Encoder-Decoder With Cascaded CRFs for Semantic Segmentation

When dealing with semantic segmentation, how to locate the object boundary information more accurately is a key problem to distinguish different objects better. The existing methods lose some image information more or less in the process of feature extraction, which also includes the boundary and co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems for video technology Ročník 31; číslo 5; s. 1926 - 1938
Hlavní autoři: Ji, Jian, Shi, Rui, Li, Sitong, Chen, Peng, Miao, Qiguang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1051-8215, 1558-2205
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract When dealing with semantic segmentation, how to locate the object boundary information more accurately is a key problem to distinguish different objects better. The existing methods lose some image information more or less in the process of feature extraction, which also includes the boundary and context information. At present, some semantic segmentation methods use CRFs (conditional random fields) to obtain boundary information, but they usually only deal with the final output of the model. In this article, inspired by the skip connection of FCN (Fully convolution network) and the good boundary refinement ability of CRFs, a cascaded CRFs is designed and introduced into the decoder of semantic segmentation model to learn boundary information from multi-layers and enhance the ability of the model in object boundary location. Furthermore, in order to supplement the semantic information of images, the output of the cascaded CRFs is fused with the output of the last decoder, so that the model can enhance the ability of locating the object boundary and get more accurate semantic segmentation results. Finally, a number of experiments on different datasets illustrate the feasibility and efficiency of our method, showing that our method enhances the model's ability to locate target boundary information.
AbstractList When dealing with semantic segmentation, how to locate the object boundary information more accurately is a key problem to distinguish different objects better. The existing methods lose some image information more or less in the process of feature extraction, which also includes the boundary and context information. At present, some semantic segmentation methods use CRFs (conditional random fields) to obtain boundary information, but they usually only deal with the final output of the model. In this article, inspired by the skip connection of FCN (Fully convolution network) and the good boundary refinement ability of CRFs, a cascaded CRFs is designed and introduced into the decoder of semantic segmentation model to learn boundary information from multi-layers and enhance the ability of the model in object boundary location. Furthermore, in order to supplement the semantic information of images, the output of the cascaded CRFs is fused with the output of the last decoder, so that the model can enhance the ability of locating the object boundary and get more accurate semantic segmentation results. Finally, a number of experiments on different datasets illustrate the feasibility and efficiency of our method, showing that our method enhances the model’s ability to locate target boundary information.
Author Li, Sitong
Miao, Qiguang
Shi, Rui
Chen, Peng
Ji, Jian
Author_xml – sequence: 1
  givenname: Jian
  orcidid: 0000-0001-6427-6725
  surname: Ji
  fullname: Ji, Jian
  email: jji@xidian.edu.cn
  organization: School of Computer Science and Technology, Xidian University, Xi'an, China
– sequence: 2
  givenname: Rui
  surname: Shi
  fullname: Shi, Rui
  organization: School of Computer Science and Technology, Xidian University, Xi'an, China
– sequence: 3
  givenname: Sitong
  orcidid: 0000-0002-2950-0047
  surname: Li
  fullname: Li, Sitong
  organization: School of Computer Science and Technology, Xidian University, Xi'an, China
– sequence: 4
  givenname: Peng
  orcidid: 0000-0002-1669-0013
  surname: Chen
  fullname: Chen, Peng
  organization: School of Computer Science and Technology, Xidian University, Xi'an, China
– sequence: 5
  givenname: Qiguang
  orcidid: 0000-0001-6766-8310
  surname: Miao
  fullname: Miao, Qiguang
  email: qgmiao@xidian.edu.cn
  organization: School of Computer Science and Technology, Xidian University, Xi'an, China
BookMark eNp9kDtPwzAUhS1UJNrCH4AlEnOKH7FjSywotIBUCYkWGK3rRyBVmxQ7Hfj3pE3FwMB0znC-e3TPCA3qpvYIXRI8IQSrm2WxeFtOKKZ4wjDhUogTNCScy5RSzAedx5ykkhJ-hkYxrjAmmczyIbqd1rZxPqT3_qDJe9V-JgVEC867pHiZxaRsQrLwG6jbynbmY-PrFtqqqc_RaQnr6C-OOkavs-myeEznzw9Pxd08tVTxNnVMABfSKYVdbjOwwsjcWKMUyxiR3uQWjALBSwouM4Jy4CWAcd5goESxMbru725D87XzsdWrZhfqrlJTTiklWY5Zl6J9yoYmxuBLvQ3VBsK3JljvV9KHlfR-JX1cqYPkH8hW_XNtgGr9P3rVo5X3_rdLEcEpE-wHSDZ21Q
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TAI_2024_3363685
crossref_primary_10_1109_TCSVT_2022_3179021
crossref_primary_10_1109_TCSVT_2024_3367370
crossref_primary_10_1109_TCSVT_2024_3427720
crossref_primary_10_1109_TCSVT_2024_3454227
crossref_primary_10_1109_TCSVT_2023_3285091
crossref_primary_10_1016_j_engappai_2022_105431
crossref_primary_10_1109_TCDS_2022_3225200
crossref_primary_10_4218_etrij_2023_0017
crossref_primary_10_1109_TCSVT_2023_3298644
crossref_primary_10_1109_TCSVT_2024_3509504
crossref_primary_10_1109_TCSVT_2022_3218076
crossref_primary_10_1007_s00371_025_03798_9
crossref_primary_10_1007_s00530_025_01888_1
crossref_primary_10_1109_TCSVT_2024_3441036
crossref_primary_10_1038_s41598_024_74690_0
crossref_primary_10_1109_TCSVT_2023_3317937
crossref_primary_10_1007_s00371_022_02477_3
crossref_primary_10_1109_TCSVT_2022_3193612
crossref_primary_10_1016_j_patrec_2023_12_023
crossref_primary_10_1016_j_compbiomed_2025_110851
crossref_primary_10_1109_TIM_2022_3224526
crossref_primary_10_1016_j_eswa_2024_124019
crossref_primary_10_1109_TCSVT_2024_3412996
crossref_primary_10_1016_j_dsp_2025_105264
crossref_primary_10_1109_TCSVT_2023_3292156
crossref_primary_10_1109_TCSVT_2024_3464631
crossref_primary_10_1109_TCSVT_2022_3146305
crossref_primary_10_1109_TCSVT_2022_3212088
crossref_primary_10_1109_TCSVT_2024_3375789
crossref_primary_10_1109_TCSVT_2023_3293166
crossref_primary_10_1007_s00530_024_01429_2
crossref_primary_10_1109_TCSVT_2021_3121680
crossref_primary_10_1016_j_heliyon_2024_e31626
crossref_primary_10_1109_TCSVT_2022_3208833
crossref_primary_10_1016_j_neucom_2024_128632
crossref_primary_10_1109_TCSVT_2023_3325629
crossref_primary_10_1109_TCSVT_2023_3343632
crossref_primary_10_1016_j_neucom_2024_128991
crossref_primary_10_1109_TCSVT_2022_3229359
crossref_primary_10_1109_TIV_2023_3314527
crossref_primary_10_1109_TCSVT_2023_3252807
crossref_primary_10_1109_TCSVT_2022_3206496
crossref_primary_10_1109_TCSVT_2023_3265075
crossref_primary_10_1109_TCSVT_2021_3138795
crossref_primary_10_1109_TCSVT_2022_3187664
crossref_primary_10_1109_TCSVT_2024_3462946
crossref_primary_10_4018_IJVAR_307063
crossref_primary_10_1109_TCSVT_2025_3536086
crossref_primary_10_1016_j_displa_2025_103168
crossref_primary_10_1109_TCSVT_2025_3559084
crossref_primary_10_1109_TCSVT_2024_3413778
crossref_primary_10_1109_TCSVT_2024_3391304
crossref_primary_10_1109_TCSVT_2023_3296162
crossref_primary_10_1109_TCSVT_2023_3275314
crossref_primary_10_1109_TCSVT_2024_3511926
crossref_primary_10_1016_j_cviu_2025_104411
crossref_primary_10_1109_TCSVT_2020_3037234
crossref_primary_10_1007_s11760_023_02777_8
crossref_primary_10_1109_TCSVT_2022_3171968
crossref_primary_10_1109_TCSVT_2024_3435045
crossref_primary_10_1109_TCSVT_2021_3109084
crossref_primary_10_1109_TCSVT_2023_3239541
crossref_primary_10_1109_TCSVT_2021_3056726
crossref_primary_10_1109_TCSVT_2023_3236432
crossref_primary_10_1109_TCSVT_2023_3300846
crossref_primary_10_1109_TCSVT_2023_3325360
crossref_primary_10_1016_j_engappai_2023_107642
crossref_primary_10_1109_TCSVT_2024_3502837
crossref_primary_10_1007_s40747_023_01063_x
crossref_primary_10_1109_TCSVT_2023_3298796
crossref_primary_10_1109_TCSVT_2022_3206476
crossref_primary_10_1142_S0129065725500388
crossref_primary_10_1109_TCSVT_2022_3231964
crossref_primary_10_1007_s40747_023_01103_6
crossref_primary_10_1109_TCSVT_2021_3126591
crossref_primary_10_1109_TCSVT_2023_3339683
crossref_primary_10_1109_TCSVT_2022_3205182
crossref_primary_10_1109_TCSVT_2022_3170048
crossref_primary_10_1016_j_engappai_2024_109294
crossref_primary_10_1109_TCSVT_2023_3284076
crossref_primary_10_1109_TCSVT_2023_3260240
crossref_primary_10_1016_j_neucom_2025_130504
Cites_doi 10.1109/TPAMI.2019.2938758
10.1109/CVPR.2018.00759
10.1109/CVPR.2018.00255
10.1109/ICCV.2015.203
10.1109/CVPR.2017.690
10.1007/978-3-030-58604-1_20
10.1109/TPAMI.2016.2572683
10.1109/CVPR.2016.90
10.1109/TPAMI.2015.2389824
10.1109/TPAMI.2011.131
10.1016/j.patrec.2008.04.005
10.1109/ICCV.2017.533
10.1109/CVPR.2017.25
10.1109/TPAMI.2016.2644615
10.1109/ICCV.2015.178
10.1109/TPAMI.2017.2699184
10.1103/RevModPhys.54.235
10.1109/CVPR.2017.660
10.1109/CVPR.2017.243
10.1109/CVPR.2018.00256
10.1007/978-3-030-01249-6_34
10.1109/CVPR.2019.00017
10.1109/TPAMI.2018.2852750
10.1109/TGRS.2018.2815613
10.1007/978-3-642-33715-4_54
10.1109/TIM.2020.3004902
10.1109/TPAMI.2017.2708714
10.1007/s11263-007-0090-8
10.1109/CVPR.2017.549
10.1109/ICCV.2019.00216
10.1109/ICCV.2015.179
10.1109/CVPR.2013.79
10.1109/TMM.2015.2477035
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2020.3015866
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1938
ExternalDocumentID 10_1109_TCSVT_2020_3015866
9165236
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-d36a568d990d7c4ac6b87bcb9934318eb7cab9a65f2ad4b625a5faabdeb0a2193
IEDL.DBID RIE
ISICitedReferencesCount 83
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000647394100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8215
IngestDate Sun Nov 09 06:31:36 EST 2025
Sat Nov 29 01:44:14 EST 2025
Tue Nov 18 22:27:54 EST 2025
Wed Aug 27 02:30:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-d36a568d990d7c4ac6b87bcb9934318eb7cab9a65f2ad4b625a5faabdeb0a2193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2950-0047
0000-0002-1669-0013
0000-0001-6427-6725
0000-0001-6766-8310
PQID 2522214703
PQPubID 85433
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2020_3015866
crossref_primary_10_1109_TCSVT_2020_3015866
ieee_primary_9165236
proquest_journals_2522214703
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
hazirbas (ref22) 2016
ref37
ref36
ref14
ref31
ref30
ref33
ref11
chen (ref13) 2014
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref24
ref23
liu (ref9) 2020
ref26
ref25
ref20
ref21
chen (ref7) 2017
ref28
ref27
ref29
ref8
hou (ref34) 2018
yuan (ref15) 2019
ref4
ref3
ref6
ref5
References_xml – ident: ref29
  doi: 10.1109/TPAMI.2019.2938758
– ident: ref35
  doi: 10.1109/CVPR.2018.00759
– year: 2019
  ident: ref15
  article-title: Object-contextual representations for semantic segmentation
  publication-title: arXiv 1909 11065
– ident: ref28
  doi: 10.1109/CVPR.2018.00255
– start-page: 213
  year: 2016
  ident: ref22
  article-title: FuseNet: Incorporating depth into semantic segmentation via fusion-based cnn architecture
  publication-title: Proc Asian Conf Comput Vis
– ident: ref31
  doi: 10.1109/ICCV.2015.203
– ident: ref3
  doi: 10.1109/CVPR.2017.690
– ident: ref16
  doi: 10.1007/978-3-030-58604-1_20
– ident: ref4
  doi: 10.1109/TPAMI.2016.2572683
– year: 2020
  ident: ref9
  article-title: Learning to predict context-adaptive convolution for semantic segmentation
  publication-title: arxiv 2004 08222
– ident: ref20
  doi: 10.1109/CVPR.2016.90
– ident: ref11
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref18
  doi: 10.1109/TPAMI.2011.131
– ident: ref19
  doi: 10.1016/j.patrec.2008.04.005
– ident: ref23
  doi: 10.1109/ICCV.2017.533
– ident: ref25
  doi: 10.1109/CVPR.2017.25
– ident: ref5
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref10
  doi: 10.1109/ICCV.2015.178
– year: 2014
  ident: ref13
  article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs
  publication-title: arXiv 1412 7062
– year: 2017
  ident: ref7
  article-title: Rethinking atrous convolution for semantic image segmentation
  publication-title: arXiv 1706 05587
– ident: ref14
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref37
  doi: 10.1103/RevModPhys.54.235
– ident: ref30
  doi: 10.1109/CVPR.2017.660
– start-page: 549
  year: 2018
  ident: ref34
  article-title: Self-erasing network for integral object attention
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref26
  doi: 10.1109/CVPR.2017.243
– ident: ref27
  doi: 10.1109/CVPR.2018.00256
– ident: ref21
  doi: 10.1007/978-3-030-01249-6_34
– ident: ref2
  doi: 10.1109/CVPR.2019.00017
– ident: ref32
  doi: 10.1109/TPAMI.2018.2852750
– ident: ref1
  doi: 10.1109/TGRS.2018.2815613
– ident: ref17
  doi: 10.1007/978-3-642-33715-4_54
– ident: ref24
  doi: 10.1109/TIM.2020.3004902
– ident: ref12
  doi: 10.1109/TPAMI.2017.2708714
– ident: ref38
  doi: 10.1007/s11263-007-0090-8
– ident: ref6
  doi: 10.1109/CVPR.2017.549
– ident: ref36
  doi: 10.1109/ICCV.2019.00216
– ident: ref8
  doi: 10.1109/ICCV.2015.179
– ident: ref39
  doi: 10.1109/CVPR.2013.79
– ident: ref33
  doi: 10.1109/TMM.2015.2477035
SSID ssj0014847
Score 2.593058
Snippet When dealing with semantic segmentation, how to locate the object boundary information more accurately is a key problem to distinguish different objects...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1926
SubjectTerms boundary location
Coders
Computer vision
Conditional random fields
Convolution
Decoding
encoder-decoder
Encoders-Decoders
Feature extraction
fully convolution network
Image segmentation
Multilayers
Semantic segmentation
Semantics
Task analysis
Title Encoder-Decoder With Cascaded CRFs for Semantic Segmentation
URI https://ieeexplore.ieee.org/document/9165236
https://www.proquest.com/docview/2522214703
Volume 31
WOSCitedRecordID wos000647394100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4A8aAHX2hE0fTgTSultN3dxIupEA-GGEHk1uyrSiLF0OLvd3YpaKIx8dQ97CbNN9ud7-vOA-Cc8kCpkBOXyyhyA-ppl3FUKUxHkqTIv5ltBzS6J_0-HY_ZQwUu17kwWmsbfKavzNDe5auZXJhfZS2kMqiboipUCSHLXK31jUFAbTMxpAttl6IfWyXIeKw1jAejIUpBHxUqej9qKyJ-OSHbVeXHUWz9S2_nf2-2C9slj3Rulobfg4rO9mHrW3XBOlx3M5OwPndvtX06z5Pi1Yl5bkLilRM_9nIHKasz0FOEdyJx8DItU5GyA3jqdYfxnVs2S3Clz8LCVZ2IhxFV6F0UkQFCLygRUiD_QI5AtSCSC8ajMPW5CgTKHh6mnAulhcfx2OocQi2bZfoIHOkTJVSgGUHtp0KK9my3cR6XnZTQ1GtAe4VeIstK4qahxVtiFYXHEot4YhBPSsQbcLFe876so_Hn7LrBeD2zhLcBzZWRkvJTyxMfGaRptuR1jn9fdQKbvglEsVGKTagV84U-hQ35UUzy-ZndRZ88dcP2
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH7UKqgHd7FaNQdvGpukSWYGvEhtqViL2LrcwmzRgk2li7_fN9O0CorgKXOYgfC9ybzvy7wF4ITyUKmIE5fLOHZD6mmXcVQpTMeSpMi_mW0H9Ngi7TZ9fmZ3BTib58JorW3wmT43Q3uXrwZyYn6VVZDKoG6KF2AxCsPAn2Zrze8MQmrbiSFh8F2KnmyWIuOxSrfWeeyiGAxQo6L_o7Ym4pcbsn1VfhzG1sM01v_3bhuwljNJ53Jq-k0o6GwLVr_VF9yGi3pmUtaH7pW2T-epN351anxkguKVU7tvjBwkrU5H9xHgnsTBSz9PRsp24KFR79aabt4uwZUBi8auqsY8iqlC_6KIDBF8QYmQAhkIsgSqBZFcMB5HacBVKFD48CjlXCgtPI4HV3UXitkg03vgyIAooULNCKo_FVG0qO_jPC6rKaGpVwJ_hl4i81ripqXFW2I1hccSi3hiEE9yxEtwOl_zPq2k8efsbYPxfGYObwnKMyMl-cc2SgLkkKbdklfd_33VMSw3u7etpHXdvjmAlcCEpdiYxTIUx8OJPoQl-THujYZHdkd9Apojxz0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Encoder-Decoder+With+Cascaded+CRFs+for+Semantic+Segmentation&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Ji%2C+Jian&rft.au=Shi%2C+Rui&rft.au=Li%2C+Sitong&rft.au=Chen%2C+Peng&rft.date=2021-05-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=31&rft.issue=5&rft.spage=1926&rft.epage=1938&rft_id=info:doi/10.1109%2FTCSVT.2020.3015866&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2020_3015866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon