Linear Programming Contractor for Interval Distribution State Estimation Using RDM Arithmetic
State estimation (SE) of distribution networks heavily relies on pseudo measurements that introduce significant errors, since real-time measurements are insufficient. Interval SE models are regularly used, where true values of system states are supposed to be within the estimated intervals. However,...
Uloženo v:
| Vydáno v: | IEEE transactions on power systems Ročník 36; číslo 3; s. 2114 - 2126 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0885-8950, 1558-0679 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | State estimation (SE) of distribution networks heavily relies on pseudo measurements that introduce significant errors, since real-time measurements are insufficient. Interval SE models are regularly used, where true values of system states are supposed to be within the estimated intervals. However, conventional interval SE algorithms cannot consider the correlations of same interval variables in different terms of constraints, which results in overly conservative estimation results. In this paper, we propose a new interval SE model that is based on the relative distance measure (RDM) arithmetic. In the proposed model, measurement errors are assumed to be bounded in given sets and the state variables are described as RDM variables. Since the SE model is a non-convex, the solution's credibility cannot be guaranteed. Therefore, each nonlinear measurement equation in the model is transformed into dual inequality linear equations using the mean value theorem. The SE model is finally reformulated as a linear programming contractor that iteratively narrows the upper and lower bounds of the estimated state variables. Numerical tests on IEEE three-phase distribution networks show that the proposed method outperforms the conventional interval-constrained propagation, modified Krawczyk-operator and optimization based interval SE methods. |
|---|---|
| AbstractList | State estimation (SE) of distribution networks heavily relies on pseudo measurements that introduce significant errors, since real-time measurements are insufficient. Interval SE models are regularly used, where true values of system states are supposed to be within the estimated intervals. However, conventional interval SE algorithms cannot consider the correlations of same interval variables in different terms of constraints, which results in overly conservative estimation results. In this paper, we propose a new interval SE model that is based on the relative distance measure (RDM) arithmetic. In the proposed model, measurement errors are assumed to be bounded in given sets and the state variables are described as RDM variables. Since the SE model is a non-convex, the solution's credibility cannot be guaranteed. Therefore, each nonlinear measurement equation in the model is transformed into dual inequality linear equations using the mean value theorem. The SE model is finally reformulated as a linear programming contractor that iteratively narrows the upper and lower bounds of the estimated state variables. Numerical tests on IEEE three-phase distribution networks show that the proposed method outperforms the conventional interval-constrained propagation, modified Krawczyk-operator and optimization based interval SE methods. |
| Author | Wu, Wenchuan Ngo, VietCuong |
| Author_xml | – sequence: 1 givenname: VietCuong surname: Ngo fullname: Ngo, VietCuong email: langtu_cvp@yahoo.com organization: State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing, China – sequence: 2 givenname: Wenchuan orcidid: 0000-0002-8154-2412 surname: Wu fullname: Wu, Wenchuan email: wuwench@tsinghua.edu.cn organization: State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing, China |
| BookMark | eNp9kE1LAzEQhoNUsK3-Ab0seN46SZrd5FjaqoWKpR94kiWbzdaU7m5NUsF_b_qBBw8ehsBknryTp4NadVNrhG4x9DAG8bCcvc0XPQIEehQohYRdoDZmjMeQpKKF2sA5i7lgcIU6zm0AIAkXbfQ-NbWWNprZZm1lVZl6HQ2b2lupfGOjMtSk9tp-yW00Ms5bk--9aepo4aXX0dh5U8ljY-UO7Hz0Eg2s8R-V9kZdo8tSbp2-OZ9dtHocL4fP8fT1aTIcTGNFBPNxwXOa54XmIhdFIbBK035SCtbHWqsiJ0xKKqWgqs8TBTKVgAUTtOQMQHKR0i66P727s83nXjufbZq9rUNkRhhmnBFBIEyR05SyjXNWl9nOhu3td4YhO2jMjhqzg8bsrDFA_A-kjD_-ODgy2__RuxNqtNa_WYLQFIdtfgCkQYOX |
| CODEN | ITPSEG |
| CitedBy_id | crossref_primary_10_1016_j_epsr_2022_108880 crossref_primary_10_3390_inventions10010008 crossref_primary_10_1016_j_jprocont_2025_103427 crossref_primary_10_1109_TPWRS_2024_3483270 crossref_primary_10_1109_TPWRS_2023_3282413 crossref_primary_10_1016_j_epsr_2024_111192 crossref_primary_10_1016_j_ijepes_2023_109632 crossref_primary_10_1109_TSG_2022_3204221 crossref_primary_10_3389_fenrg_2022_1054162 crossref_primary_10_3390_electronics12030603 crossref_primary_10_1109_JSEN_2024_3517674 crossref_primary_10_1109_TSG_2023_3286401 |
| Cites_doi | 10.1109/TPWRS.2012.2187804 10.1515/amcs-2017-0041 10.1109/TPWRS.2019.2926445 10.1109/TIE.2018.2890492 10.1109/TIM.2017.2728398 10.1109/TPAS.1970.292680 10.1016/S0005-1098(00)00068-6 10.1109/TIM.2018.2877549 10.1016/S0142-0615(01)00092-8 10.1016/j.measurement.2008.10.007 10.1109/TPWRS.2013.2264917 10.1007/978-94-017-1247-7_7 10.1109/ACCESS.2018.2856823 10.1007/978-1-4757-6484-0_16 10.1049/iet-gtd.2019.1679 10.1109/TII.2018.2804669 10.1007/BF01099647 10.1007/s40565-019-0522-9 10.1109/TPWRS.2011.2162859 10.1016/j.epsr.2005.12.016 10.1002/tee.22816 10.1109/TPWRS.2005.846163 10.1109/TIM.2014.2308352 10.1049/ip-gtd:20041167 10.1049/iet-gtd.2009.0167 10.1007/978-1-4471-0249-6 10.1049/iet-gtd.2012.0333 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| DOI | 10.1109/TPWRS.2020.3033065 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0679 |
| EndPage | 2126 |
| ExternalDocumentID | 10_1109_TPWRS_2020_3033065 9237120 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51725703; 51621065 funderid: 10.13039/501100012659 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c295t-d8b3bbde89b9dd91c7746f9541eecdb25aa3aa93c486c0a7a019593f8500a8973 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000641975800039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-8950 |
| IngestDate | Fri Jul 25 19:24:12 EDT 2025 Sat Nov 29 02:52:22 EST 2025 Tue Nov 18 22:24:37 EST 2025 Wed Aug 27 02:30:54 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-d8b3bbde89b9dd91c7746f9541eecdb25aa3aa93c486c0a7a019593f8500a8973 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8154-2412 |
| PQID | 2515852920 |
| PQPubID | 85441 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2515852920 ieee_primary_9237120 crossref_citationtrail_10_1109_TPWRS_2020_3033065 crossref_primary_10_1109_TPWRS_2020_3033065 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-May 2021-5-00 20210501 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-May |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on power systems |
| PublicationTitleAbbrev | TPWRS |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref15 ref14 ref30 ref33 ref11 ref10 neumaier (ref12) 1990; 37 ref2 ref1 araya (ref32) 2011 ref17 ref16 ref19 ref18 piegat (ref25) 2013 ngo (ref31) 0 ref24 ref23 ref20 ref22 ref21 paolo (ref6) 2017; 66 piegat (ref26) 2013; 15 ref28 ref27 ref29 ref7 ref9 ref4 ref3 qi (ref8) 2012 ref5 |
| References_xml | – volume: 15 start-page: 486 year: 2013 ident: ref26 article-title: Two interpretations of multidimensional RDM interval arithmetic: Multiplication and division publication-title: Int J Fuzzy Syst – ident: ref3 doi: 10.1109/TPWRS.2012.2187804 – ident: ref27 doi: 10.1515/amcs-2017-0041 – ident: ref16 doi: 10.1109/TPWRS.2019.2926445 – ident: ref19 doi: 10.1109/TIE.2018.2890492 – volume: 66 start-page: 2957 year: 2017 ident: ref6 article-title: Bayesian approach for distribution system state estimation with non-Gaussian uncertainty models publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2017.2728398 – ident: ref1 doi: 10.1109/TPAS.1970.292680 – ident: ref21 doi: 10.1016/S0005-1098(00)00068-6 – ident: ref20 doi: 10.1109/TIM.2018.2877549 – year: 0 ident: ref31 article-title: Test data of modified IEEE 33-bus and 123-bus system – volume: 37 year: 1990 ident: ref12 publication-title: Interval Methods for Systems of Equations – ident: ref29 doi: 10.1016/S0142-0615(01)00092-8 – ident: ref7 doi: 10.1016/j.measurement.2008.10.007 – ident: ref18 doi: 10.1109/TPWRS.2013.2264917 – ident: ref30 doi: 10.1007/978-94-017-1247-7_7 – ident: ref15 doi: 10.1109/ACCESS.2018.2856823 – ident: ref22 doi: 10.1007/978-1-4757-6484-0_16 – ident: ref24 doi: 10.1049/iet-gtd.2019.1679 – ident: ref17 doi: 10.1109/TII.2018.2804669 – ident: ref28 doi: 10.1007/BF01099647 – ident: ref4 doi: 10.1007/s40565-019-0522-9 – ident: ref11 doi: 10.1109/TPWRS.2011.2162859 – start-page: 137 year: 2013 ident: ref25 article-title: Multidimensional approach to interval-uncertainty calculations publication-title: New Developments in Fuzzy Sets Intuitionistic Fuzzy Sets Generalized Nets and Related Topics – ident: ref14 doi: 10.1016/j.epsr.2005.12.016 – start-page: 9 year: 2011 ident: ref32 article-title: Exploiting monotonicity in interval constraint propagation publication-title: Proc 24th AAAI Conf Artif Intell – ident: ref33 doi: 10.1002/tee.22816 – ident: ref9 doi: 10.1109/TPWRS.2005.846163 – ident: ref5 doi: 10.1109/TIM.2014.2308352 – ident: ref10 doi: 10.1049/ip-gtd:20041167 – start-page: 1 year: 2012 ident: ref8 article-title: Power system set membership state estimation publication-title: Proc IEEE Power Energy Soc Gen Meeting – ident: ref2 doi: 10.1049/iet-gtd.2009.0167 – ident: ref13 doi: 10.1007/978-1-4471-0249-6 – ident: ref23 doi: 10.1049/iet-gtd.2012.0333 |
| SSID | ssj0006679 |
| Score | 2.4788995 |
| Snippet | State estimation (SE) of distribution networks heavily relies on pseudo measurements that introduce significant errors, since real-time measurements are... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2114 |
| SubjectTerms | Algorithms Arithmetic Constraints Correlation Differential calculus Distance measurement Distribution network Distribution networks Electronic equipment tests interval state estimation Linear equations Linear programming Lower bounds Mathematical model mean value theorem Measurement uncertainty Optimization Phase distribution relative-distance-measurement State estimation State variable Voltage measurement |
| Title | Linear Programming Contractor for Interval Distribution State Estimation Using RDM Arithmetic |
| URI | https://ieeexplore.ieee.org/document/9237120 https://www.proquest.com/docview/2515852920 |
| Volume | 36 |
| WOSCitedRecordID | wos000641975800039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0679 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006679 issn: 0885-8950 databaseCode: RIE dateStart: 19860101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aPOjBrypWq-TgTWN3N99HsRUvSqkVe5ElyWZR0Cq19fc7yW6LogjeliVhl8wkeS-ZmYfQsSi4ttIq4jmThFnpiAXgTKRxaUqZT5R0UWxC3tyo0Uj3l9DpIhfGex-Dz_xZeIx3-cWrm4Wjsg6AEZlmQNCXpRRVrtZi1RWiqqunFCdK82SeIJPozrB_P7gFKpgBQ01okEr_tglFVZUfS3HcXy43_vdnm2i9xpH4vDL8Flry42209qW6YBM9AM8EP8b9KgTrBV7iUIxqEiV2MKBVHM8DwddwN9TPraWvcASguAeTv8prxDGuAA-61_C9p-njS0h83EF3l73hxRWp1RSIyzSfkkJZam3hlba6KHTqAPiJUnOWeu8Km3FjqDGaOqaES4w0IZVQ01LxJDFKS7qLGuPXsd9DuGRCANyVlHHKCgFbvrdAdLUvWVkayVsonQ9v7upS40Hx4jmPlCPReTRJHkyS1yZpoZNFn7eq0MafrZvBCIuW9fi3UHtuxbyei-85IDjgREGVa__3XgdoNQuRKjGMsY0a08nMH6IV9zF9ep8cRTf7BHebz90 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5EBfXgW1yfOXjTatskTXIUHyjqsuiKXqQkaYoLuso-_P1O0u6iKIK3UhJaMpPk-5KZ-QD2soIrI4yMHGciYkbYyCBwjoS2SUKZi6WwQWxCNJvy8VG1JuBgnAvjnAvBZ-7QP4a7_OLNDv1R2RGCEZGkSNCnvHJWna01XnezrKqsJyWPpOLxKEUmVkft1sPtHZLBFDlqTL1Y-rdtKOiq_FiMww5zvvC_f1uE-RpJkuPK9Esw4brLMPelvuAKPCHTRE8mrSoI6xVfEl-OqhdEdgjiVRJOBNHbyKmvoFuLX5EAQckZTv8qs5GEyAJye3qD3-sMnl996uMq3J-ftU8uolpPIbKp4oOokIYaUzipjCoKlViEflmpOEucs4VJudZUa0Utk5mNtdA-mVDRUvI41lIJugaT3beuWwdSsixDwCso45QVGW76ziDVVa5kZakFb0AyGt7c1sXGvebFSx5IR6zyYJLcmySvTdKA_XGf96rUxp-tV7wRxi3r8W_A1siKeT0b-zliOGRFXpdr4_deuzBz0b65zq8vm1ebMJv6uJUQ1LgFk4Pe0G3DtP0YdPq9neByn3T60yY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+Programming+Contractor+for+Interval+Distribution+State+Estimation+Using+RDM+Arithmetic&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Ngo%2C+VietCuong&rft.au=Wu%2C+Wenchuan&rft.date=2021-05-01&rft.pub=IEEE&rft.issn=0885-8950&rft.volume=36&rft.issue=3&rft.spage=2114&rft.epage=2126&rft_id=info:doi/10.1109%2FTPWRS.2020.3033065&rft.externalDocID=9237120 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon |