Min-Max Decoding-Error Probability-Based Resource Allocation for a URLLC System
This letter considers an industrial automation scenario where a central controller communicates with multiple machines by transmitting data in short blocklengths. This communication is subject to reliability and latency constraints, which can be referred to as ultra-reliable and low-latency communic...
Gespeichert in:
| Veröffentlicht in: | IEEE communications letters Jg. 24; H. 12; S. 2864 - 2867 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1089-7798, 1558-2558 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This letter considers an industrial automation scenario where a central controller communicates with multiple machines by transmitting data in short blocklengths. This communication is subject to reliability and latency constraints, which can be referred to as ultra-reliable and low-latency communication (URLLC). With the objective of minimizing the worst-case decoding-error probability for all the machines (min-max decoding-error probability), we consider joint power allocation and transmission blocklength optimization under the subject of transmit power and latency constraints. To solve this challenging problem, we propose a novel path-following algorithm. Simulation results clearly demonstrate the merits of the proposed algorithm. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1089-7798 1558-2558 |
| DOI: | 10.1109/LCOMM.2020.3015688 |