A Review of Distributed Algorithms for Principal Component Analysis
Principal component analysis (PCA) is a fundamental primitive of many data analysis, array processing, and machine learning methods. In applications where extremely large arrays of data are involved, particularly in distributed data acquisition systems, distributed PCA algorithms can harness local c...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the IEEE Jg. 106; H. 8; S. 1321 - 1340 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9219, 1558-2256 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Principal component analysis (PCA) is a fundamental primitive of many data analysis, array processing, and machine learning methods. In applications where extremely large arrays of data are involved, particularly in distributed data acquisition systems, distributed PCA algorithms can harness local communications and network connectivity to overcome the need of communicating and accessing the entire array locally. A key feature of distributed PCA algorithm is that they defy the conventional notion that the first step toward computing the principal vectors is to form a sample covariance. This paper is a survey of the methodologies to perform distributed PCA on different data sets, their performance, and of their applications in the context of distributed data acquisition systems. |
|---|---|
| AbstractList | Principal component analysis (PCA) is a fundamental primitive of many data analysis, array processing, and machine learning methods. In applications where extremely large arrays of data are involved, particularly in distributed data acquisition systems, distributed PCA algorithms can harness local communications and network connectivity to overcome the need of communicating and accessing the entire array locally. A key feature of distributed PCA algorithm is that they defy the conventional notion that the first step toward computing the principal vectors is to form a sample covariance. This paper is a survey of the methodologies to perform distributed PCA on different data sets, their performance, and of their applications in the context of distributed data acquisition systems. |
| Author | Li, Lin Wai, Hoi-To Scaglione, Anna Wu, Sissi Xiaoxiao |
| Author_xml | – sequence: 1 givenname: Sissi Xiaoxiao orcidid: 0000-0003-3451-5603 surname: Wu fullname: Wu, Sissi Xiaoxiao email: xxwu.eesissi@szu.edu.cn organization: Department of Communication and Information Engineering, Shenzhen University, China – sequence: 2 givenname: Hoi-To orcidid: 0000-0003-4796-4483 surname: Wai fullname: Wai, Hoi-To email: htwai.Scaglione@asu.edu organization: Ira A. Fulton School of Electrical Computer and Energy Engineering, Arizona State University, USA – sequence: 3 givenname: Lin surname: Li fullname: Li, Lin email: lin.li@ll.mit.edu organization: Massachusetts Institute of Technology Lincoln Laboratory, USA – sequence: 4 givenname: Anna surname: Scaglione fullname: Scaglione, Anna email: Anna.Scaglione@asu.edu organization: Ira A. Fulton School of Electrical Computer and Energy Engineering, Arizona State University, USA |
| BookMark | eNp9kL1OwzAURi1UJNrCC8BiiTnBdmLXGaPwr0qtKpgtx7HBVRoH2wX17UlpxcDAdIf7nXs_nQkYda7TAFxilGKMipvn5WpRpQRhnhKeM8r4CRhjSnlCCGUjMEbDKikILs7AJIQ1QiijLBuDqoQr_Wn1F3QG3toQva23UTewbN-ct_F9E6BxHi697ZTtZQsrt-mH512EZSfbXbDhHJwa2QZ9cZxT8Hp_91I9JvPFw1NVzhNFChqTpmGkmTHFJTYZQSbTRqqiqTmTuayJlLwmudzX0qQmNW60mUmDaZErPTPKZFNwfbjbe_ex1SGKtdv6oUQQBPGs4JxgNqT4IaW8C8FrI5SNMlrXRS9tKzASe2XiR5nYKxNHZQNK_qC9txvpd_9DVwfIaq1_AZ4P3inNvgGwKHq3 |
| CODEN | IEEPAD |
| CitedBy_id | crossref_primary_10_1016_j_aquaculture_2020_735931 crossref_primary_10_1587_transfun_2024EAP1122 crossref_primary_10_1093_bioadv_vbac026 crossref_primary_10_1016_j_ymssp_2022_109781 crossref_primary_10_1007_s11783_024_1789_2 crossref_primary_10_1177_00368504221137461 crossref_primary_10_1016_j_sigpro_2025_110233 crossref_primary_10_1109_JIOT_2025_3557408 crossref_primary_10_1016_j_compbiolchem_2025_108412 crossref_primary_10_1038_s41598_023_37795_6 crossref_primary_10_1049_htl2_12073 crossref_primary_10_3390_s23167041 crossref_primary_10_1109_TPAMI_2025_3537318 crossref_primary_10_1002_admt_202400554 crossref_primary_10_1109_TCCN_2021_3105554 crossref_primary_10_1016_j_jwpe_2025_107411 crossref_primary_10_1109_TSP_2021_3101015 crossref_primary_10_1109_TSG_2021_3066577 crossref_primary_10_1007_s13198_024_02382_z crossref_primary_10_1109_JSTSP_2022_3157437 crossref_primary_10_1109_TSIPN_2020_3002613 crossref_primary_10_1016_j_dsp_2025_105150 crossref_primary_10_1111_os_13406 crossref_primary_10_1051_itmconf_20246401017 crossref_primary_10_1007_s10994_024_06620_0 crossref_primary_10_1590_0001_3765202420230409 crossref_primary_10_1109_JSEN_2020_2972542 crossref_primary_10_1016_j_sigpro_2021_108408 crossref_primary_10_1109_TIT_2024_3442211 crossref_primary_10_1016_j_cpc_2025_109644 crossref_primary_10_1109_TSIPN_2023_3302658 crossref_primary_10_1007_s10489_022_04192_x crossref_primary_10_3390_agronomy13112844 crossref_primary_10_1007_s10618_023_00983_z crossref_primary_10_1109_TNET_2024_3423780 crossref_primary_10_1016_j_dsp_2023_104225 crossref_primary_10_3233_JIFS_211114 crossref_primary_10_1016_j_snb_2024_137086 crossref_primary_10_1109_TGCN_2022_3171681 crossref_primary_10_1016_j_knosys_2024_111653 crossref_primary_10_1631_FITEE_2200268 crossref_primary_10_1109_TNNLS_2023_3336957 crossref_primary_10_1109_TSP_2022_3229635 crossref_primary_10_1109_TSP_2023_3239806 crossref_primary_10_1109_ACCESS_2019_2906784 crossref_primary_10_1016_j_dsr_2022_103886 crossref_primary_10_1016_j_envsoft_2019_02_015 crossref_primary_10_1088_1742_6596_2449_1_012001 crossref_primary_10_1109_TII_2023_3323685 crossref_primary_10_1109_TSP_2022_3186540 crossref_primary_10_1109_TSIPN_2021_3122297 crossref_primary_10_1016_j_sigpro_2023_109307 crossref_primary_10_1155_2022_5665408 crossref_primary_10_1109_TAES_2023_3267439 crossref_primary_10_1016_j_chemolab_2020_104038 crossref_primary_10_1080_10618600_2025_2561234 crossref_primary_10_1016_j_physa_2024_130308 |
| Cites_doi | 10.1214/12-AOS1000 10.1109/TSP.2017.2698365 10.1137/090761793 10.1109/TSP.2006.881199 10.1080/14786440109462720 10.1109/TAC.2017.2685559 10.1109/CAMSAP.2013.6714025 10.1137/130919222 10.1016/j.sigpro.2014.03.037 10.1145/2339530.2339583 10.1109/TSP.2015.2454476 10.1109/CDC.2012.6425898 10.1080/01621459.1963.10500845 10.1109/79.526899 10.1109/TAC.2008.2009515 10.1109/TSP.2015.2472372 10.1109/ICASSP.2017.7952812 10.1145/1015330.1015408 10.1109/T-C.1974.223784 10.1561/2200000016 10.1016/0022-247X(85)90131-3 10.1016/j.neucom.2014.11.076 10.1109/TSP.2016.2523448 10.1109/TSP.2009.2025806 10.1145/1553374.1553463 10.1109/CVPR.2010.5539989 10.1109/ICASSP.2017.7952998 10.1109/ACSSC.2008.5074720 10.1109/ICASSP.2015.7178631 10.1145/1993744.1993764 10.1007/s10208-009-9045-5 10.1162/0899766042321814 10.1109/JPROC.2010.2052531 10.1109/TSP.2015.2465300 10.1109/JSTSP.2011.2118742 10.1109/83.650856 10.1109/TSP.2015.2443729 10.1093/biomet/28.3-4.321 10.1145/1970392.1970395 10.1109/EUSIPCO.2015.7362841 10.1109/ICASSP.2009.4960343 10.1145/2897518.2897646 10.1109/97.928678 10.1109/TSP.2013.2279080 10.1007/PL00011677 10.56021/9781421407944 10.1109/MSP.2013.2297439 10.1109/ALLERTON.2015.7447088 10.3390/s8084821 10.1109/ICASSP.2014.6853551 10.1109/TSP.2014.2385045 10.1109/MSP.2010.936725 10.1109/TIT.2006.874516 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/JPROC.2018.2846568 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2256 |
| EndPage | 1340 |
| ExternalDocumentID | 10_1109_JPROC_2018_2846568 8425655 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Shenzhen Technology R&D Fund grantid: JCYJ20170817101149906; JCYJ20170302145906843 – fundername: National Science Foundation grantid: EAGER CCF 1553746; NSF CCF-BSF 1714672; BSF 2016660 funderid: 10.13039/100000001 – fundername: U.S. Air Force grantid: FA8721-05-C-0002; FA8702-15-D-0001 funderid: 10.13039/100006831 – fundername: National Natural Science Foundation of China grantid: 61701315 funderid: 10.13039/501100001809 – fundername: Shenzhen University grantid: 2018018 funderid: 10.13039/501100009019 |
| GroupedDBID | -DZ -~X .DC 0R~ 123 1OL 29P 3EH 4.4 6IK 85S 97E 9M8 AAJGR AAWTH ABAZT ABFSI ABJNI ABQJQ ABVLG ACBEA ACGFS AENEX AETEA AETIX AFOGA AGNAY AGQYO AGSQL AHBIQ AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD FA8 HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MVM O9- OCL RIA RIE RIU RNS TAE TN5 TWZ UDY UHB UKR UQL VOH WHG XJT XOL YNT ZCA ZXP ZY4 ~02 AAYXX CITATION 7SP 8FD L7M RIG |
| ID | FETCH-LOGICAL-c295t-dd62d76c8a1f320f3efac9db86a4ab2aa8b24a3563e2b2b1def7af1594ce7fcf3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 83 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440944700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9219 |
| IngestDate | Fri Jul 25 19:08:02 EDT 2025 Tue Nov 18 22:42:23 EST 2025 Sat Nov 29 03:15:13 EST 2025 Wed Aug 27 02:43:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-dd62d76c8a1f320f3efac9db86a4ab2aa8b24a3563e2b2b1def7af1594ce7fcf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4796-4483 0000-0003-3451-5603 |
| PQID | 2083988216 |
| PQPubID | 85453 |
| PageCount | 20 |
| ParticipantIDs | crossref_citationtrail_10_1109_JPROC_2018_2846568 ieee_primary_8425655 crossref_primary_10_1109_JPROC_2018_2846568 proquest_journals_2083988216 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-08-01 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Proceedings of the IEEE |
| PublicationTitleAbbrev | JPROC |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref56 hyvärinen (ref37) 2004; 46 ref58 ref14 ref53 ref52 ref55 ref54 ref19 allen-zhu (ref80) 2016 golub (ref30) 2013 ref18 rao (ref35) 2014 bishop (ref3) 2006 kannan (ref10) 2014 ref51 ref50 jaggi (ref70) 2013 ref46 de sa (ref81) 2017 richard (ref74) 2014 ref48 ref47 ref42 ref41 ref44 ref43 liang (ref8) 2014 ref49 garber (ref12) 2017 fan (ref9) 2017 ref6 tsitsiklis (ref32) 1984 ge (ref59) 2016 manton (ref40) 2002; 2 hardt (ref45) 2014 ref78 ref34 ref36 ref75 ref31 ref77 balsubramani (ref38) 2013 ref33 ng (ref5) 2002 ref76 zheng (ref72) 2017 shamir (ref79) 2015 ref1 fellus (ref17) 2014 ref39 bai (ref13) 2005 ref71 pearson (ref4) 1901; 2 abu-khzam (ref16) 2002 ref24 ref67 ref23 mazumder (ref73) 2010; 11 hong (ref68) 2017 ref26 dhillon (ref57) 2015; 16 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 boutsidis (ref11) 2016 qu (ref7) 2002 ref28 ref27 qi (ref15) 2004 ref29 stoica (ref2) 1997 ref60 ref62 ref61 |
| References_xml | – start-page: 3113 year: 2014 ident: ref8 article-title: Improved distributed principal component analysis publication-title: Proc Adv Neural Inf Process Syst – ident: ref50 doi: 10.1214/12-AOS1000 – start-page: 427 year: 2013 ident: ref70 article-title: Revisiting Frank-Wolfe: Projection-free sparse convex optimization publication-title: Proc ICML – start-page: 1203 year: 2017 ident: ref12 article-title: Communication-efficient algorithms for distributed stochastic principal component analysis publication-title: Proc Int Conf Mach Learn – volume: 2 start-page: 1101 year: 2002 ident: ref40 article-title: An analysis of the fast subspace tracking algorithm NOja publication-title: Proc IEEE Int Conf Acoust Speech Signal Process (ICASSP) – year: 2014 ident: ref35 publication-title: Discrete Cosine Transform Algorithms Advantages Applications – volume: 16 start-page: 3035 year: 2015 ident: ref57 article-title: Eigenwords: Spectral word embeddings publication-title: J Mach Learn Res – ident: ref60 doi: 10.1109/TSP.2017.2698365 – ident: ref49 doi: 10.1137/090761793 – ident: ref62 doi: 10.1109/TSP.2006.881199 – volume: 2 start-page: 559 year: 1901 ident: ref4 article-title: On lines and planes of closest fit to systems of points in space publication-title: Philos Mag doi: 10.1080/14786440109462720 – ident: ref71 doi: 10.1109/TAC.2017.2685559 – ident: ref65 doi: 10.1109/CAMSAP.2013.6714025 – ident: ref58 doi: 10.1137/130919222 – start-page: 1040 year: 2014 ident: ref10 article-title: Principal component analysis and higher correlations for distributed data publication-title: Proc Conf Learn Theory – ident: ref27 doi: 10.1016/j.sigpro.2014.03.037 – year: 2017 ident: ref9 publication-title: Distributed estimation of principal eigenspaces – volume: 11 start-page: 2287 year: 2010 ident: ref73 article-title: Spectral regularization algorithms for learning large incomplete matrices publication-title: J Mach Learn Res – ident: ref77 doi: 10.1145/2339530.2339583 – ident: ref78 doi: 10.1109/TSP.2015.2454476 – ident: ref28 doi: 10.1109/CDC.2012.6425898 – ident: ref46 doi: 10.1080/01621459.1963.10500845 – ident: ref1 doi: 10.1109/79.526899 – start-page: 144 year: 2015 ident: ref79 article-title: A stochastic PCA and SVD algorithm with an exponential convergence rate publication-title: Proc ICML – ident: ref41 doi: 10.1109/TAC.2008.2009515 – ident: ref43 doi: 10.1109/TSP.2015.2472372 – ident: ref25 doi: 10.1109/ICASSP.2017.7952812 – start-page: 327 year: 2004 ident: ref15 article-title: Global principal component analysis for dimensionality reduction in distributed data mining publication-title: Data Mining and Knowledge Discovery – ident: ref6 doi: 10.1145/1015330.1015408 – year: 2002 ident: ref7 article-title: Principal component analysis for dimension reduction in massive distributed data sets publication-title: Proc IEEE Int Conf Data Mining (ICDM) – ident: ref34 doi: 10.1109/T-C.1974.223784 – ident: ref47 doi: 10.1561/2200000016 – start-page: 2861 year: 2014 ident: ref45 article-title: The noisy power method: A meta algorithm with applications publication-title: Proc Adv Neural Inf Process Syst – ident: ref31 doi: 10.1016/0022-247X(85)90131-3 – ident: ref29 doi: 10.1016/j.neucom.2014.11.076 – ident: ref21 doi: 10.1109/TSP.2016.2523448 – start-page: 171 year: 2014 ident: ref17 article-title: Dimensionality reduction in decentralized networks by gossip aggregation of principal components analyzers publication-title: Proc Eur Symp Artif Neural Netw -Adv Comput Intell Learn – year: 2006 ident: ref3 publication-title: Pattern Recognition and Machine Learning – ident: ref26 doi: 10.1109/TSP.2009.2025806 – ident: ref64 doi: 10.1145/1553374.1553463 – ident: ref63 doi: 10.1109/CVPR.2010.5539989 – ident: ref44 doi: 10.1109/ICASSP.2017.7952998 – ident: ref18 doi: 10.1109/ACSSC.2008.5074720 – ident: ref67 doi: 10.1109/ICASSP.2015.7178631 – start-page: 471 year: 2005 ident: ref13 article-title: Principal component analysis for distributed data sets with updating publication-title: Proc Int Workshop Adv Parallel Process Technol – ident: ref22 doi: 10.1145/1993744.1993764 – ident: ref69 doi: 10.1007/s10208-009-9045-5 – ident: ref56 doi: 10.1162/0899766042321814 – ident: ref33 doi: 10.1109/JPROC.2010.2052531 – ident: ref24 doi: 10.1109/TSP.2015.2465300 – ident: ref23 doi: 10.1109/JSTSP.2011.2118742 – year: 2017 ident: ref81 publication-title: Accelerated stochastic power iteration – ident: ref36 doi: 10.1109/83.650856 – ident: ref61 doi: 10.1109/TSP.2015.2443729 – start-page: 2741 year: 2016 ident: ref59 article-title: Efficient algorithms for large-scale generalized eigenvector computation and canonical correlation analysis publication-title: Proc Int Conf Mach Learn – ident: ref54 doi: 10.1093/biomet/28.3-4.321 – ident: ref48 doi: 10.1145/1970392.1970395 – start-page: 3174 year: 2013 ident: ref38 article-title: The fast convergence of incremental PCA publication-title: Proc NIPS – ident: ref51 doi: 10.1109/EUSIPCO.2015.7362841 – ident: ref20 doi: 10.1109/ICASSP.2009.4960343 – start-page: 236 year: 2016 ident: ref11 article-title: Optimal principal component analysis in distributed and streaming models publication-title: Proc 48th Annu ACM Symp Theory Comput STOC doi: 10.1145/2897518.2897646 – ident: ref39 doi: 10.1109/97.928678 – start-page: 1529 year: 2017 ident: ref68 article-title: Prox-PDA: The proximal primal-dual algorithm for fast distributed nonconvex optimization and learning over networks publication-title: Proc Int Conf Mach Learn – year: 1984 ident: ref32 article-title: Problems in decentralized decision making and computation – ident: ref53 doi: 10.1109/TSP.2013.2279080 – ident: ref14 doi: 10.1007/PL00011677 – start-page: 2897 year: 2014 ident: ref74 article-title: A statistical model for tensor PCA publication-title: Proc Adv Neural Inf Process Syst – year: 2013 ident: ref30 publication-title: Matrix Computations doi: 10.56021/9781421407944 – ident: ref75 doi: 10.1109/MSP.2013.2297439 – year: 1997 ident: ref2 publication-title: Introduction to Spectral Analysis – ident: ref52 doi: 10.1109/ALLERTON.2015.7447088 – ident: ref19 doi: 10.3390/s8084821 – start-page: 167 year: 2002 ident: ref16 article-title: Distributed dimension reduction algorithms for widely dispersed data publication-title: IASTED PDCS – start-page: 974 year: 2016 ident: ref80 article-title: LazySVD: Even faster SVD decomposition yet without agonizing pain publication-title: Proc Adv Neural Inf Process Syst – ident: ref76 doi: 10.1109/ICASSP.2014.6853551 – volume: 46 year: 2004 ident: ref37 publication-title: Independent Component Analysis – ident: ref66 doi: 10.1109/TSP.2014.2385045 – start-page: 849 year: 2002 ident: ref5 article-title: On spectral clustering: Analysis and an algorithm publication-title: Proc Adv Neural Inf Process Syst – year: 2017 ident: ref72 publication-title: A distributed Frank-Wolfe framework for learning low-rank matrices with the trace norm – ident: ref55 doi: 10.1109/MSP.2010.936725 – ident: ref42 doi: 10.1109/TIT.2006.874516 |
| SSID | ssj0003563 |
| Score | 2.5953336 |
| Snippet | Principal component analysis (PCA) is a fundamental primitive of many data analysis, array processing, and machine learning methods. In applications where... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1321 |
| SubjectTerms | Algorithms Arrays Clustering algorithms Communication Covariance Data acquisition systems Data analysis data mining Distributed algorithms Distributed databases Machine learning Machine learning algorithms Mathematical analysis Principal component analysis Principal components analysis radar signal processing Signal processing algorithms Statistical analysis |
| Title | A Review of Distributed Algorithms for Principal Component Analysis |
| URI | https://ieeexplore.ieee.org/document/8425655 https://www.proquest.com/docview/2083988216 |
| Volume | 106 |
| WOSCitedRecordID | wos000440944700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2256 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003563 issn: 0018-9219 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4A8aAHX2hE0fTgTRfYVx9HghLjAYnRhNum24eSIBhY_P1Od5eNRmPiZbOHmXbzdTsznbbzAVxSHsdKUuWlWhovkqH1pBTUE_jQKfqXMJA52QQbjfhkIsY1uK7uwhhj8sNnpuNe8718vVBrlyrrui0jGsd1qDPGirtaldUN45I1zccJjNNwc0GmJ7r348eHgTvFxTtojDGA4d-cUM6q8sMU5_5luPe_L9uH3TKOJP1i4A-gZuaHsPOlumATBn1SZP7JwpIbVyDXcVsZTfqzl8Vymr2-rQiGrGRc5NuxNWccFnPsiWxqlRzB8_D2aXDnlZwJngpEnHla00Azqrj0bRj0bGisVEKnnMpIpoGUPA1wRBAsE6RB6mtjmbQY00TKMKtseAyNOfZ0AsRKiuGZ0DzUccTQqVkmNOUozGQvsn4L_A2IiSoLijtei1mSLyx6IsmBTxzwSQl8C64qnfeinMaf0k0HdSVZotyC9masknLGrVAPQz1cLvj09HetM9h2bReH99rQyJZrcw5b6iObrpYX-c_0CRtjx70 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2VggQc2BFl9YEbhDZO4tjHqoDKVioEErfI8QJI0KIufD_jbAKBkLhEOczE0bM98zy2ZwAOGY8iJZnyUi2NF8rAelIK5gl86BT9S0BlVmwi7vX446Po1-C4ugtjjMkOn5kT95rt5euhmrpQWdNtGbEomoHZKAypn9_WquxuEBV103ycwjgRyysyLdG87N_ddtw5Ln6C5hgpDP_mhrK6Kj-MceZhzpf_928rsFQwSdLOu34VamawBotf8guuQ6dN8tg_GVpy6lLkuupWRpP269Nw9DJ5fhsTJK2kn0fc8WvOPAwH2BIps5VswMP52X2n6xVVEzxFRTTxtGZUx0xx6duAtmxgrFRCp5zJUKZUSp5S7BMEy9CUpr42NpYWWU2oTGyVDTahPsCWtoBYyZCgCc0DHYUxujUbC804CseyFVq_AX4JYqKKlOKussVrki0tWiLJgE8c8EkBfAOOKp33PKHGn9LrDupKskC5AbtlXyXFnBujHpI9XDD4bPt3rQOY797fXCfXF72rHVhw7eRH-XahPhlNzR7MqY_Jy3i0nw2sT6nkywQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Distributed+Algorithms+for+Principal+Component+Analysis&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Wu%2C+Sissi+Xiaoxiao&rft.au=Wai%2C+Hoi-To&rft.au=Li%2C+Lin&rft.au=Scaglione%2C+Anna&rft.date=2018-08-01&rft.pub=IEEE&rft.issn=0018-9219&rft.volume=106&rft.issue=8&rft.spage=1321&rft.epage=1340&rft_id=info:doi/10.1109%2FJPROC.2018.2846568&rft.externalDocID=8425655 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon |