An Efficient Multilayer Spiking Convolutional Neural Network Processor for Object Recognition With Low Bitwidth and Channel-Level Parallelism

Previous studies have shown that the event-driven multilayer spiking convolutional neural network (SCNN) can reduce computational complexity largely while keeping accurate. To fully utilize the advantages of SCNN, this brief proposed an efficient multilayer SCNN processor for object recognition. The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems. II, Express briefs Ročník 69; číslo 12; s. 5129 - 5133
Hlavní autoři: Feng, Lichen, Zhang, Yueqi, Zhu, Zhangming
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1549-7747, 1558-3791
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Previous studies have shown that the event-driven multilayer spiking convolutional neural network (SCNN) can reduce computational complexity largely while keeping accurate. To fully utilize the advantages of SCNN, this brief proposed an efficient multilayer SCNN processor for object recognition. The interconnection between spiking layers is implemented for the first time. The rank-order coding with mutual and lateral inhibitions enables sparse event transmission. By further combining the spike-centric membrane potential update, channel-level parallel operation, and the low bitwidths of synapse weights and potentials, the proposed design achieves 500 classifications/s, and 68 uJ/classification for recognizing images with <inline-formula> <tex-math notation="LaTeX">160\mathbf {\times }250 </tex-math></inline-formula> resolution, which is superior to the recent works.
AbstractList Previous studies have shown that the event-driven multilayer spiking convolutional neural network (SCNN) can reduce computational complexity largely while keeping accurate. To fully utilize the advantages of SCNN, this brief proposed an efficient multilayer SCNN processor for object recognition. The interconnection between spiking layers is implemented for the first time. The rank-order coding with mutual and lateral inhibitions enables sparse event transmission. By further combining the spike-centric membrane potential update, channel-level parallel operation, and the low bitwidths of synapse weights and potentials, the proposed design achieves 500 classifications/s, and 68 uJ/classification for recognizing images with [Formula Omitted] resolution, which is superior to the recent works.
Previous studies have shown that the event-driven multilayer spiking convolutional neural network (SCNN) can reduce computational complexity largely while keeping accurate. To fully utilize the advantages of SCNN, this brief proposed an efficient multilayer SCNN processor for object recognition. The interconnection between spiking layers is implemented for the first time. The rank-order coding with mutual and lateral inhibitions enables sparse event transmission. By further combining the spike-centric membrane potential update, channel-level parallel operation, and the low bitwidths of synapse weights and potentials, the proposed design achieves 500 classifications/s, and 68 uJ/classification for recognizing images with <inline-formula> <tex-math notation="LaTeX">160\mathbf {\times }250 </tex-math></inline-formula> resolution, which is superior to the recent works.
Author Zhu, Zhangming
Feng, Lichen
Zhang, Yueqi
Author_xml – sequence: 1
  givenname: Lichen
  orcidid: 0000-0002-7685-2141
  surname: Feng
  fullname: Feng, Lichen
  organization: Shaanxi Key Laboratory of Integrated Circuits and Systems, School of Microelectronics, Xidian University, Xi'an, China
– sequence: 2
  givenname: Yueqi
  surname: Zhang
  fullname: Zhang, Yueqi
  organization: Shaanxi Key Laboratory of Integrated Circuits and Systems, School of Microelectronics, Xidian University, Xi'an, China
– sequence: 3
  givenname: Zhangming
  orcidid: 0000-0002-7764-1928
  surname: Zhu
  fullname: Zhu, Zhangming
  email: zmyh@263.net
  organization: Shaanxi Key Laboratory of Integrated Circuits and Systems, School of Microelectronics, Xidian University, Xi'an, China
BookMark eNp9kE1P3DAQhi1EJT7aP1Auljhn649kHR8h4mOlbUFA1WPkOGPwYuzFdljxI_jPTVjUQw8cRjOjeZ9XmvcA7frgAaHvlMwoJfLHXXO7WMwYYWzGGRGyljton1ZVXXAh6e40l7IQohR76CClFSFMEs720duJx2fGWG3BZ_xzcNk69QoR367to_X3uAn-Jbgh2-CVw79giO8tb0J8xNcxaEgpRGzGuupWoDO-AR3uvZ0I_MfmB7wMG3xq88b246J8j5sH5T24Ygkv4PC1Gi0dOJuevqIvRrkE3z76Ifp9fnbXXBbLq4tFc7IsNJNVLnowptO0Mqoiikk1V52WJQHdMV5pAlTLbm56CUDrilNplADOypoJM-8k7fkhOt76rmN4HiDldhWGOD6YWibKivKypuWoqrcqHUNKEUyrbVbTXzkq61pK2in89j38dgq__Qh_RNl_6DraJxVfP4eOtpAFgH_AeJGCzPlfunGV4Q
CODEN ITCSFK
CitedBy_id crossref_primary_10_1109_TCSII_2023_3239039
crossref_primary_10_1109_TCSII_2025_3582265
crossref_primary_10_1109_TCSII_2024_3383655
crossref_primary_10_1109_TCSII_2024_3395415
Cites_doi 10.1109/JSSC.2007.914337
10.1016/j.neucom.2017.04.003
10.3389/fnins.2017.00123
10.1016/S0166-2236(96)80018-X
10.1016/j.neucom.2020.05.031
10.1109/JSSC.2018.2884901
10.1016/j.neucom.2018.11.014
10.1016/j.neucom.2016.09.071
10.1016/j.neunet.2017.12.005
10.55782/ane-2011-1862
10.1109/ISCAS.2010.5537907
10.3389/fnins.2017.00682
10.1109/IJCNN48605.2020.9207075
10.1109/TETCI.2019.2909936
10.3389/fncom.2015.00099
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCSII.2022.3207989
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3791
EndPage 5133
ExternalDocumentID 10_1109_TCSII_2022_3207989
9899706
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: XJS211111
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 62104175; 62021004
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5VS
6IK
6J9
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PZZ
RIA
RIE
RNS
RXW
TAE
TAF
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-deffbc15fa50a29a6abc940ecb235c0e1c9b6fd9ee185319fa7e324827f6b91d3
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000922028300101&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-7747
IngestDate Mon Jun 30 06:26:50 EDT 2025
Sat Nov 29 02:23:22 EST 2025
Tue Nov 18 22:39:02 EST 2025
Wed Aug 27 02:29:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-deffbc15fa50a29a6abc940ecb235c0e1c9b6fd9ee185319fa7e324827f6b91d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7764-1928
0000-0002-7685-2141
PQID 2745134814
PQPubID 85412
PageCount 5
ParticipantIDs crossref_primary_10_1109_TCSII_2022_3207989
crossref_citationtrail_10_1109_TCSII_2022_3207989
proquest_journals_2745134814
ieee_primary_9899706
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems. II, Express briefs
PublicationTitleAbbrev TCSII
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
ponulak (ref6) 2011; 71
ref2
ref1
ref17
tapiador-morales (ref16) 2019; 13
ref19
ref18
ref8
ref7
ref9
ref5
yousefzadeh (ref15) 2015
horowitz (ref3) 2014
maass (ref4) 2002; 8
References_xml – ident: ref19
  doi: 10.1109/JSSC.2007.914337
– ident: ref10
  doi: 10.1016/j.neucom.2017.04.003
– start-page: 1
  year: 2015
  ident: ref15
  article-title: Fast pipeline 128?128pixel spiking convolution core for event-driven vision processing in FPGAs
  publication-title: Proc Int Conf Event Based Control Commun Signal Process (EBCCSP)
– ident: ref5
  doi: 10.3389/fnins.2017.00123
– ident: ref9
  doi: 10.1016/S0166-2236(96)80018-X
– ident: ref17
  doi: 10.1016/j.neucom.2020.05.031
– ident: ref18
  doi: 10.1109/JSSC.2018.2884901
– ident: ref8
  doi: 10.1016/j.neucom.2018.11.014
– volume: 13
  start-page: 159
  year: 2019
  ident: ref16
  article-title: Neuromorphic LIF row-by-row multiconvolution processor for FPGA
  publication-title: IEEE Trans Biomed Circuits Syst
– ident: ref14
  doi: 10.1016/j.neucom.2016.09.071
– ident: ref13
  doi: 10.1016/j.neunet.2017.12.005
– volume: 71
  start-page: 409
  year: 2011
  ident: ref6
  article-title: Introduction to spiking neural networks: Information processing, learning and applications
  publication-title: Acta Neurobiologiae Experimentali
  doi: 10.55782/ane-2011-1862
– ident: ref1
  doi: 10.1109/ISCAS.2010.5537907
– ident: ref7
  doi: 10.3389/fnins.2017.00682
– ident: ref11
  doi: 10.1109/IJCNN48605.2020.9207075
– volume: 8
  start-page: 32
  year: 2002
  ident: ref4
  article-title: Computing with spikes
  publication-title: Found Inf Process TELEMATIK
– start-page: 10
  year: 2014
  ident: ref3
  article-title: Computing's energy problem (and what we can do about it)
  publication-title: IEEE Int Solid-State Circuits Conf Dig Tech Papers (ISSCC)
– ident: ref2
  doi: 10.1109/TETCI.2019.2909936
– ident: ref12
  doi: 10.3389/fncom.2015.00099
SSID ssj0029032
Score 2.3917186
Snippet Previous studies have shown that the event-driven multilayer spiking convolutional neural network (SCNN) can reduce computational complexity largely while...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5129
SubjectTerms Artificial neural networks
Channel-level parallel
Convolutional neural networks
Encoding
Image classification
Microprocessors
Multilayers
Neurons
Nonhomogeneous media
Object recognition
Parallel operation
Random access memory
rank-order coding
sparse event
spike-centric
Spiking
spiking convolutional neural network
Support vector machines
Title An Efficient Multilayer Spiking Convolutional Neural Network Processor for Object Recognition With Low Bitwidth and Channel-Level Parallelism
URI https://ieeexplore.ieee.org/document/9899706
https://www.proquest.com/docview/2745134814
Volume 69
WOSCitedRecordID wos000922028300101&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3791
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029032
  issn: 1549-7747
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4qHvTgW1xf5OBNq2l32-wcdVEUFhXft5JXsbC2slv1V_ifnUm7i6AIntpCEgJf0vkmmfmGsT1k4LFB4h0ooGtGbW2gQYUBThrJtnBZraX30JeXl92nJ7ieYgeTXBjnnA8-c4f06u_ybWne6KjsCNA5kKSvPS1lUudqTZwrEL4YGSmOIWPsyHGCjICju97txQW6glF02I6EBCrp_s0I-aoqP37F3r6cLf5vZktsoeGR_LgGfplNuWKFzX9TF1xln8cFP_UKEdiX-0zbgUKGzW9fczog572yeG9WHg5FMh3-4ePCeZNBUA450lp-pem8ht-Mw43Kgj_m1TPvlx_8JK8-cosfqrCcshUKNwj6FIzEr9WQarUM8tHLGrs_O73rnQdN9YXARBBXgXVZpk0YZyoWKgKVKG2gI5zRUTs2woUGdJJZcI5MfgiZkg7ZWTeSWaIhtO11NlOUhdtgHBIrpYi7OtQS3fEErEaLGelEOSQsst1i4RiO1DTS5FQhY5B6F0VA6iFMCcK0gbDF9id9Xmthjj9brxJok5YNXi22PUY9bfbuKEU_PQ4pP7mz-XuvLTZHY9dBLdtsphq-uR02a96rfDTc9cvyC8kg4jQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1VLRJwKB-lYksLPnCDtI43idfHsmrVFWGp6AK9Rf6KiLQk1W7a_or-Z2ac7KoSFRKnJJKdWHp25o098wbgPTLw1CLxjrSiY0bjXGSUjiMcNJJt7stOS-9HLqfT0eWlOt-Aj-tcGO99CD7zh3QbzvJdY69pq-xIoXMgSV97K00SwbtsrbV7pXgoR0aaY8gZE7lKkeHqaDa-mEzQGRTicCi4VFTU_Z4ZCnVV_voZBwtz-uz_xvYctnsmyY476F_Ahq9fwtN7-oI7cHdcs5OgEYF9Wci1nWvk2OziqqItcjZu6pt-7uGrSKgjXEJkOOtzCJoFQ2LLvhrasWHfVgFHTc1-Vu0vlje37FPV3lYOH3TtGOUr1H4e5RSOxM71gqq1zKvl71fw_fRkNj6L-voLkRUqbSPny9LYOC11yrVQOtPGqoR7a8QwtdzHVpmsdMp7MvqxKrX0yM9GQpaZUbEb7sJm3dT-NTCVOSl5OjKxkeiQZ8oZtJnCZNojZZHDAcQrOArbi5NTjYx5EZwUrooAYUEQFj2EA_iw7nPVSXP8s_UOgbZu2eM1gP0V6kW_epcFeuppTBnKyd7Dvd7B47PZl7zIJ9PPb-AJfacLcdmHzXZx7Q_gkb1pq-XibZiifwCvw-V7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Multilayer+Spiking+Convolutional+Neural+Network+Processor+for+Object+Recognition+With+Low+Bitwidth+and+Channel-Level+Parallelism&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+II%2C+Express+briefs&rft.au=Feng%2C+Lichen&rft.au=Zhang%2C+Yueqi&rft.au=Zhu%2C+Zhangming&rft.date=2022-12-01&rft.issn=1549-7747&rft.eissn=1558-3791&rft.volume=69&rft.issue=12&rft.spage=5129&rft.epage=5133&rft_id=info:doi/10.1109%2FTCSII.2022.3207989&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSII_2022_3207989
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-7747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-7747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-7747&client=summon