Novel Resolution of Unit Commitment Problems Through Quantum Surrogate Lagrangian Relaxation

Unit commitment (UC) problems faced by Independent System Operators on a daily basis are becoming increasingly complex due to the recent push for renewables and the consideration of sub-hourly UC to accommodate the increasing variability in the net load. A disruptive solution methodology to address...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems Jg. 38; H. 3; S. 2460 - 2471
Hauptverfasser: Feng, Fei, Zhang, Peng, Bragin, Mikhail A., Zhou, Yifan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0885-8950, 1558-0679
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Unit commitment (UC) problems faced by Independent System Operators on a daily basis are becoming increasingly complex due to the recent push for renewables and the consideration of sub-hourly UC to accommodate the increasing variability in the net load. A disruptive solution methodology to address the growing complexity is therefore required. Quantum computing offers a promise to overcome the combinatorial complexity through the use of the so-called "qubits." To make the best use of near-term quantum computers to solve UC problems with a much larger number of binary variables than the number of qubits available, this paper devises a novel solution methodology based on a synergistic combination of quantum computing and Surrogate Lagrangian Relaxation (SLR) to solve UC problems. Our new contributions include: 1) A Quantum-SLR (QSLR) algorithm incorporating quantum approximate optimization algorithm (QAOA) into the SLR method, which overcomes the fundamental difficulties of previous LR-based quantum methods such as zigzagging of multipliers and the need to know or estimate the optimal dual value for convergence; 2) A Distributed QSLR framework (D-QSLR) capable of coordinating local quantum/classical computing resources with those within neighborhoods and, in the meantime, protecting data privacy; 3) A Quantized UC model to obtain accurate commitment unit subproblems decision by using a quantum machine; and 4) A time-unit-decomposed quantum UC approach to overcoming the quantum resources' limitations. Promising quantum test results validate the effectiveness of QSLR and the scalability of the UC-oriented D-QSLR algorithm, which demonstrate QSLR's enormous potential in UC optimization.
AbstractList Unit commitment (UC) problems faced by Independent System Operators on a daily basis are becoming increasingly complex due to the recent push for renewables and the consideration of sub-hourly UC to accommodate the increasing variability in the net load. A disruptive solution methodology to address the growing complexity is therefore required. Quantum computing offers a promise to overcome the combinatorial complexity through the use of the so-called "qubits." To make the best use of near-term quantum computers to solve UC problems with a much larger number of binary variables than the number of qubits available, this paper devises a novel solution methodology based on a synergistic combination of quantum computing and Surrogate Lagrangian Relaxation (SLR) to solve UC problems. Our new contributions include: 1) A Quantum-SLR (QSLR) algorithm incorporating quantum approximate optimization algorithm (QAOA) into the SLR method, which overcomes the fundamental difficulties of previous LR-based quantum methods such as zigzagging of multipliers and the need to know or estimate the optimal dual value for convergence; 2) A Distributed QSLR framework (D-QSLR) capable of coordinating local quantum/classical computing resources with those within neighborhoods and, in the meantime, protecting data privacy; 3) A Quantized UC model to obtain accurate commitment unit subproblems decision by using a quantum machine; and 4) A time-unit-decomposed quantum UC approach to overcoming the quantum resources' limitations. Promising quantum test results validate the effectiveness of QSLR and the scalability of the UC-oriented D-QSLR algorithm, which demonstrate QSLR's enormous potential in UC optimization.
Author Zhang, Peng
Zhou, Yifan
Feng, Fei
Bragin, Mikhail A.
Author_xml – sequence: 1
  givenname: Fei
  orcidid: 0000-0001-7244-6499
  surname: Feng
  fullname: Feng, Fei
  email: fei.feng@stonybrook.edu
  organization: Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA
– sequence: 2
  givenname: Peng
  orcidid: 0000-0002-8403-8289
  surname: Zhang
  fullname: Zhang, Peng
  email: p.zhang@stonybrook.edu
  organization: Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA
– sequence: 3
  givenname: Mikhail A.
  orcidid: 0000-0002-7783-9053
  surname: Bragin
  fullname: Bragin, Mikhail A.
  email: mikhail.bragin@uconn.edu
  organization: Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA
– sequence: 4
  givenname: Yifan
  orcidid: 0000-0002-5839-9339
  surname: Zhou
  fullname: Zhou, Yifan
  email: yifan.zhou.1@stonybrook.edu
  organization: Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA
BookMark eNp9kDtPwzAUhS1UJNrCH4DFEnPKtV0nzogqXlIFpQ-xIEVuctOmSuziOAj-PelDDAxMHu75jo--HukYa5CQSwYDxiC-mU_eprMBB84HginGOTshXSalCiCM4g7pglIyULGEM9Kr6w0AhO2hS96f7SeWdIq1LRtfWENtThem8HRkq6rwFRpPJ84uS6xqOl8726zW9LXRxjcVnTXO2ZX2SMd65bRZFdq0XaX-0ruuc3Ka67LGi-PbJ4v7u_noMRi_PDyNbsdBymPpgywFBaj1UspMhXq4FClqGWKE7WCdplJhhkIxCbHgsIxSpSDKhRwOQ9XmMtEn14ferbMfDdY-2djGmfbLhCsIOQcxFG1KHVKps3XtME_Swu93eqeLMmGQ7Fwme5fJzmVydNmi_A-6dUWl3ff_0NUBKhDxF4ijWETtoB9mLINt
CODEN ITPSEG
CitedBy_id crossref_primary_10_1016_j_epsr_2025_111535
crossref_primary_10_1109_TPWRS_2024_3399122
crossref_primary_10_1109_TPWRS_2024_3502246
crossref_primary_10_1016_j_epsr_2023_110084
crossref_primary_10_1016_j_ijepes_2025_111115
crossref_primary_10_1109_TSTE_2023_3309244
crossref_primary_10_1109_ACCESS_2022_3218908
crossref_primary_10_1109_ACCESS_2024_3509743
crossref_primary_10_1109_TQE_2024_3407236
crossref_primary_10_1109_ACCESS_2023_3273928
crossref_primary_10_1016_j_ress_2025_111656
crossref_primary_10_23919_IEN_2025_0009
crossref_primary_10_3390_en18102525
crossref_primary_10_3390_math12244037
crossref_primary_10_1109_TPWRS_2023_3287199
crossref_primary_10_1088_1742_6596_2662_1_012027
crossref_primary_10_1109_TPWRS_2024_3350382
crossref_primary_10_1016_j_epsr_2024_111121
crossref_primary_10_1016_j_epsr_2025_111582
crossref_primary_10_1016_j_est_2025_117304
crossref_primary_10_23919_PCMP_2023_000140
crossref_primary_10_3390_en18071771
crossref_primary_10_1109_TQE_2023_3320872
crossref_primary_10_1109_TPWRS_2025_3534156
crossref_primary_10_1109_TPWRS_2024_3386867
Cites_doi 10.1561/9781601984616
10.7566/jpsj.88.061010
10.1109/TPWRS.2022.3160384
10.1109/TPWRS.2021.3077382
10.1103/physrevlett.122.140504
10.1038/ncomms5213
10.1103/revmodphys.90.015002
10.1109/TPWRS.2020.2976044
10.1109/TPWRS.2015.2494590
10.1109/TPWRS.2021.3067207
10.1002/2050-7038.12911
10.1109/TASE.2020.2998048
10.1017/9781108596589
10.3389/fphy.2014.00005
10.22331/q-2021-04-08-428
10.1145/227683.227684
10.1038/npjqi.2015.23
10.2307/2322600
10.1103/physrevx.10.021067
10.1007/s10957-014-0561-3
10.1073/pnas.2006373117
10.1109/TPWRS.2020.3011071
10.1109/TPWRS.2021.3137842
10.1109/TSG.2017.2720471
10.1109/TPWRS.2014.2355204
10.1109/MELE.2020.3047167
10.1109/TPWRS.2022.3141794
10.1109/TPWRS.2019.2909664
10.1038/s41598-020-72469-7
10.1109/TPWRS.2022.3172655
10.1017/cbo9780511976667
10.1109/TQE.2020.3033139
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TPWRS.2022.3181221
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0679
EndPage 2471
ExternalDocumentID 10_1109_TPWRS_2022_3181221
9793720
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CNS-2006828; ECCS-2018492; ECCS-1810108; OIA-2134840; OIA-2040599
  funderid: 10.13039/501100008982
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c295t-dc080eaab55d86a4b3cea56e7e895acc58ede381509320b7c8807f354468a56d3
IEDL.DBID RIE
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000980444400037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-8950
IngestDate Fri Jul 25 19:24:53 EDT 2025
Sat Nov 29 02:52:28 EST 2025
Tue Nov 18 22:07:02 EST 2025
Wed Aug 27 02:49:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-dc080eaab55d86a4b3cea56e7e895acc58ede381509320b7c8807f354468a56d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7244-6499
0000-0002-5839-9339
0000-0002-7783-9053
0000-0002-8403-8289
PQID 2806220343
PQPubID 85441
PageCount 12
ParticipantIDs ieee_primary_9793720
crossref_citationtrail_10_1109_TPWRS_2022_3181221
crossref_primary_10_1109_TPWRS_2022_3181221
proquest_journals_2806220343
PublicationCentury 2000
PublicationDate 2023-May
2023-5-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-May
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref16
ref38
ref19
ref18
Sciences (ref30) 2019
Farhi (ref12) 2019
Preskill (ref13) 2012
ref24
ref26
ref25
ref20
ref22
Zahedinejad (ref17) 2017
ref28
ref27
Adrian (ref39) 2020
Farhi (ref21) 2014
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Farhi (ref23) 2015
References_xml – ident: ref4
  doi: 10.1561/9781601984616
– ident: ref31
  doi: 10.7566/jpsj.88.061010
– ident: ref7
  doi: 10.1109/TPWRS.2022.3160384
– ident: ref15
  doi: 10.1109/TPWRS.2021.3077382
– year: 2019
  ident: ref12
  article-title: Quantum supremacy through the quantum approximate optimization algorithm
– year: 2014
  ident: ref21
  article-title: A quantum approximate optimization algorithm
– ident: ref19
  doi: 10.1103/physrevlett.122.140504
– ident: ref20
  doi: 10.1038/ncomms5213
– ident: ref16
  doi: 10.1103/revmodphys.90.015002
– ident: ref2
  doi: 10.1109/TPWRS.2020.2976044
– ident: ref3
  doi: 10.1109/TPWRS.2015.2494590
– ident: ref14
  doi: 10.1109/TPWRS.2021.3067207
– ident: ref10
  doi: 10.1002/2050-7038.12911
– year: 2020
  ident: ref39
  article-title: IBM promises 1000-qubit quantum computer-a milestone-by 2023
– ident: ref27
  doi: 10.1109/TASE.2020.2998048
– ident: ref1
  doi: 10.1017/9781108596589
– ident: ref32
  doi: 10.3389/fphy.2014.00005
– ident: ref18
  doi: 10.22331/q-2021-04-08-428
– year: 2015
  ident: ref23
  article-title: A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem
– ident: ref34
  doi: 10.1145/227683.227684
– ident: ref35
  doi: 10.1038/npjqi.2015.23
– ident: ref38
  doi: 10.2307/2322600
– ident: ref22
  doi: 10.1103/physrevx.10.021067
– ident: ref29
  doi: 10.1007/s10957-014-0561-3
– ident: ref33
  doi: 10.1073/pnas.2006373117
– ident: ref8
  doi: 10.1109/TPWRS.2020.3011071
– ident: ref37
  doi: 10.1109/TPWRS.2021.3137842
– ident: ref5
  doi: 10.1109/TSG.2017.2720471
– year: 2012
  ident: ref13
  article-title: Quantum computing and the entanglement frontier
– ident: ref36
  doi: 10.1109/TPWRS.2014.2355204
– ident: ref9
  doi: 10.1109/MELE.2020.3047167
– ident: ref26
  doi: 10.1109/TPWRS.2022.3141794
– volume-title: Quantum Computing: Progress and Prospects
  year: 2019
  ident: ref30
– ident: ref28
  doi: 10.1109/TPWRS.2019.2909664
– ident: ref24
  doi: 10.1038/s41598-020-72469-7
– ident: ref11
  doi: 10.1109/TPWRS.2022.3172655
– ident: ref6
  doi: 10.1017/cbo9780511976667
– ident: ref25
  doi: 10.1109/TQE.2020.3033139
– year: 2017
  ident: ref17
  article-title: Combinatorial optimization on gate model quantum computers: A survey
SSID ssj0006679
Score 2.5648344
Snippet Unit commitment (UC) problems faced by Independent System Operators on a daily basis are becoming increasingly complex due to the recent push for renewables...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2460
SubjectTerms Algorithms
Approximation algorithms
Combinatorial analysis
Complexity
Complexity theory
Computers
Distributed quantum optimization
Optimization
quantum approximate optimization algorithm
Quantum computers
Quantum computing
Quantum entanglement
Qubit
Qubits (quantum computing)
surrogate lagrangian relaxation
Unit commitment
Title Novel Resolution of Unit Commitment Problems Through Quantum Surrogate Lagrangian Relaxation
URI https://ieeexplore.ieee.org/document/9793720
https://www.proquest.com/docview/2806220343
Volume 38
WOSCitedRecordID wos000980444400037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0679
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006679
  issn: 0885-8950
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zeNCDv6Y4nZKDN61r06RJjiIOD2NMN3EHobTJqwzmKts6_PNN0m4oiuCthwTK-5K89yXvfQ-hi8wHqRXTHrA08yjJqJdI7ntUUGUCCkV46iTzu7zXE6OR7NfQ1boWBgBc8hlc20_3lq9zVdirsra0Ym7EEPQNznlZq7U-daOo1NUTgnlCMn9VIOPL9rD__DgwVJAQw1CNQyPBNyfkuqr8OIqdf-ns_u_P9tBOFUfimxL4fVSD6QHa_qIu2EAvvXwJE2wv6MvlhfMM2xgT26qQsUsvx_2yocwcD8uGPfihMLYu3vCgmM1ye8eGu8mrcWivZh1hmzr34bA8RE-du-HtvVc1U_AUkWzhaSspDkmSMqZFlNA0VJCwCDgYayVKMQEajPs2AURI_JQrs7F5FjJDF4UZp8MjVJ_mUzhGmAdaWiG_RGrDXqhIASglhgulYRCxQDdRsLJurCqlcdvwYhI7xuHL2CESW0TiCpEmulzPeS91Nv4c3bAYrEdW5m-i1grEuNqK89g-HRPihzQ8-X3WKdqyPeTLLMYWqi9mBZyhTbVcjOezc7fKPgGnN8-9
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4hmMR4gA2GViibH_YGgcSxE_sRISqmdVUHRfCAFCX2BSGxBrUN4s_n7KQVCDRpb3k4S9F9tu-H774D-FGGqK2RNkBZlIHgpQhynYaBUMKQQ2F4WnjK_H46GKjraz1cgoNFLwwi-uIzPHSf_i3fVqZ2qbIj7cjcOAXoK1IIHjXdWot7N0kaZj2lZKC0DOctMqE-Gg2vzi8oGOScYlQyaTx6ZYb8XJU3l7G3ML2N__u3T7DeepLsuIH-MyzheBPWXvALbsHNoHrEe-ZS9M0GY1XJnJfJXF_InS8wZ8NmpMyUjZqRPexPTdqu_7KLejKpXJaN9fNbMmm3tJOYK5578mh-gcve6ejkLGjHKQSGazkLrCMVxzwvpLQqyUURG8xlgimStnJjpEKLZMDJhYh5WKSGjnZaxqTqRJGcjbdheVyN8SuwNLLaUfnl2lL8IlSBSIBQNFTEUSIj24Fort3MtFzjbuTFfeZjjlBnHpHMIZK1iHRgf7HmoWHa-Kf0lsNgIdmqvwPdOYhZexinmXs85jyMRbzz_qrvsHo2-t3P-j8Hv3bho5so39Q0dmF5NqlxDz6Yx9nddPLN77hnnnzTBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Resolution+of+Unit+Commitment+Problems+Through+Quantum+Surrogate+Lagrangian+Relaxation&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Feng%2C+Fei&rft.au=Zhang%2C+Peng&rft.au=Bragin%2C+Mikhail+A.&rft.au=Zhou%2C+Yifan&rft.date=2023-05-01&rft.pub=IEEE&rft.issn=0885-8950&rft.volume=38&rft.issue=3&rft.spage=2460&rft.epage=2471&rft_id=info:doi/10.1109%2FTPWRS.2022.3181221&rft.externalDocID=9793720
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon