Novel Resolution of Unit Commitment Problems Through Quantum Surrogate Lagrangian Relaxation
Unit commitment (UC) problems faced by Independent System Operators on a daily basis are becoming increasingly complex due to the recent push for renewables and the consideration of sub-hourly UC to accommodate the increasing variability in the net load. A disruptive solution methodology to address...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on power systems Jg. 38; H. 3; S. 2460 - 2471 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0885-8950, 1558-0679 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Unit commitment (UC) problems faced by Independent System Operators on a daily basis are becoming increasingly complex due to the recent push for renewables and the consideration of sub-hourly UC to accommodate the increasing variability in the net load. A disruptive solution methodology to address the growing complexity is therefore required. Quantum computing offers a promise to overcome the combinatorial complexity through the use of the so-called "qubits." To make the best use of near-term quantum computers to solve UC problems with a much larger number of binary variables than the number of qubits available, this paper devises a novel solution methodology based on a synergistic combination of quantum computing and Surrogate Lagrangian Relaxation (SLR) to solve UC problems. Our new contributions include: 1) A Quantum-SLR (QSLR) algorithm incorporating quantum approximate optimization algorithm (QAOA) into the SLR method, which overcomes the fundamental difficulties of previous LR-based quantum methods such as zigzagging of multipliers and the need to know or estimate the optimal dual value for convergence; 2) A Distributed QSLR framework (D-QSLR) capable of coordinating local quantum/classical computing resources with those within neighborhoods and, in the meantime, protecting data privacy; 3) A Quantized UC model to obtain accurate commitment unit subproblems decision by using a quantum machine; and 4) A time-unit-decomposed quantum UC approach to overcoming the quantum resources' limitations. Promising quantum test results validate the effectiveness of QSLR and the scalability of the UC-oriented D-QSLR algorithm, which demonstrate QSLR's enormous potential in UC optimization. |
|---|---|
| AbstractList | Unit commitment (UC) problems faced by Independent System Operators on a daily basis are becoming increasingly complex due to the recent push for renewables and the consideration of sub-hourly UC to accommodate the increasing variability in the net load. A disruptive solution methodology to address the growing complexity is therefore required. Quantum computing offers a promise to overcome the combinatorial complexity through the use of the so-called "qubits." To make the best use of near-term quantum computers to solve UC problems with a much larger number of binary variables than the number of qubits available, this paper devises a novel solution methodology based on a synergistic combination of quantum computing and Surrogate Lagrangian Relaxation (SLR) to solve UC problems. Our new contributions include: 1) A Quantum-SLR (QSLR) algorithm incorporating quantum approximate optimization algorithm (QAOA) into the SLR method, which overcomes the fundamental difficulties of previous LR-based quantum methods such as zigzagging of multipliers and the need to know or estimate the optimal dual value for convergence; 2) A Distributed QSLR framework (D-QSLR) capable of coordinating local quantum/classical computing resources with those within neighborhoods and, in the meantime, protecting data privacy; 3) A Quantized UC model to obtain accurate commitment unit subproblems decision by using a quantum machine; and 4) A time-unit-decomposed quantum UC approach to overcoming the quantum resources' limitations. Promising quantum test results validate the effectiveness of QSLR and the scalability of the UC-oriented D-QSLR algorithm, which demonstrate QSLR's enormous potential in UC optimization. |
| Author | Zhang, Peng Zhou, Yifan Feng, Fei Bragin, Mikhail A. |
| Author_xml | – sequence: 1 givenname: Fei orcidid: 0000-0001-7244-6499 surname: Feng fullname: Feng, Fei email: fei.feng@stonybrook.edu organization: Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA – sequence: 2 givenname: Peng orcidid: 0000-0002-8403-8289 surname: Zhang fullname: Zhang, Peng email: p.zhang@stonybrook.edu organization: Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA – sequence: 3 givenname: Mikhail A. orcidid: 0000-0002-7783-9053 surname: Bragin fullname: Bragin, Mikhail A. email: mikhail.bragin@uconn.edu organization: Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA – sequence: 4 givenname: Yifan orcidid: 0000-0002-5839-9339 surname: Zhou fullname: Zhou, Yifan email: yifan.zhou.1@stonybrook.edu organization: Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA |
| BookMark | eNp9kDtPwzAUhS1UJNrCH4DFEnPKtV0nzogqXlIFpQ-xIEVuctOmSuziOAj-PelDDAxMHu75jo--HukYa5CQSwYDxiC-mU_eprMBB84HginGOTshXSalCiCM4g7pglIyULGEM9Kr6w0AhO2hS96f7SeWdIq1LRtfWENtThem8HRkq6rwFRpPJ84uS6xqOl8726zW9LXRxjcVnTXO2ZX2SMd65bRZFdq0XaX-0ruuc3Ka67LGi-PbJ4v7u_noMRi_PDyNbsdBymPpgywFBaj1UspMhXq4FClqGWKE7WCdplJhhkIxCbHgsIxSpSDKhRwOQ9XmMtEn14ferbMfDdY-2djGmfbLhCsIOQcxFG1KHVKps3XtME_Swu93eqeLMmGQ7Fwme5fJzmVydNmi_A-6dUWl3ff_0NUBKhDxF4ijWETtoB9mLINt |
| CODEN | ITPSEG |
| CitedBy_id | crossref_primary_10_1016_j_epsr_2025_111535 crossref_primary_10_1109_TPWRS_2024_3399122 crossref_primary_10_1109_TPWRS_2024_3502246 crossref_primary_10_1016_j_epsr_2023_110084 crossref_primary_10_1016_j_ijepes_2025_111115 crossref_primary_10_1109_TSTE_2023_3309244 crossref_primary_10_1109_ACCESS_2022_3218908 crossref_primary_10_1109_ACCESS_2024_3509743 crossref_primary_10_1109_TQE_2024_3407236 crossref_primary_10_1109_ACCESS_2023_3273928 crossref_primary_10_1016_j_ress_2025_111656 crossref_primary_10_23919_IEN_2025_0009 crossref_primary_10_3390_en18102525 crossref_primary_10_3390_math12244037 crossref_primary_10_1109_TPWRS_2023_3287199 crossref_primary_10_1088_1742_6596_2662_1_012027 crossref_primary_10_1109_TPWRS_2024_3350382 crossref_primary_10_1016_j_epsr_2024_111121 crossref_primary_10_1016_j_epsr_2025_111582 crossref_primary_10_1016_j_est_2025_117304 crossref_primary_10_23919_PCMP_2023_000140 crossref_primary_10_3390_en18071771 crossref_primary_10_1109_TQE_2023_3320872 crossref_primary_10_1109_TPWRS_2025_3534156 crossref_primary_10_1109_TPWRS_2024_3386867 |
| Cites_doi | 10.1561/9781601984616 10.7566/jpsj.88.061010 10.1109/TPWRS.2022.3160384 10.1109/TPWRS.2021.3077382 10.1103/physrevlett.122.140504 10.1038/ncomms5213 10.1103/revmodphys.90.015002 10.1109/TPWRS.2020.2976044 10.1109/TPWRS.2015.2494590 10.1109/TPWRS.2021.3067207 10.1002/2050-7038.12911 10.1109/TASE.2020.2998048 10.1017/9781108596589 10.3389/fphy.2014.00005 10.22331/q-2021-04-08-428 10.1145/227683.227684 10.1038/npjqi.2015.23 10.2307/2322600 10.1103/physrevx.10.021067 10.1007/s10957-014-0561-3 10.1073/pnas.2006373117 10.1109/TPWRS.2020.3011071 10.1109/TPWRS.2021.3137842 10.1109/TSG.2017.2720471 10.1109/TPWRS.2014.2355204 10.1109/MELE.2020.3047167 10.1109/TPWRS.2022.3141794 10.1109/TPWRS.2019.2909664 10.1038/s41598-020-72469-7 10.1109/TPWRS.2022.3172655 10.1017/cbo9780511976667 10.1109/TQE.2020.3033139 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| DOI | 10.1109/TPWRS.2022.3181221 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0679 |
| EndPage | 2471 |
| ExternalDocumentID | 10_1109_TPWRS_2022_3181221 9793720 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: CNS-2006828; ECCS-2018492; ECCS-1810108; OIA-2134840; OIA-2040599 funderid: 10.13039/501100008982 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c295t-dc080eaab55d86a4b3cea56e7e895acc58ede381509320b7c8807f354468a56d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000980444400037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-8950 |
| IngestDate | Fri Jul 25 19:24:53 EDT 2025 Sat Nov 29 02:52:28 EST 2025 Tue Nov 18 22:07:02 EST 2025 Wed Aug 27 02:49:53 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-dc080eaab55d86a4b3cea56e7e895acc58ede381509320b7c8807f354468a56d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7244-6499 0000-0002-5839-9339 0000-0002-7783-9053 0000-0002-8403-8289 |
| PQID | 2806220343 |
| PQPubID | 85441 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_9793720 crossref_citationtrail_10_1109_TPWRS_2022_3181221 crossref_primary_10_1109_TPWRS_2022_3181221 proquest_journals_2806220343 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-May 2023-5-00 20230501 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-May |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on power systems |
| PublicationTitleAbbrev | TPWRS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref34 ref15 ref37 ref14 ref36 ref31 ref11 ref33 ref10 ref32 ref2 ref1 ref16 ref38 ref19 ref18 Sciences (ref30) 2019 Farhi (ref12) 2019 Preskill (ref13) 2012 ref24 ref26 ref25 ref20 ref22 Zahedinejad (ref17) 2017 ref28 ref27 Adrian (ref39) 2020 Farhi (ref21) 2014 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Farhi (ref23) 2015 |
| References_xml | – ident: ref4 doi: 10.1561/9781601984616 – ident: ref31 doi: 10.7566/jpsj.88.061010 – ident: ref7 doi: 10.1109/TPWRS.2022.3160384 – ident: ref15 doi: 10.1109/TPWRS.2021.3077382 – year: 2019 ident: ref12 article-title: Quantum supremacy through the quantum approximate optimization algorithm – year: 2014 ident: ref21 article-title: A quantum approximate optimization algorithm – ident: ref19 doi: 10.1103/physrevlett.122.140504 – ident: ref20 doi: 10.1038/ncomms5213 – ident: ref16 doi: 10.1103/revmodphys.90.015002 – ident: ref2 doi: 10.1109/TPWRS.2020.2976044 – ident: ref3 doi: 10.1109/TPWRS.2015.2494590 – ident: ref14 doi: 10.1109/TPWRS.2021.3067207 – ident: ref10 doi: 10.1002/2050-7038.12911 – year: 2020 ident: ref39 article-title: IBM promises 1000-qubit quantum computer-a milestone-by 2023 – ident: ref27 doi: 10.1109/TASE.2020.2998048 – ident: ref1 doi: 10.1017/9781108596589 – ident: ref32 doi: 10.3389/fphy.2014.00005 – ident: ref18 doi: 10.22331/q-2021-04-08-428 – year: 2015 ident: ref23 article-title: A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem – ident: ref34 doi: 10.1145/227683.227684 – ident: ref35 doi: 10.1038/npjqi.2015.23 – ident: ref38 doi: 10.2307/2322600 – ident: ref22 doi: 10.1103/physrevx.10.021067 – ident: ref29 doi: 10.1007/s10957-014-0561-3 – ident: ref33 doi: 10.1073/pnas.2006373117 – ident: ref8 doi: 10.1109/TPWRS.2020.3011071 – ident: ref37 doi: 10.1109/TPWRS.2021.3137842 – ident: ref5 doi: 10.1109/TSG.2017.2720471 – year: 2012 ident: ref13 article-title: Quantum computing and the entanglement frontier – ident: ref36 doi: 10.1109/TPWRS.2014.2355204 – ident: ref9 doi: 10.1109/MELE.2020.3047167 – ident: ref26 doi: 10.1109/TPWRS.2022.3141794 – volume-title: Quantum Computing: Progress and Prospects year: 2019 ident: ref30 – ident: ref28 doi: 10.1109/TPWRS.2019.2909664 – ident: ref24 doi: 10.1038/s41598-020-72469-7 – ident: ref11 doi: 10.1109/TPWRS.2022.3172655 – ident: ref6 doi: 10.1017/cbo9780511976667 – ident: ref25 doi: 10.1109/TQE.2020.3033139 – year: 2017 ident: ref17 article-title: Combinatorial optimization on gate model quantum computers: A survey |
| SSID | ssj0006679 |
| Score | 2.5648344 |
| Snippet | Unit commitment (UC) problems faced by Independent System Operators on a daily basis are becoming increasingly complex due to the recent push for renewables... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2460 |
| SubjectTerms | Algorithms Approximation algorithms Combinatorial analysis Complexity Complexity theory Computers Distributed quantum optimization Optimization quantum approximate optimization algorithm Quantum computers Quantum computing Quantum entanglement Qubit Qubits (quantum computing) surrogate lagrangian relaxation Unit commitment |
| Title | Novel Resolution of Unit Commitment Problems Through Quantum Surrogate Lagrangian Relaxation |
| URI | https://ieeexplore.ieee.org/document/9793720 https://www.proquest.com/docview/2806220343 |
| Volume | 38 |
| WOSCitedRecordID | wos000980444400037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0679 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006679 issn: 0885-8950 databaseCode: RIE dateStart: 19860101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zeNCDv6Y4nZKDN61r06RJjiIOD2NMN3EHobTJqwzmKts6_PNN0m4oiuCthwTK-5K89yXvfQ-hi8wHqRXTHrA08yjJqJdI7ntUUGUCCkV46iTzu7zXE6OR7NfQ1boWBgBc8hlc20_3lq9zVdirsra0Ym7EEPQNznlZq7U-daOo1NUTgnlCMn9VIOPL9rD__DgwVJAQw1CNQyPBNyfkuqr8OIqdf-ns_u_P9tBOFUfimxL4fVSD6QHa_qIu2EAvvXwJE2wv6MvlhfMM2xgT26qQsUsvx_2yocwcD8uGPfihMLYu3vCgmM1ye8eGu8mrcWivZh1hmzr34bA8RE-du-HtvVc1U_AUkWzhaSspDkmSMqZFlNA0VJCwCDgYayVKMQEajPs2AURI_JQrs7F5FjJDF4UZp8MjVJ_mUzhGmAdaWiG_RGrDXqhIASglhgulYRCxQDdRsLJurCqlcdvwYhI7xuHL2CESW0TiCpEmulzPeS91Nv4c3bAYrEdW5m-i1grEuNqK89g-HRPihzQ8-X3WKdqyPeTLLMYWqi9mBZyhTbVcjOezc7fKPgGnN8-9 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4hmMR4gA2GViibH_YGgcSxE_sRISqmdVUHRfCAFCX2BSGxBrUN4s_n7KQVCDRpb3k4S9F9tu-H774D-FGGqK2RNkBZlIHgpQhynYaBUMKQQ2F4WnjK_H46GKjraz1cgoNFLwwi-uIzPHSf_i3fVqZ2qbIj7cjcOAXoK1IIHjXdWot7N0kaZj2lZKC0DOctMqE-Gg2vzi8oGOScYlQyaTx6ZYb8XJU3l7G3ML2N__u3T7DeepLsuIH-MyzheBPWXvALbsHNoHrEe-ZS9M0GY1XJnJfJXF_InS8wZ8NmpMyUjZqRPexPTdqu_7KLejKpXJaN9fNbMmm3tJOYK5578mh-gcve6ejkLGjHKQSGazkLrCMVxzwvpLQqyUURG8xlgimStnJjpEKLZMDJhYh5WKSGjnZaxqTqRJGcjbdheVyN8SuwNLLaUfnl2lL8IlSBSIBQNFTEUSIj24Fort3MtFzjbuTFfeZjjlBnHpHMIZK1iHRgf7HmoWHa-Kf0lsNgIdmqvwPdOYhZexinmXs85jyMRbzz_qrvsHo2-t3P-j8Hv3bho5so39Q0dmF5NqlxDz6Yx9nddPLN77hnnnzTBA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Resolution+of+Unit+Commitment+Problems+Through+Quantum+Surrogate+Lagrangian+Relaxation&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Feng%2C+Fei&rft.au=Zhang%2C+Peng&rft.au=Bragin%2C+Mikhail+A.&rft.au=Zhou%2C+Yifan&rft.date=2023-05-01&rft.pub=IEEE&rft.issn=0885-8950&rft.volume=38&rft.issue=3&rft.spage=2460&rft.epage=2471&rft_id=info:doi/10.1109%2FTPWRS.2022.3181221&rft.externalDocID=9793720 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon |