A Review of Distributed Algorithms for Principal Component Analysis

Principal component analysis (PCA) is a fundamental primitive of many data analysis, array processing, and machine learning methods. In applications where extremely large arrays of data are involved, particularly in distributed data acquisition systems, distributed PCA algorithms can harness local c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE Jg. 106; H. 8; S. 1321 - 1340
Hauptverfasser: Wu, Sissi Xiaoxiao, Wai, Hoi-To, Li, Lin, Scaglione, Anna
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9219, 1558-2256
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Principal component analysis (PCA) is a fundamental primitive of many data analysis, array processing, and machine learning methods. In applications where extremely large arrays of data are involved, particularly in distributed data acquisition systems, distributed PCA algorithms can harness local communications and network connectivity to overcome the need of communicating and accessing the entire array locally. A key feature of distributed PCA algorithm is that they defy the conventional notion that the first step toward computing the principal vectors is to form a sample covariance. This paper is a survey of the methodologies to perform distributed PCA on different data sets, their performance, and of their applications in the context of distributed data acquisition systems.
AbstractList Principal component analysis (PCA) is a fundamental primitive of many data analysis, array processing, and machine learning methods. In applications where extremely large arrays of data are involved, particularly in distributed data acquisition systems, distributed PCA algorithms can harness local communications and network connectivity to overcome the need of communicating and accessing the entire array locally. A key feature of distributed PCA algorithm is that they defy the conventional notion that the first step toward computing the principal vectors is to form a sample covariance. This paper is a survey of the methodologies to perform distributed PCA on different data sets, their performance, and of their applications in the context of distributed data acquisition systems.
Author Li, Lin
Wai, Hoi-To
Scaglione, Anna
Wu, Sissi Xiaoxiao
Author_xml – sequence: 1
  givenname: Sissi Xiaoxiao
  orcidid: 0000-0003-3451-5603
  surname: Wu
  fullname: Wu, Sissi Xiaoxiao
  email: xxwu.eesissi@szu.edu.cn
  organization: Department of Communication and Information Engineering, Shenzhen University, China
– sequence: 2
  givenname: Hoi-To
  orcidid: 0000-0003-4796-4483
  surname: Wai
  fullname: Wai, Hoi-To
  email: htwai.Scaglione@asu.edu
  organization: Ira A. Fulton School of Electrical Computer and Energy Engineering, Arizona State University, USA
– sequence: 3
  givenname: Lin
  surname: Li
  fullname: Li, Lin
  email: lin.li@ll.mit.edu
  organization: Massachusetts Institute of Technology Lincoln Laboratory, USA
– sequence: 4
  givenname: Anna
  surname: Scaglione
  fullname: Scaglione, Anna
  email: Anna.Scaglione@asu.edu
  organization: Ira A. Fulton School of Electrical Computer and Energy Engineering, Arizona State University, USA
BookMark eNp9kL1OwzAURi1UJNrCC8BiiTnBdmLXGaPwr0qtKpgtx7HBVRoH2wX17UlpxcDAdIf7nXs_nQkYda7TAFxilGKMipvn5WpRpQRhnhKeM8r4CRhjSnlCCGUjMEbDKikILs7AJIQ1QiijLBuDqoQr_Wn1F3QG3toQva23UTewbN-ct_F9E6BxHi697ZTtZQsrt-mH512EZSfbXbDhHJwa2QZ9cZxT8Hp_91I9JvPFw1NVzhNFChqTpmGkmTHFJTYZQSbTRqqiqTmTuayJlLwmudzX0qQmNW60mUmDaZErPTPKZFNwfbjbe_ex1SGKtdv6oUQQBPGs4JxgNqT4IaW8C8FrI5SNMlrXRS9tKzASe2XiR5nYKxNHZQNK_qC9txvpd_9DVwfIaq1_AZ4P3inNvgGwKHq3
CODEN IEEPAD
CitedBy_id crossref_primary_10_1016_j_aquaculture_2020_735931
crossref_primary_10_1587_transfun_2024EAP1122
crossref_primary_10_1093_bioadv_vbac026
crossref_primary_10_1016_j_ymssp_2022_109781
crossref_primary_10_1007_s11783_024_1789_2
crossref_primary_10_1177_00368504221137461
crossref_primary_10_1016_j_sigpro_2025_110233
crossref_primary_10_1109_JIOT_2025_3557408
crossref_primary_10_1016_j_compbiolchem_2025_108412
crossref_primary_10_1038_s41598_023_37795_6
crossref_primary_10_1049_htl2_12073
crossref_primary_10_3390_s23167041
crossref_primary_10_1109_TPAMI_2025_3537318
crossref_primary_10_1002_admt_202400554
crossref_primary_10_1109_TCCN_2021_3105554
crossref_primary_10_1016_j_jwpe_2025_107411
crossref_primary_10_1109_TSP_2021_3101015
crossref_primary_10_1109_TSG_2021_3066577
crossref_primary_10_1007_s13198_024_02382_z
crossref_primary_10_1109_JSTSP_2022_3157437
crossref_primary_10_1109_TSIPN_2020_3002613
crossref_primary_10_1016_j_dsp_2025_105150
crossref_primary_10_1111_os_13406
crossref_primary_10_1051_itmconf_20246401017
crossref_primary_10_1007_s10994_024_06620_0
crossref_primary_10_1590_0001_3765202420230409
crossref_primary_10_1109_JSEN_2020_2972542
crossref_primary_10_1016_j_sigpro_2021_108408
crossref_primary_10_1109_TIT_2024_3442211
crossref_primary_10_1016_j_cpc_2025_109644
crossref_primary_10_1109_TSIPN_2023_3302658
crossref_primary_10_1007_s10489_022_04192_x
crossref_primary_10_3390_agronomy13112844
crossref_primary_10_1007_s10618_023_00983_z
crossref_primary_10_1109_TNET_2024_3423780
crossref_primary_10_1016_j_dsp_2023_104225
crossref_primary_10_3233_JIFS_211114
crossref_primary_10_1016_j_snb_2024_137086
crossref_primary_10_1109_TGCN_2022_3171681
crossref_primary_10_1016_j_knosys_2024_111653
crossref_primary_10_1631_FITEE_2200268
crossref_primary_10_1109_TNNLS_2023_3336957
crossref_primary_10_1109_TSP_2022_3229635
crossref_primary_10_1109_TSP_2023_3239806
crossref_primary_10_1109_ACCESS_2019_2906784
crossref_primary_10_1016_j_dsr_2022_103886
crossref_primary_10_1016_j_envsoft_2019_02_015
crossref_primary_10_1088_1742_6596_2449_1_012001
crossref_primary_10_1109_TII_2023_3323685
crossref_primary_10_1109_TSP_2022_3186540
crossref_primary_10_1109_TSIPN_2021_3122297
crossref_primary_10_1016_j_sigpro_2023_109307
crossref_primary_10_1155_2022_5665408
crossref_primary_10_1109_TAES_2023_3267439
crossref_primary_10_1016_j_chemolab_2020_104038
crossref_primary_10_1080_10618600_2025_2561234
crossref_primary_10_1016_j_physa_2024_130308
Cites_doi 10.1214/12-AOS1000
10.1109/TSP.2017.2698365
10.1137/090761793
10.1109/TSP.2006.881199
10.1080/14786440109462720
10.1109/TAC.2017.2685559
10.1109/CAMSAP.2013.6714025
10.1137/130919222
10.1016/j.sigpro.2014.03.037
10.1145/2339530.2339583
10.1109/TSP.2015.2454476
10.1109/CDC.2012.6425898
10.1080/01621459.1963.10500845
10.1109/79.526899
10.1109/TAC.2008.2009515
10.1109/TSP.2015.2472372
10.1109/ICASSP.2017.7952812
10.1145/1015330.1015408
10.1109/T-C.1974.223784
10.1561/2200000016
10.1016/0022-247X(85)90131-3
10.1016/j.neucom.2014.11.076
10.1109/TSP.2016.2523448
10.1109/TSP.2009.2025806
10.1145/1553374.1553463
10.1109/CVPR.2010.5539989
10.1109/ICASSP.2017.7952998
10.1109/ACSSC.2008.5074720
10.1109/ICASSP.2015.7178631
10.1145/1993744.1993764
10.1007/s10208-009-9045-5
10.1162/0899766042321814
10.1109/JPROC.2010.2052531
10.1109/TSP.2015.2465300
10.1109/JSTSP.2011.2118742
10.1109/83.650856
10.1109/TSP.2015.2443729
10.1093/biomet/28.3-4.321
10.1145/1970392.1970395
10.1109/EUSIPCO.2015.7362841
10.1109/ICASSP.2009.4960343
10.1145/2897518.2897646
10.1109/97.928678
10.1109/TSP.2013.2279080
10.1007/PL00011677
10.56021/9781421407944
10.1109/MSP.2013.2297439
10.1109/ALLERTON.2015.7447088
10.3390/s8084821
10.1109/ICASSP.2014.6853551
10.1109/TSP.2014.2385045
10.1109/MSP.2010.936725
10.1109/TIT.2006.874516
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JPROC.2018.2846568
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2256
EndPage 1340
ExternalDocumentID 10_1109_JPROC_2018_2846568
8425655
Genre orig-research
GrantInformation_xml – fundername: Shenzhen Technology R&D Fund
  grantid: JCYJ20170817101149906; JCYJ20170302145906843
– fundername: National Science Foundation
  grantid: EAGER CCF 1553746; NSF CCF-BSF 1714672; BSF 2016660
  funderid: 10.13039/100000001
– fundername: U.S. Air Force
  grantid: FA8721-05-C-0002; FA8702-15-D-0001
  funderid: 10.13039/100006831
– fundername: National Natural Science Foundation of China
  grantid: 61701315
  funderid: 10.13039/501100001809
– fundername: Shenzhen University
  grantid: 2018018
  funderid: 10.13039/501100009019
GroupedDBID -DZ
-~X
.DC
0R~
123
1OL
29P
3EH
4.4
6IK
85S
97E
9M8
AAJGR
AAWTH
ABAZT
ABFSI
ABJNI
ABQJQ
ABVLG
ACBEA
ACGFS
AENEX
AETEA
AETIX
AFOGA
AGNAY
AGQYO
AGSQL
AHBIQ
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
FA8
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MVM
O9-
OCL
RIA
RIE
RIU
RNS
TAE
TN5
TWZ
UDY
UHB
UKR
UQL
VOH
WHG
XJT
XOL
YNT
ZCA
ZXP
ZY4
~02
AAYXX
CITATION
7SP
8FD
L7M
RIG
ID FETCH-LOGICAL-c295t-dd62d76c8a1f320f3efac9db86a4ab2aa8b24a3563e2b2b1def7af1594ce7fcf3
IEDL.DBID RIE
ISICitedReferencesCount 83
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440944700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9219
IngestDate Fri Jul 25 19:08:02 EDT 2025
Tue Nov 18 22:42:23 EST 2025
Sat Nov 29 03:15:13 EST 2025
Wed Aug 27 02:43:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-dd62d76c8a1f320f3efac9db86a4ab2aa8b24a3563e2b2b1def7af1594ce7fcf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4796-4483
0000-0003-3451-5603
PQID 2083988216
PQPubID 85453
PageCount 20
ParticipantIDs crossref_citationtrail_10_1109_JPROC_2018_2846568
ieee_primary_8425655
crossref_primary_10_1109_JPROC_2018_2846568
proquest_journals_2083988216
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Proceedings of the IEEE
PublicationTitleAbbrev JPROC
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref56
hyvärinen (ref37) 2004; 46
ref58
ref14
ref53
ref52
ref55
ref54
ref19
allen-zhu (ref80) 2016
golub (ref30) 2013
ref18
rao (ref35) 2014
bishop (ref3) 2006
kannan (ref10) 2014
ref51
ref50
jaggi (ref70) 2013
ref46
de sa (ref81) 2017
richard (ref74) 2014
ref48
ref47
ref42
ref41
ref44
ref43
liang (ref8) 2014
ref49
garber (ref12) 2017
fan (ref9) 2017
ref6
tsitsiklis (ref32) 1984
ge (ref59) 2016
manton (ref40) 2002; 2
hardt (ref45) 2014
ref78
ref34
ref36
ref75
ref31
ref77
balsubramani (ref38) 2013
ref33
ng (ref5) 2002
ref76
zheng (ref72) 2017
shamir (ref79) 2015
ref1
fellus (ref17) 2014
ref39
bai (ref13) 2005
ref71
pearson (ref4) 1901; 2
abu-khzam (ref16) 2002
ref24
ref67
ref23
mazumder (ref73) 2010; 11
hong (ref68) 2017
ref26
dhillon (ref57) 2015; 16
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
boutsidis (ref11) 2016
qu (ref7) 2002
ref28
ref27
qi (ref15) 2004
ref29
stoica (ref2) 1997
ref60
ref62
ref61
References_xml – start-page: 3113
  year: 2014
  ident: ref8
  article-title: Improved distributed principal component analysis
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref50
  doi: 10.1214/12-AOS1000
– start-page: 427
  year: 2013
  ident: ref70
  article-title: Revisiting Frank-Wolfe: Projection-free sparse convex optimization
  publication-title: Proc ICML
– start-page: 1203
  year: 2017
  ident: ref12
  article-title: Communication-efficient algorithms for distributed stochastic principal component analysis
  publication-title: Proc Int Conf Mach Learn
– volume: 2
  start-page: 1101
  year: 2002
  ident: ref40
  article-title: An analysis of the fast subspace tracking algorithm NOja
  publication-title: Proc IEEE Int Conf Acoust Speech Signal Process (ICASSP)
– year: 2014
  ident: ref35
  publication-title: Discrete Cosine Transform Algorithms Advantages Applications
– volume: 16
  start-page: 3035
  year: 2015
  ident: ref57
  article-title: Eigenwords: Spectral word embeddings
  publication-title: J Mach Learn Res
– ident: ref60
  doi: 10.1109/TSP.2017.2698365
– ident: ref49
  doi: 10.1137/090761793
– ident: ref62
  doi: 10.1109/TSP.2006.881199
– volume: 2
  start-page: 559
  year: 1901
  ident: ref4
  article-title: On lines and planes of closest fit to systems of points in space
  publication-title: Philos Mag
  doi: 10.1080/14786440109462720
– ident: ref71
  doi: 10.1109/TAC.2017.2685559
– ident: ref65
  doi: 10.1109/CAMSAP.2013.6714025
– ident: ref58
  doi: 10.1137/130919222
– start-page: 1040
  year: 2014
  ident: ref10
  article-title: Principal component analysis and higher correlations for distributed data
  publication-title: Proc Conf Learn Theory
– ident: ref27
  doi: 10.1016/j.sigpro.2014.03.037
– year: 2017
  ident: ref9
  publication-title: Distributed estimation of principal eigenspaces
– volume: 11
  start-page: 2287
  year: 2010
  ident: ref73
  article-title: Spectral regularization algorithms for learning large incomplete matrices
  publication-title: J Mach Learn Res
– ident: ref77
  doi: 10.1145/2339530.2339583
– ident: ref78
  doi: 10.1109/TSP.2015.2454476
– ident: ref28
  doi: 10.1109/CDC.2012.6425898
– ident: ref46
  doi: 10.1080/01621459.1963.10500845
– ident: ref1
  doi: 10.1109/79.526899
– start-page: 144
  year: 2015
  ident: ref79
  article-title: A stochastic PCA and SVD algorithm with an exponential convergence rate
  publication-title: Proc ICML
– ident: ref41
  doi: 10.1109/TAC.2008.2009515
– ident: ref43
  doi: 10.1109/TSP.2015.2472372
– ident: ref25
  doi: 10.1109/ICASSP.2017.7952812
– start-page: 327
  year: 2004
  ident: ref15
  article-title: Global principal component analysis for dimensionality reduction in distributed data mining
  publication-title: Data Mining and Knowledge Discovery
– ident: ref6
  doi: 10.1145/1015330.1015408
– year: 2002
  ident: ref7
  article-title: Principal component analysis for dimension reduction in massive distributed data sets
  publication-title: Proc IEEE Int Conf Data Mining (ICDM)
– ident: ref34
  doi: 10.1109/T-C.1974.223784
– ident: ref47
  doi: 10.1561/2200000016
– start-page: 2861
  year: 2014
  ident: ref45
  article-title: The noisy power method: A meta algorithm with applications
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref31
  doi: 10.1016/0022-247X(85)90131-3
– ident: ref29
  doi: 10.1016/j.neucom.2014.11.076
– ident: ref21
  doi: 10.1109/TSP.2016.2523448
– start-page: 171
  year: 2014
  ident: ref17
  article-title: Dimensionality reduction in decentralized networks by gossip aggregation of principal components analyzers
  publication-title: Proc Eur Symp Artif Neural Netw -Adv Comput Intell Learn
– year: 2006
  ident: ref3
  publication-title: Pattern Recognition and Machine Learning
– ident: ref26
  doi: 10.1109/TSP.2009.2025806
– ident: ref64
  doi: 10.1145/1553374.1553463
– ident: ref63
  doi: 10.1109/CVPR.2010.5539989
– ident: ref44
  doi: 10.1109/ICASSP.2017.7952998
– ident: ref18
  doi: 10.1109/ACSSC.2008.5074720
– ident: ref67
  doi: 10.1109/ICASSP.2015.7178631
– start-page: 471
  year: 2005
  ident: ref13
  article-title: Principal component analysis for distributed data sets with updating
  publication-title: Proc Int Workshop Adv Parallel Process Technol
– ident: ref22
  doi: 10.1145/1993744.1993764
– ident: ref69
  doi: 10.1007/s10208-009-9045-5
– ident: ref56
  doi: 10.1162/0899766042321814
– ident: ref33
  doi: 10.1109/JPROC.2010.2052531
– ident: ref24
  doi: 10.1109/TSP.2015.2465300
– ident: ref23
  doi: 10.1109/JSTSP.2011.2118742
– year: 2017
  ident: ref81
  publication-title: Accelerated stochastic power iteration
– ident: ref36
  doi: 10.1109/83.650856
– ident: ref61
  doi: 10.1109/TSP.2015.2443729
– start-page: 2741
  year: 2016
  ident: ref59
  article-title: Efficient algorithms for large-scale generalized eigenvector computation and canonical correlation analysis
  publication-title: Proc Int Conf Mach Learn
– ident: ref54
  doi: 10.1093/biomet/28.3-4.321
– ident: ref48
  doi: 10.1145/1970392.1970395
– start-page: 3174
  year: 2013
  ident: ref38
  article-title: The fast convergence of incremental PCA
  publication-title: Proc NIPS
– ident: ref51
  doi: 10.1109/EUSIPCO.2015.7362841
– ident: ref20
  doi: 10.1109/ICASSP.2009.4960343
– start-page: 236
  year: 2016
  ident: ref11
  article-title: Optimal principal component analysis in distributed and streaming models
  publication-title: Proc 48th Annu ACM Symp Theory Comput STOC
  doi: 10.1145/2897518.2897646
– ident: ref39
  doi: 10.1109/97.928678
– start-page: 1529
  year: 2017
  ident: ref68
  article-title: Prox-PDA: The proximal primal-dual algorithm for fast distributed nonconvex optimization and learning over networks
  publication-title: Proc Int Conf Mach Learn
– year: 1984
  ident: ref32
  article-title: Problems in decentralized decision making and computation
– ident: ref53
  doi: 10.1109/TSP.2013.2279080
– ident: ref14
  doi: 10.1007/PL00011677
– start-page: 2897
  year: 2014
  ident: ref74
  article-title: A statistical model for tensor PCA
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2013
  ident: ref30
  publication-title: Matrix Computations
  doi: 10.56021/9781421407944
– ident: ref75
  doi: 10.1109/MSP.2013.2297439
– year: 1997
  ident: ref2
  publication-title: Introduction to Spectral Analysis
– ident: ref52
  doi: 10.1109/ALLERTON.2015.7447088
– ident: ref19
  doi: 10.3390/s8084821
– start-page: 167
  year: 2002
  ident: ref16
  article-title: Distributed dimension reduction algorithms for widely dispersed data
  publication-title: IASTED PDCS
– start-page: 974
  year: 2016
  ident: ref80
  article-title: LazySVD: Even faster SVD decomposition yet without agonizing pain
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref76
  doi: 10.1109/ICASSP.2014.6853551
– volume: 46
  year: 2004
  ident: ref37
  publication-title: Independent Component Analysis
– ident: ref66
  doi: 10.1109/TSP.2014.2385045
– start-page: 849
  year: 2002
  ident: ref5
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2017
  ident: ref72
  publication-title: A distributed Frank-Wolfe framework for learning low-rank matrices with the trace norm
– ident: ref55
  doi: 10.1109/MSP.2010.936725
– ident: ref42
  doi: 10.1109/TIT.2006.874516
SSID ssj0003563
Score 2.5953336
Snippet Principal component analysis (PCA) is a fundamental primitive of many data analysis, array processing, and machine learning methods. In applications where...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1321
SubjectTerms Algorithms
Arrays
Clustering algorithms
Communication
Covariance
Data acquisition systems
Data analysis
data mining
Distributed algorithms
Distributed databases
Machine learning
Machine learning algorithms
Mathematical analysis
Principal component analysis
Principal components analysis
radar signal processing
Signal processing algorithms
Statistical analysis
Title A Review of Distributed Algorithms for Principal Component Analysis
URI https://ieeexplore.ieee.org/document/8425655
https://www.proquest.com/docview/2083988216
Volume 106
WOSCitedRecordID wos000440944700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2256
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003563
  issn: 0018-9219
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4A8aAHX2hE0fTgTRfYVx9HghLjAYnRhNum24eSIBhY_P1Od5eNRmPiZbOHmXbzdTsznbbzAVxSHsdKUuWlWhovkqH1pBTUE_jQKfqXMJA52QQbjfhkIsY1uK7uwhhj8sNnpuNe8718vVBrlyrrui0jGsd1qDPGirtaldUN45I1zccJjNNwc0GmJ7r348eHgTvFxTtojDGA4d-cUM6q8sMU5_5luPe_L9uH3TKOJP1i4A-gZuaHsPOlumATBn1SZP7JwpIbVyDXcVsZTfqzl8Vymr2-rQiGrGRc5NuxNWccFnPsiWxqlRzB8_D2aXDnlZwJngpEnHla00Azqrj0bRj0bGisVEKnnMpIpoGUPA1wRBAsE6RB6mtjmbQY00TKMKtseAyNOfZ0AsRKiuGZ0DzUccTQqVkmNOUozGQvsn4L_A2IiSoLijtei1mSLyx6IsmBTxzwSQl8C64qnfeinMaf0k0HdSVZotyC9masknLGrVAPQz1cLvj09HetM9h2bReH99rQyJZrcw5b6iObrpYX-c_0CRtjx70
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2VggQc2BFl9YEbhDZO4tjHqoDKVioEErfI8QJI0KIufD_jbAKBkLhEOczE0bM98zy2ZwAOGY8iJZnyUi2NF8rAelIK5gl86BT9S0BlVmwi7vX446Po1-C4ugtjjMkOn5kT95rt5euhmrpQWdNtGbEomoHZKAypn9_WquxuEBV103ycwjgRyysyLdG87N_ddtw5Ln6C5hgpDP_mhrK6Kj-MceZhzpf_928rsFQwSdLOu34VamawBotf8guuQ6dN8tg_GVpy6lLkuupWRpP269Nw9DJ5fhsTJK2kn0fc8WvOPAwH2BIps5VswMP52X2n6xVVEzxFRTTxtGZUx0xx6duAtmxgrFRCp5zJUKZUSp5S7BMEy9CUpr42NpYWWU2oTGyVDTahPsCWtoBYyZCgCc0DHYUxujUbC804CseyFVq_AX4JYqKKlOKussVrki0tWiLJgE8c8EkBfAOOKp33PKHGn9LrDupKskC5AbtlXyXFnBujHpI9XDD4bPt3rQOY797fXCfXF72rHVhw7eRH-XahPhlNzR7MqY_Jy3i0nw2sT6nkywQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Distributed+Algorithms+for+Principal+Component+Analysis&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Wu%2C+Sissi+Xiaoxiao&rft.au=Wai%2C+Hoi-To&rft.au=Li%2C+Lin&rft.au=Scaglione%2C+Anna&rft.date=2018-08-01&rft.pub=IEEE&rft.issn=0018-9219&rft.volume=106&rft.issue=8&rft.spage=1321&rft.epage=1340&rft_id=info:doi/10.1109%2FJPROC.2018.2846568&rft.externalDocID=8425655
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon