Parallel Improvements of the Jaya Optimization Algorithm
A wide range of applications use optimization algorithms to find an optimal value, often a minimum one, for a given function. Depending on the application, both the optimization algorithm’s behavior, and its computational time, can prove to be critical issues. In this paper, we present our efficient...
Saved in:
| Published in: | Applied sciences Vol. 8; no. 5; p. 819 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
18.05.2018
|
| Subjects: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A wide range of applications use optimization algorithms to find an optimal value, often a minimum one, for a given function. Depending on the application, both the optimization algorithm’s behavior, and its computational time, can prove to be critical issues. In this paper, we present our efficient parallel proposals of the Jaya algorithm, a recent optimization algorithm that enables one to solve constrained and unconstrained optimization problems. We tested parallel Jaya algorithms for shared, distributed, and heterogeneous memory platforms, obtaining good parallel performance while leaving Jaya algorithm behavior unchanged. Parallel performance was analyzed using 30 unconstrained functions reaching a speed-up of up to 57.6 x using 60 processors. For all tested functions, the parallel distributed memory algorithm obtained parallel efficiencies that were nearly ideal, and combining it with the shared memory algorithm allowed us to obtain good parallel performance. The experimental results show a good parallel performance regardless of the nature of the function to be optimized. |
|---|---|
| AbstractList | An field of intense work of the scientific community is artificial intelligence [26], in which neural-symbolic computation [27] is a key challenge, especially to construct computational cognitive models that admit integrated algorithms for learning and reasoning that can be treated computationally. [...]deep learning is not an optimization algorithm in itself, but the deep network has an objective function, so a heuristic optimization algorithm can be used to tune the network. [...]in [15], the authors explore the use of advanced optimization algorithms for determining optimum parameters for grating based sensors; in particular, Cuckoo search, PSO, TLBO, and Jaya algorithms were evaluated. [...]following parallel computation, the “sequential thread (or process)” obtains the best global solution and computes statistical values of all solutions obtained. [...]the conclusions obtained, through the comparison performed in [3] with respect to other well known optimization heuristic techniques, can be applied to the parallel proposals analyzed. A wide range of applications use optimization algorithms to find an optimal value, often a minimum one, for a given function. Depending on the application, both the optimization algorithm’s behavior, and its computational time, can prove to be critical issues. In this paper, we present our efficient parallel proposals of the Jaya algorithm, a recent optimization algorithm that enables one to solve constrained and unconstrained optimization problems. We tested parallel Jaya algorithms for shared, distributed, and heterogeneous memory platforms, obtaining good parallel performance while leaving Jaya algorithm behavior unchanged. Parallel performance was analyzed using 30 unconstrained functions reaching a speed-up of up to 57.6 x using 60 processors. For all tested functions, the parallel distributed memory algorithm obtained parallel efficiencies that were nearly ideal, and combining it with the shared memory algorithm allowed us to obtain good parallel performance. The experimental results show a good parallel performance regardless of the nature of the function to be optimized. |
| Author | Sanchez-Romero, Jose-Luis Jimeno-Morenilla, Antonio Migallón, Héctor |
| Author_xml | – sequence: 1 givenname: Héctor orcidid: 0000-0002-4937-0905 surname: Migallón fullname: Migallón, Héctor – sequence: 2 givenname: Antonio orcidid: 0000-0002-3789-6475 surname: Jimeno-Morenilla fullname: Jimeno-Morenilla, Antonio – sequence: 3 givenname: Jose-Luis orcidid: 0000-0001-8766-2813 surname: Sanchez-Romero fullname: Sanchez-Romero, Jose-Luis |
| BookMark | eNptkE9PwzAMxSM0JMbYhU9QiRtSwUmaNTlOE3-GJo0DnKs0dVmmtilJhjQ-PYUhgRC-PB9-tp_fKRl1rkNCzilcca7gWve9BAGSqiMyZpDPUp7RfPSrPyHTELYwlKJcUhgT-ai9bhpskmXbe_eGLXYxJK5O4gaTB73XybqPtrXvOlrXJfPmxXkbN-0ZOa51E3D6rRPyfHvztLhPV-u75WK-Sg1TIqYVziRHg6ZSCIZKZhSroAasBNaospkAnSuqWGkyKWQmuOGl5FqzUpq8yviEXBz2Du5edxhisXU73w0nC8YZlXkuhRqoywNlvAvBY1303rba7wsKxWc4xU84Awx_YGPj13vRa9v8N_IB5KpoqA |
| CitedBy_id | crossref_primary_10_1007_s10278_022_00710_y crossref_primary_10_1007_s00500_023_08261_2 crossref_primary_10_1007_s11227_019_02759_z crossref_primary_10_1007_s11831_021_09585_8 crossref_primary_10_1007_s00202_024_02382_z crossref_primary_10_1007_s11042_024_20182_2 crossref_primary_10_1155_2020_5287684 |
| Cites_doi | 10.1016/j.engappai.2017.03.001 10.1016/j.cad.2010.12.015 10.1016/j.enconman.2017.08.063 10.1007/978-3-662-45523-4 10.1016/j.engappai.2017.01.008 10.1016/j.enconman.2017.02.068 10.1080/0305215X.2017.1337755 10.1016/j.eswa.2012.08.039 10.1080/0952813X.2017.1309692 10.1109/TNNLS.2016.2603784 10.1016/j.swevo.2017.04.008 10.1016/j.advengsoft.2018.02.005 10.1016/j.neucom.2017.08.015 10.1080/10426914.2017.1415441 10.1016/j.apenergy.2018.02.131 10.1080/0305215X.2016.1164855 10.1016/j.knosys.2014.02.002 10.1016/j.asoc.2017.12.041 10.1109/TSTE.2016.2570256 10.1016/j.ijleo.2018.03.062 10.1016/j.ijthermalsci.2017.09.015 10.1016/j.advengsoft.2012.11.019 10.1016/j.eswa.2016.10.010 10.1016/j.energy.2017.04.059 10.1155/2012/756023 10.1007/s00366-016-0484-8 |
| ContentType | Journal Article |
| Copyright | 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.3390/app8050819 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | 10_3390_app8050819 |
| GeographicLocations | Germany Spain |
| GeographicLocations_xml | – name: Spain – name: Germany |
| GroupedDBID | .4S 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IPNFZ K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC RIG TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c295t-de683ececd9e0c182c92d0f0ed5efe94650a79192bc4858453c3b83aa2b8c7d43 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000437326800166&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Mon Oct 20 03:04:03 EDT 2025 Sat Nov 29 07:13:26 EST 2025 Tue Nov 18 20:56:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-de683ececd9e0c182c92d0f0ed5efe94650a79192bc4858453c3b83aa2b8c7d43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3789-6475 0000-0002-4937-0905 0000-0001-8766-2813 |
| OpenAccessLink | https://www.proquest.com/docview/2321877859?pq-origsite=%requestingapplication% |
| PQID | 2321877859 |
| PQPubID | 2032433 |
| ParticipantIDs | proquest_journals_2321877859 crossref_primary_10_3390_app8050819 crossref_citationtrail_10_3390_app8050819 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-05-18 |
| PublicationDateYYYYMMDD | 2018-05-18 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-18 day: 18 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2018 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Wang (ref_9) 2018; 272 Cisek (ref_12) 2018; 123 (ref_16) 2018; 119 Ruiz (ref_29) 2014; 68 ref_36 ref_35 Kurada (ref_33) 2016; 3 ref_34 Singh (ref_17) 2018; 217 Traore (ref_30) 2017; 72 Tran (ref_26) 2018; 29 Abhishek (ref_8) 2016; 33 ref_37 Rao (ref_32) 2017; 49 Choudhary (ref_13) 2018; 33 Gambhir (ref_15) 2018; 164 Chen (ref_31) 2013; 66 Rao (ref_19) 2017; 37 Rao (ref_7) 2017; 61 Wang (ref_11) 2018; 65 Umbarkar (ref_21) 2015; 7 Rao (ref_2) 2011; 43 Lin (ref_1) 2012; 2012 Mishra (ref_5) 2016; 7 ref_25 Yu (ref_14) 2017; 150 ref_24 Rigal (ref_28) 2013; 40 Rao (ref_3) 2016; 7 Umbarkar (ref_22) 2015; 1 Rao (ref_18) 2017; 128 ref_27 Ghavidel (ref_10) 2018; 50 Ortega (ref_23) 2014; 1 Singh (ref_4) 2017; 60 Rao (ref_6) 2017; 140 Rao (ref_20) 2017; 29 |
| References_xml | – volume: 61 start-page: 103 year: 2017 ident: ref_7 article-title: A multi-objective algorithm for optimization of modern machining processes publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.03.001 – volume: 43 start-page: 303 year: 2011 ident: ref_2 article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput.-Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 150 start-page: 742 year: 2017 ident: ref_14 article-title: Parameters identification of photovoltaic models using an improved JAYA optimization algorithm publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.08.063 – ident: ref_24 doi: 10.1007/978-3-662-45523-4 – volume: 3 start-page: 35 year: 2016 ident: ref_33 article-title: Automatic Unsupervised Data Classification Using Jaya Evolutionary Algorithm publication-title: Adv. Comput. Intell. Int. J. – volume: 60 start-page: 35 year: 2017 ident: ref_4 article-title: Analytic hierarchy process based automatic generation control of multi-area interconnected power system using Jaya algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.01.008 – volume: 140 start-page: 24 year: 2017 ident: ref_6 article-title: Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.02.068 – ident: ref_34 – volume: 7 start-page: 19 year: 2015 ident: ref_21 article-title: OpenMP Teaching-Learning Based Optimization Algorithm over Multi-Core System publication-title: Int. J. Intell. Syst. Appl. – volume: 50 start-page: 698 year: 2018 ident: ref_10 article-title: A hybrid Jaya algorithm for reliability–redundancy allocation problems publication-title: Eng. Optim. doi: 10.1080/0305215X.2017.1337755 – volume: 40 start-page: 1034 year: 2013 ident: ref_28 article-title: Mining association rules for the quality improvement of the production process publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.08.039 – volume: 29 start-page: 1099 year: 2017 ident: ref_20 article-title: Optimisation of welding processes using quasi-oppositional-based Jaya algorithm publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2017.1309692 – ident: ref_37 – volume: 1 start-page: 9 year: 2014 ident: ref_23 article-title: Comparing multicore implementations of evolutionary meta-heuristics for transportation problems publication-title: Ann. Multicore GPU Program. – volume: 29 start-page: 246 year: 2018 ident: ref_26 article-title: Deep Logic Networks: Inserting and Extracting Knowledge From Deep Belief Networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2603784 – ident: ref_35 – volume: 37 start-page: 1 year: 2017 ident: ref_19 article-title: A self-adaptive multi-population based Jaya algorithm for engineering optimization publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2017.04.008 – volume: 119 start-page: 48 year: 2018 ident: ref_16 article-title: An efficient approach for optimal sensor placement and damage identification in laminated composite structures publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2018.02.005 – volume: 272 start-page: 668 year: 2018 ident: ref_9 article-title: Intelligent facial emotion recognition based on stationary wavelet entropy and Jaya algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.015 – volume: 33 start-page: 759 year: 2018 ident: ref_13 article-title: Investigating effects of resistance wire heating on AISI 1023 weldment characteristics during ASAW publication-title: Mater. Manuf. Process. doi: 10.1080/10426914.2017.1415441 – volume: 7 start-page: 19 year: 2016 ident: ref_3 article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: Int. J. Ind. Eng. Comput. – volume: 217 start-page: 537 year: 2018 ident: ref_17 article-title: Integration of new evolutionary approach with artificial neural network for solving short term load forecast problem publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.131 – ident: ref_25 – volume: 49 start-page: 60 year: 2017 ident: ref_32 article-title: A new optimization algorithm for solving complex constrained design optimization problems publication-title: Eng. Optim. doi: 10.1080/0305215X.2016.1164855 – volume: 68 start-page: 4 year: 2014 ident: ref_29 article-title: Generating knowledge in maintenance from Experience Feedback publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.02.002 – ident: ref_27 – volume: 65 start-page: 12 year: 2018 ident: ref_11 article-title: A GPU-accelerated parallel Jaya algorithm for efficiently estimating Li-ion battery model parameters publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.12.041 – volume: 7 start-page: 1672 year: 2016 ident: ref_5 article-title: Power quality improvement using photovoltaic fed DSTATCOM based on JAYA optimization publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2016.2570256 – volume: 1 start-page: 59 year: 2015 ident: ref_22 article-title: OpenMP Dual Population Genetic Algorithm for Solving Constrained Optimization Problems publication-title: Int. J. Inf. Eng. Electron. Business – volume: 164 start-page: 567 year: 2018 ident: ref_15 article-title: Advanced optimization algorithms for grating based sensors: A comparative analysis publication-title: Optik doi: 10.1016/j.ijleo.2018.03.062 – volume: 123 start-page: 162 year: 2018 ident: ref_12 article-title: Thermal performance optimization of the underground power cable system by using a modified Jaya algorithm publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2017.09.015 – volume: 66 start-page: 24 year: 2013 ident: ref_31 article-title: Application of data mining in a global optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2012.11.019 – ident: ref_36 – volume: 72 start-page: 443 year: 2017 ident: ref_30 article-title: Data mining techniques on satellite images for discovery of risk areas publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.10.010 – volume: 128 start-page: 785 year: 2017 ident: ref_18 article-title: Constrained economic optimization of shell-and-tube heat exchangers using elitist-Jaya algorithm publication-title: Energy doi: 10.1016/j.energy.2017.04.059 – volume: 2012 start-page: 756023 year: 2012 ident: ref_1 article-title: A Review of Deterministic Optimization Methods in Engineering and Management publication-title: Math. Probl. Eng. doi: 10.1155/2012/756023 – volume: 33 start-page: 457 year: 2016 ident: ref_8 article-title: Application of JAYA algorithm for the optimization of machining performance characteristics during the turning of CFRP (epoxy) composites: comparison with TLBO, GA, and ICA publication-title: Eng. Comput. doi: 10.1007/s00366-016-0484-8 |
| SSID | ssj0000913810 |
| Score | 2.1353652 |
| Snippet | A wide range of applications use optimization algorithms to find an optimal value, often a minimum one, for a given function. Depending on the application,... An field of intense work of the scientific community is artificial intelligence [26], in which neural-symbolic computation [27] is a key challenge, especially... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 819 |
| SubjectTerms | Data mining Design optimization Genetic algorithms Heuristic Linear algebra Methods Optimization algorithms Population Software |
| Title | Parallel Improvements of the Jaya Optimization Algorithm |
| URI | https://www.proquest.com/docview/2321877859 |
| Volume | 8 |
| WOSCitedRecordID | wos000437326800166&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF609aAHtVWxWmVBD_YQTLt57J6kSosK1iAK9RQ2-1ChL5so-O-dTbatBfHiMWQhYXZ25vtmkm8QOiWJzyUQH0dLkTieCDyHadgQNxTSlSF4jeb5sImw16P9PotswS21n1XOYmIeqOVYmBr5OWT-Jg1D6rOLybtjpkaZ7qodobGKykapDPy8fNnpRQ_zKotRvaRNt9AlJcDvTV-Yur5JhMuZaDkQ59mlu_Xf99pGmxZX4nbhCBW0okZVtPFDbbCKKvYcp_jMik03dhCN-NSMUxngoryQVwtTPNYYkCG-5V8c30NUGdrfNXF78AJPz16Hu-ip23m8unbsNAVHtJifOVIFlCihhGTKFUArBGtJV7tK-kor5gFU4yEDwJcIjwIs8YkgCSWctxIqQumRPVQajUdqH2HGeKJ8X3MBgA8oGAeSSQKiPR5AeAhYDTVmlo2FlRo3Ey8GMVAOswvxYhdq6GS-dlIIbPy6qj6zfmwPWRovTH_w9-1DtA44h5qmf5PWUSmbfqgjtCY-s7d0emx95jin43AV3dxFz9-O2880 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BiwQc2BGFApYACQ4RaZzFPiBUsYiylB5AglNwbAeQutEUUH-Kb2TcJCwS4saBc6xIzhu9eTN25gFs0sgTCgsfK1YyslzpuxaPERA7kMpWAUZNLIZmE0G9zm5ueGME3vJ_Ycy1ypwTh0StOtL0yHcx81dYEDCP73efLOMaZU5XcwuNNCzO9OAVS7Zkr3aI-G45zvHR1cGJlbkKWNLhXt9S2mdUSy0V17ZEeS25o-zY1srTseYuShYRcBQ-kXQZpmePShoxKoQTMRkol-J7R6HommAvQLFRu2jcfnR1zJRNVrHTOaiUctucQzPbM4n3e-b7TvzDbHY8_d--wwxMZbqZVNNAn4UR3Z6DyS_TFOdgNuOphGxnw7R35oE1RM_YxTRJ2j4ZdkMT0okJKl9yKgaCXCJrtrLfUUm1eY-77T-0FuD6T_azCIV2p62XgHAuIu15sZAoaLHEFFhEU5_GrvCR_nxegp0cyVBmo9SNo0czxJLKoB5-ol6CjY-13XSAyI-ryjnaYUYiSfgJ9fLvj9dh_OTq4jw8r9XPVmACNR0zFxwqrAyFfu9Zr8KYfOk_Jr21LF4J3P11aLwDzkgrTg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9tAEB3RUCF6ABJADYWyUotUDhaO1x-7hwohaNQ0beoDldKTWe8HIIUkxIGKv8av62y8hkaqesuhZ68sred55s3s7DyA9zSPhMLExzNK5l4o49DjBg3iJ1L5KkHUGDETm0h6Pdbv83QJHqu7MLatsvKJM0etRtLWyI8w8rdYkrCIHxnXFpGetY_Ht55VkLInrZWcRgmRrn74helb8bFzhrY-CIL2p_PTz55TGPBkwKOpp3TMqJZaKq59iVRb8kD5xtcq0kbzEOmLSDiSoFyGDEN1RCXNGRUiyJlMVEjxvS9gGSl5GNRgOe18S38-VXjsxE3W8suZqJRy355JMz-yQXg-Cs4HgVlka6__z99kA9YcnyYn5Q9QhyU9bMCrP6YsNqDu_FdBPrgh24ebwFIxsTIyA1KWVWZV0oKMDEFGTL6IB0G-oze9cddUycngEnc7vbrZgh8L2c821IajoX4NhHOR6ygyQiLRxdRTYHJNY2pCEaNbjHkTDiurZtKNWLdKH4MMUy2LgOwZAU1497R2XA4W-euq3crymXMuRfZs9p1_P96HFcRD9rXT676BVaR6zPY9tNgu1KaTO70HL-X99LqYvHXQJXCxaGT8BqZKNA4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Improvements+of+the+Jaya+Optimization+Algorithm&rft.jtitle=Applied+sciences&rft.au=Migall%C3%B3n%2C+H%C3%A9ctor&rft.au=Jimeno-Morenilla%2C+Antonio&rft.au=Sanchez-Romero%2C+Jose-Luis&rft.date=2018-05-18&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=8&rft.issue=5&rft_id=info:doi/10.3390%2Fapp8050819&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |