Parallel Improvements of the Jaya Optimization Algorithm

A wide range of applications use optimization algorithms to find an optimal value, often a minimum one, for a given function. Depending on the application, both the optimization algorithm’s behavior, and its computational time, can prove to be critical issues. In this paper, we present our efficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences Jg. 8; H. 5; S. 819
Hauptverfasser: Migallón, Héctor, Jimeno-Morenilla, Antonio, Sanchez-Romero, Jose-Luis
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 18.05.2018
Schlagworte:
ISSN:2076-3417, 2076-3417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A wide range of applications use optimization algorithms to find an optimal value, often a minimum one, for a given function. Depending on the application, both the optimization algorithm’s behavior, and its computational time, can prove to be critical issues. In this paper, we present our efficient parallel proposals of the Jaya algorithm, a recent optimization algorithm that enables one to solve constrained and unconstrained optimization problems. We tested parallel Jaya algorithms for shared, distributed, and heterogeneous memory platforms, obtaining good parallel performance while leaving Jaya algorithm behavior unchanged. Parallel performance was analyzed using 30 unconstrained functions reaching a speed-up of up to 57.6 x using 60 processors. For all tested functions, the parallel distributed memory algorithm obtained parallel efficiencies that were nearly ideal, and combining it with the shared memory algorithm allowed us to obtain good parallel performance. The experimental results show a good parallel performance regardless of the nature of the function to be optimized.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app8050819