A Review of Distributed Algorithms for Principal Component Analysis

Principal component analysis (PCA) is a fundamental primitive of many data analysis, array processing, and machine learning methods. In applications where extremely large arrays of data are involved, particularly in distributed data acquisition systems, distributed PCA algorithms can harness local c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the IEEE Ročník 106; číslo 8; s. 1321 - 1340
Hlavní autoři: Wu, Sissi Xiaoxiao, Wai, Hoi-To, Li, Lin, Scaglione, Anna
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9219, 1558-2256
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Principal component analysis (PCA) is a fundamental primitive of many data analysis, array processing, and machine learning methods. In applications where extremely large arrays of data are involved, particularly in distributed data acquisition systems, distributed PCA algorithms can harness local communications and network connectivity to overcome the need of communicating and accessing the entire array locally. A key feature of distributed PCA algorithm is that they defy the conventional notion that the first step toward computing the principal vectors is to form a sample covariance. This paper is a survey of the methodologies to perform distributed PCA on different data sets, their performance, and of their applications in the context of distributed data acquisition systems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9219
1558-2256
DOI:10.1109/JPROC.2018.2846568