87
  doi: 10.1145/3089801.3089805
– start-page: 389
  year: 2018
  ident: ref77
  article-title: On-demand deep model compression for mobile devices: A usage-driven model selection framework
  publication-title: Proc MobiSys
– volume: abs 1706 2677
  start-page: 1
  year: 2017
  ident: ref139
  article-title: Accurate, large minibatch SGD: Training imagenet in 1 hour
  publication-title: CoRR
– ident: ref68
  doi: 10.1145/2594368.2594383
– ident: ref1
  doi: 10.1007/s11263-015-0816-y
– year: 2016
  ident: ref125
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: arXiv 1602 05629
– ident: ref13
  doi: 10.1145/3093336.3037698
– ident: ref84
  doi: 10.1109/IPDPSW.2018.00098
– ident: ref18
  doi: 10.1109/CVPR.2017.690
– start-page: 1
  year: 2018
  ident: ref51
  article-title: Cellular network traffic scheduling with deep reinforcement learning
  publication-title: Proc 32nd AAAI Conf Artif Intell
– ident: ref109
  doi: 10.1109/ICDCS.2017.226
– ident: ref104
  doi: 10.1145/2906388.2906396
– year: 0
  ident: ref83
  publication-title: VPU
– start-page: 1
  year: 2017
  ident: ref10
  article-title: Precog: Prefetching for image recognition applications at the edge
  publication-title: Proc ACM/IEEE Symp Edge Comput
– ident: ref44
  doi: 10.1109/ICCV.2015.279
– ident: ref60
  doi: 10.1109/TCAD.2018.2858384
– volume: abs 1804 3235
  start-page: 1
  year: 2018
  ident: ref128
  article-title: Large scale distributed neural network training through online distillation
  publication-title: CoRR
– year: 0
  ident: ref32
  publication-title: Cudnn
– ident: ref120
  doi: 10.1145/3196494.3196522
– ident: ref88
  doi: 10.1109/IPSN.2016.7460664
– year: 2015
  ident: ref71
  article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding
  publication-title: arXiv 1510 00149 [cs]
– start-page: 29
  year: 2018
  ident: ref95
  article-title: Mainstream: Dynamic stem-sharing for multi-tenant video processing
  publication-title: Proc Usenix Ann Technical Conf (Usenix '99)
– ident: ref53
  doi: 10.1109/MNET.2018.1800109
– volume: abs 1409 4842
  start-page: 1
  year: 2014
  ident: ref102
  article-title: Going deeper with convolutions
  publication-title: CoRR
– ident: ref141
  doi: 10.1145/2462456.2464448
– volume: abs 1508 1991
  start-page: 1
  year: 2015
  ident: ref97
  article-title: Bidirectional LSTM-CRF models for sequence tagging
  publication-title: CoRR
– volume: abs 1609 4747
  start-page: 1
  year: 2016
  ident: ref15
  article-title: An overview of gradient descent optimization algorithms
  publication-title: CoRR
– ident: ref113
  doi: 10.1145/3132211.3134459
– ident: ref76
  doi: 10.1109/ICPR.2016.7900006
– ident: ref142
  doi: 10.1145/3081333.3081347
– year: 2018
  ident: ref135
  article-title: Privacy-preserving machine learning through data obfuscation
  publication-title: arXiv 1807 01860
– year: 0
  ident: ref82
  publication-title: Accelerating deep convolutional neural networks using specialized hardware
– ident: ref74
  doi: 10.1145/2994551.2994564
– volume: abs 1709 1686
  start-page: 1
  year: 2017
  ident: ref110
  article-title: BranchyNet: Fast inference via early exiting from deep neural networks
  publication-title: CoRR
– ident: ref4
  doi: 10.1109/MPRV.2009.82
– ident: ref138
  doi: 10.1016/S0893-6080(98)00116-6
– year: 2019
  ident: ref3
  publication-title: Related's Hudson Yards Smart City or Surveillance City?
– year: 0
  ident: ref29
  publication-title: Caffe
– volume: abs 1812 5374
  start-page: 1
  year: 2018
  ident: ref54
  article-title: Distributed deep learning at the edge: A novel proactive and cooperative caching framework for mobile edge networks
  publication-title: CoRR
– year: 2015
  ident: ref75
  article-title: Distilling the knowledge in a neural network
  publication-title: ArXiv 1503 02531
– start-page: 1310
  year: 2015
  ident: ref14
  article-title: Privacy-preserving deep learning
  publication-title: Proc 22nd ACM SIGSAC Conf Comput Commun Secur
  doi: 10.1145/2810103.2813687
– ident: ref62
  doi: 10.1145/3229625.3229629
– start-page: 1651
  year: 2018
  ident: ref119
  article-title: GAZELLE: A low latency framework for secure neural network inference
  publication-title: Proc 27th USENIX Security Symp (USENIX Security)
– year: 0
  ident: ref40
  publication-title: Deep Learning for Siri's Voice On-Device Deep Mixture Density Networks for Hybrid Unit Selection Synthesis
– ident: ref61
  doi: 10.1109/COMST.2018.2844341
– ident: ref63
  doi: 10.1109/CVPR.2018.00559
– ident: ref64
  doi: 10.1145/3097895.3097896
– volume: abs 1604 981
  start-page: 1
  year: 2016
  ident: ref123
  article-title: Revisiting distributed synchronous SGD
  publication-title: CoRR
– ident: ref57
  doi: 10.1109/ICCV.2013.257
– start-page: 629
  year: 2017
  ident: ref127
  article-title: Gaia: Geo-distributed machine learning approaching LAN speeds
  publication-title: Proc USENIX Symp Netw Syst Design Implem (NSDI)
– ident: ref98
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 82
  year: 2017
  ident: ref78
  article-title: DeepMon: Mobile GPU-based deep learning framework for continuous vision applications
  publication-title: Proc ACM MOBISYS
– ident: ref106
  doi: 10.1109/MNET.2018.1700202
– ident: ref90
  doi: 10.1109/MCOM.2018.1701277
– start-page: 91
  year: 2015
  ident: ref36
  article-title: Faster R-Cnn: Towards real-time object detection with region proposal networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref72
  doi: 10.1145/3240765.3243473
– ident: ref137
  doi: 10.1109/SEC.2018.00014
– start-page: 1097
  year: 2012
  ident: ref99
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref134
  doi: 10.1145/2976749.2978318
– ident: ref41
  doi: 10.18653/v1/N16-1030
– volume: abs 1512 3385
  start-page: 1
  year: 2015
  ident: ref103
  article-title: Deep residual learning for image recognition
  publication-title: CoRR
– ident: ref89
  doi: 10.1109/JPROC.2017.2761740
– ident: ref117
  doi: 10.1145/3133956.3134056
– year: 2017
  ident: ref21
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv 1704 04861
– start-page: 201
  year: 2016
  ident: ref116
  article-title: CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy
  publication-title: Proc Int Conf Mach Learn
– ident: ref91
  doi: 10.1145/2809695.2809711
– year: 0
  ident: ref28
  publication-title: Caffe
– start-page: 377
  year: 2017
  ident: ref93
  article-title: Live video analytics at scale with approximation and delay-tolerance
  publication-title: Proc USENIX NSDI
– year: 2016
  ident: ref132
  article-title: How to scale distributed deep learning?
  publication-title: arXiv 1611 04581
– ident: ref114
  doi: 10.1145/1999995.2000000
– year: 0
  ident: ref85
  publication-title: NVIDIA EGX Edge Computing Platform
– start-page: 9017
  year: 2018
  ident: ref47
  article-title: FastGRNN: A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 12
  year: 2017
  ident: ref143
  article-title: You can teach elephants to dance: Agile VM handoff for edge computing
  publication-title: Proc Symp Comput Commun
– start-page: 265
  year: 2006
  ident: ref150
  article-title: Calibrating noise to sensitivity in private data analysis
  publication-title: Proc Theory Cryptogr Conf
  doi: 10.1007/11681878_14
– volume: 70
  start-page: 1935
  year: 2017
  ident: ref59
  article-title: Resource-efficient machine learning in 2 KB RAM for the Internet of Things
  publication-title: Proc 34th Int Conf Mach Learn
– volume: abs 1712 8132
  start-page: 1
  year: 2017
  ident: ref55
  article-title: A deep reinforcement learning-based framework for content caching
  publication-title: CoRR
– ident: ref2
  doi: 10.1109/MC.2017.9
– year: 0
  ident: ref30
  publication-title: PyTorch
– ident: ref50
  doi: 10.14722/ndss.2018.23204
– ident: ref147
  doi: 10.1109/INFCOM.2012.6195689
– ident: ref115
  doi: 10.1145/3219819.3220106
– year: 0
  ident: ref48
  publication-title: Google's Pixel Buds are no Match for Professional Interpreters
– year: 2016
  ident: ref42
  article-title: Google's neural machine translation system: Bridging the gap between human and machine translation
  publication-title: arXiv 1609 08144
– volume: abs 1712 1887
  start-page: 1
  year: 2017
  ident: ref129
  article-title: Deep gradient compression: Reducing the communication bandwidth for distributed training
  publication-title: CoRR
– year: 2017
  ident: ref46
  publication-title: Hey Siri An On-Device DNN-Powered Voice Trigger for Apple's Personal Assistant
– ident: ref81
  doi: 10.1145/2996864
– ident: ref11
  doi: 10.1109/MNET.2018.1700202
– year: 2018
  ident: ref65
  publication-title: Enabling full body AR with Mask R-CNN2Go
– ident: ref149
  doi: 10.1109/SP.2017.41
– ident: ref136
  doi: 10.1109/SP.2017.12
– ident: ref107
  doi: 10.23919/DATE.2017.7927211
– ident: ref122
  doi: 10.1109/SEC.2016.38
– start-page: 1
  year: 2017
  ident: ref34
  article-title: DeepIoT: Compressing deep neural network structures for sensing systems with a compressor-critic framework
  publication-title: Proc SenSys
– volume: abs 1603 4467
  start-page: 1
  year: 2016
  ident: ref25
  article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems
  publication-title: CoRR
– ident: ref96
  doi: 10.1109/5.726791
– ident: ref20
  doi: 10.1109/INFOCOM.2018.8485905
– ident: ref146
  doi: 10.1145/2999572.2999602
– ident: ref19
  doi: 10.1145/3123266.3123389
– start-page: 685
  year: 2015
  ident: ref124
  article-title: Deep learning with elastic averaging SGD
  publication-title: Advances in neural information processing systems
– year: 0
  ident: ref26
  publication-title: Tensorflowlite
– year: 0
  ident: ref45
  publication-title: Pagespeed Insights Improve Server Response Time
– ident: ref112
  doi: 10.1145/1814433.1814441
– year: 0
  ident: ref31
  publication-title: Cuda
SSID ssj0003563
Score 2.727748
SecondaryResourceType review_article
Snippet Deep learning is currently widely used in a variety of applications, including computer vision and natural language processing. End devices, such as...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1655
SubjectTerms Artificial intelligence
Cloud computing
Computational modeling
Computer vision
Deep learning
Devices
Edge computing
Finite element method
Inference
Machine learning
mobile computing
Natural language processing
Neural networks
Privacy
Servers
Smartphones
State-of-the-art reviews
Training
Title Deep Learning With Edge Computing: A Review
URI https://ieeexplore.ieee.org/document/8763885
https://www.proquest.com/docview/2270183992
Volume 107
WOSCitedRecordID wos000497973300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2256
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003563
  issn: 0018-9219
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4kEPvqpYrbIHb5o2r315K6UiIrWIYm9hX6kFaUub-vvdTdKgKIK3kOyEMJt57O7M9wFcEofIwgn3gjRIvVgr35NCaI-z2AZLHitcsJY80OGQjcd8VIPrqhfGGJMXn5mOu8zP8vVcrd1WWdehpzGG61CnlBa9WpXXjXDJmhZYA7ZmuGmQ8Xn3fvT02HdVXLwTukeUfgtCOavKD1ecx5fbvf992T7slnkk6hUTfwA1MzuEnS_ogk2wvsQsUAmgOkGv0-wNDfTEoILJwd67QT1UHA4cwcvt4Ll_55XcCJ4KOc48nTpuPYkjqn2c8tgoEhgZS4w1N4SISCgeR0xgB7EeSxOFwi50sCRC-JrJNDqGxmw-MyeAqCaMCj_WgbRrCy4F036qrBCx6YQmvAXBRlmJKoHDHX_Fe5IvIHye5ApOnIKTUsEtuKpkFgVsxp-jm06l1chSmy1ob-YkKS1rlYQh9V1Wx8PT36XOYNu9uyjSa0MjW67NOWypj2y6Wl7kP80nnLy7qA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gmqgHX2hEUXvwpoU-drddb8RAUBGJwcit2VeRxACB4u93ty2NRmPirWl30ma289jdme8DuCQGkYUSaruxG9tICsfmjEmbhkgHS4oEzlhLukGvFw6HtF-C66IXRimVFp-purlMz_LlVCzNVlnDoKeFIV6DdYyQ52bdWoXf9XHOm-ZqE9aGuGqRcWjjvv_8dGvquGjdM4-C4FsYSnlVfjjjNMK0d__3bXuwk2eSVjOb-n0oqckBbH_BF6yA9iZqZuUQqiPrdZy8WS05UlbG5aDv3VhNKzseOISXdmtw27FzdgRbeBQntowNux7HfiAdHFOkBHEVRxxjSRUhzGeCIj9k2ICsI658j-mlDuaEMUeGPPaPoDyZTtQxWIEkYcAcJF2uVxeUs1A6sdBCRCcUktAquCtlRSKHDjcMFu9RuoRwaJQqODIKjnIFV-GqkJllwBl_jq4YlRYjc21Wobaakyi3rUXkeYFj8jrqnfwudQGbncFjN-re9R5OYcu8JyvZq0E5mS_VGWyIj2S8mJ-nP9Anj1--7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+With+Edge+Computing%3A+A+Review&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Chen%2C+Jiasi&rft.au=Ran%2C+Xukan&rft.date=2019-08-01&rft.pub=IEEE&rft.issn=0018-9219&rft.volume=107&rft.issue=8&rft.spage=1655&rft.epage=1674&rft_id=info:doi/10.1109%2FJPROC.2019.2921977&rft.externalDocID=8763885
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon