Media Forensics and DeepFakes: An Overview

With the rapid progress in recent years, techniques that generate and manipulate multimedia content can now provide a very advanced level of realism. The boundary between real and synthetic media has become very thin. On the one hand, this opens the door to a series of exciting applications in diffe...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in signal processing Vol. 14; no. 5; pp. 910 - 932
Main Author: Verdoliva, Luisa
Format: Journal Article
Language:English
Published: New York IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1932-4553, 1941-0484
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the rapid progress in recent years, techniques that generate and manipulate multimedia content can now provide a very advanced level of realism. The boundary between real and synthetic media has become very thin. On the one hand, this opens the door to a series of exciting applications in different fields such as creative arts, advertising, film production, and video games. On the other hand, it poses enormous security threats. Software packages freely available on the web allow any individual, without special skills, to create very realistic fake images and videos. These can be used to manipulate public opinion during elections, commit fraud, discredit or blackmail people. Therefore, there is an urgent need for automated tools capable of detecting false multimedia content and avoiding the spread of dangerous false information. This review paper aims to present an analysis of the methods for visual media integrity verification, that is, the detection of manipulated images and videos. Special emphasis will be placed on the emerging phenomenon of deepfakes, fake media created through deep learning tools, and on modern data-driven forensic methods to fight them. The analysis will help highlight the limits of current forensic tools, the most relevant issues, the upcoming challenges, and suggest future directions for research.
AbstractList With the rapid progress in recent years, techniques that generate and manipulate multimedia content can now provide a very advanced level of realism. The boundary between real and synthetic media has become very thin. On the one hand, this opens the door to a series of exciting applications in different fields such as creative arts, advertising, film production, and video games. On the other hand, it poses enormous security threats. Software packages freely available on the web allow any individual, without special skills, to create very realistic fake images and videos. These can be used to manipulate public opinion during elections, commit fraud, discredit or blackmail people. Therefore, there is an urgent need for automated tools capable of detecting false multimedia content and avoiding the spread of dangerous false information. This review paper aims to present an analysis of the methods for visual media integrity verification, that is, the detection of manipulated images and videos. Special emphasis will be placed on the emerging phenomenon of deepfakes, fake media created through deep learning tools, and on modern data-driven forensic methods to fight them. The analysis will help highlight the limits of current forensic tools, the most relevant issues, the upcoming challenges, and suggest future directions for research.
Author Verdoliva, Luisa
Author_xml – sequence: 1
  givenname: Luisa
  orcidid: 0000-0001-7286-7963
  surname: Verdoliva
  fullname: Verdoliva, Luisa
  email: verdoliv@unina.it
  organization: Department of Industrial Engineering, University Federico II of Naples, Naples, Italy
BookMark eNp9kE1PAjEQhhuDiYD-Ab1s4s1ksdOPpfVGUPwIBhPw3JQymxSxi-2C8d-7CPHgwckkM4f3mUmeDmmFKiAh50B7AFRfP01n05ceo4z2OKUMKByRNmgBORVKtHY7Z7mQkp-QTkpLSmW_ANEmV8-48DYbVRFD8i5lNiyyW8T1yL5huskGIZtsMW49fp6S49KuEp4dZpe8ju5mw4d8PLl_HA7GuWNa1vmCoXCAoAopkbtSCm6ZLWiBpVAO5miZYtQyIQo9V6WVGpTkQjcladkgXXK5v7uO1ccGU22W1SaG5qVhgqtCNa2blNqnXKxSilga52tb-yrU0fqVAWp2ZsyPGbMzYw5mGpT9QdfRv9v49T90sYc8Iv4CGkCqvuDfVGBuXQ
CODEN IJSTGY
CitedBy_id crossref_primary_10_1007_s11760_023_02990_5
crossref_primary_10_1109_TDSC_2025_3569971
crossref_primary_10_1073_pnas_2110013119
crossref_primary_10_1007_s11042_021_11126_1
crossref_primary_10_1016_j_cose_2020_102092
crossref_primary_10_1007_s11042_024_18324_7
crossref_primary_10_1109_TIP_2021_3132828
crossref_primary_10_1109_LSP_2020_3026954
crossref_primary_10_1007_s11042_024_20501_7
crossref_primary_10_1109_TPAMI_2024_3350004
crossref_primary_10_1016_j_fsidi_2023_301623
crossref_primary_10_1109_TDSC_2025_3528062
crossref_primary_10_1109_TMM_2023_3253389
crossref_primary_10_1186_s13635_021_00117_2
crossref_primary_10_1007_s11042_022_13312_1
crossref_primary_10_1016_j_neucom_2024_129116
crossref_primary_10_1109_TIFS_2022_3204210
crossref_primary_10_1007_s11042_023_15910_z
crossref_primary_10_1007_s11042_024_20284_x
crossref_primary_10_1145_3703626
crossref_primary_10_1007_s00371_025_04019_z
crossref_primary_10_1016_j_forsciint_2023_111747
crossref_primary_10_1016_j_jvcir_2024_104125
crossref_primary_10_3390_electronics11030403
crossref_primary_10_1016_j_forsciint_2022_111442
crossref_primary_10_1007_s00530_024_01288_x
crossref_primary_10_1016_j_heliyon_2023_e15090
crossref_primary_10_1093_comjnl_bxae007
crossref_primary_10_1145_3633203
crossref_primary_10_1007_s11042_022_13001_z
crossref_primary_10_1016_j_neucom_2024_129129
crossref_primary_10_3390_electronics12112353
crossref_primary_10_1109_ACCESS_2023_3344653
crossref_primary_10_1051_itmconf_20224403024
crossref_primary_10_1016_j_neucom_2022_09_060
crossref_primary_10_1145_3665497
crossref_primary_10_3389_fcomm_2021_632317
crossref_primary_10_1109_TPAMI_2024_3432551
crossref_primary_10_1007_s11042_024_19519_8
crossref_primary_10_1109_TIFS_2023_3234861
crossref_primary_10_1109_TIFS_2022_3152362
crossref_primary_10_1186_s13635_021_00120_7
crossref_primary_10_1080_23311916_2024_2320971
crossref_primary_10_32604_cmc_2023_034963
crossref_primary_10_3390_jimaging7080128
crossref_primary_10_1038_s41598_025_03889_6
crossref_primary_10_3390_app13031887
crossref_primary_10_1145_3696667
crossref_primary_10_1007_s11042_024_20548_6
crossref_primary_10_1016_j_dsp_2021_103376
crossref_primary_10_48084_etasr_10458
crossref_primary_10_1016_j_patrec_2021_03_005
crossref_primary_10_1007_s11042_021_11539_y
crossref_primary_10_1007_s43681_024_00517_3
crossref_primary_10_1016_j_neucom_2023_126263
crossref_primary_10_1007_s11760_025_04669_5
crossref_primary_10_3390_s23010062
crossref_primary_10_1016_j_ins_2023_03_079
crossref_primary_10_1007_s11760_025_04169_6
crossref_primary_10_1016_j_compedu_2021_104426
crossref_primary_10_60097_ACIG_200200
crossref_primary_10_1016_j_engappai_2022_104673
crossref_primary_10_3390_jimaging7080134
crossref_primary_10_1016_j_fsidi_2025_301991
crossref_primary_10_1109_TIFS_2022_3185769
crossref_primary_10_3390_jimaging7080135
crossref_primary_10_1371_journal_pone_0278989
crossref_primary_10_1002_ett_70225
crossref_primary_10_1080_00098655_2025_2488777
crossref_primary_10_1093_cybsec_tyaf008
crossref_primary_10_1016_j_neucom_2024_128607
crossref_primary_10_1177_1071181322661302
crossref_primary_10_1016_j_chbr_2025_100668
crossref_primary_10_3390_info15090525
crossref_primary_10_3390_jimaging9060122
crossref_primary_10_1109_TIFS_2025_3574983
crossref_primary_10_3390_jimaging8100263
crossref_primary_10_1016_j_neucom_2025_131235
crossref_primary_10_1109_TCSVT_2021_3074259
crossref_primary_10_1109_ACCESS_2020_3037735
crossref_primary_10_3390_electronics12143192
crossref_primary_10_1016_j_csl_2025_101840
crossref_primary_10_1109_ACCESS_2024_3396888
crossref_primary_10_1016_j_procs_2023_01_191
crossref_primary_10_1109_TIFS_2022_3202115
crossref_primary_10_1109_ACCESS_2021_3080576
crossref_primary_10_1002_aisy_202300749
crossref_primary_10_1109_LSP_2024_3433596
crossref_primary_10_1016_j_patcog_2021_108413
crossref_primary_10_7717_peerj_cs_1991
crossref_primary_10_1109_JPROC_2025_3576367
crossref_primary_10_1109_TIFS_2023_3306181
crossref_primary_10_1108_JFC_04_2022_0090
crossref_primary_10_1145_3614424
crossref_primary_10_36394_jls_v22_i1_12
crossref_primary_10_1016_j_eswa_2024_124975
crossref_primary_10_1145_3571076
crossref_primary_10_1109_JSTSP_2020_3007250
crossref_primary_10_1007_s10462_024_10810_6
crossref_primary_10_1109_ACCESS_2022_3154404
crossref_primary_10_1111_cgf_14949
crossref_primary_10_1109_TIFS_2022_3179945
crossref_primary_10_1117_1_JEI_32_5_053033
crossref_primary_10_1007_s00371_024_03605_x
crossref_primary_10_3390_electronics11162621
crossref_primary_10_1007_s11042_023_15942_5
crossref_primary_10_3390_drones7010053
crossref_primary_10_3390_electronics13010095
crossref_primary_10_1109_MSP_2023_3275319
crossref_primary_10_1007_s11042_024_19220_w
crossref_primary_10_1007_s11760_025_03964_5
crossref_primary_10_1177_14738716241238476
crossref_primary_10_1186_s13635_024_00181_4
crossref_primary_10_1016_j_copsyc_2023_101778
crossref_primary_10_1007_s13042_023_02031_0
crossref_primary_10_1016_j_cviu_2025_104494
crossref_primary_10_1016_j_jvcir_2022_103635
crossref_primary_10_1109_ACCESS_2024_3381611
crossref_primary_10_3390_info16040270
crossref_primary_10_1016_j_cviu_2022_103525
crossref_primary_10_1109_MSP_2023_3294720
crossref_primary_10_1016_j_engappai_2021_104456
crossref_primary_10_1109_TIFS_2022_3189527
crossref_primary_10_3390_app14219754
crossref_primary_10_1007_s11042_022_13797_w
crossref_primary_10_1016_j_jisa_2024_103935
crossref_primary_10_3390_s25051435
crossref_primary_10_1007_s00502_021_00929_7
crossref_primary_10_1016_j_engappai_2024_109451
crossref_primary_10_1177_21695067231192904
crossref_primary_10_1007_s11042_023_14870_8
crossref_primary_10_1109_TIFS_2022_3169921
crossref_primary_10_1109_ACCESS_2024_3517170
crossref_primary_10_1109_TNNLS_2022_3233063
crossref_primary_10_1109_TCDS_2023_3274450
crossref_primary_10_1016_j_eswa_2023_122832
crossref_primary_10_1145_3634914
crossref_primary_10_1007_s00530_024_01583_7
crossref_primary_10_3390_s22072500
crossref_primary_10_1007_s11229_023_04093_7
crossref_primary_10_1007_s41870_023_01494_2
crossref_primary_10_32604_jcs_2022_032915
crossref_primary_10_3390_fi14050125
crossref_primary_10_1007_s11760_024_03376_x
crossref_primary_10_1080_00963402_2024_2388467
crossref_primary_10_1007_s11042_021_10552_5
crossref_primary_10_1007_s12559_025_10473_7
crossref_primary_10_1016_j_cviu_2024_104143
crossref_primary_10_3390_jsan14010017
crossref_primary_10_1109_ACCESS_2023_3276480
crossref_primary_10_3390_app122412969
crossref_primary_10_1109_ACCESS_2020_3023037
crossref_primary_10_1007_s11042_023_17028_8
crossref_primary_10_1109_TCSVT_2023_3251444
crossref_primary_10_1109_TAI_2023_3299894
crossref_primary_10_1002_int_22822
crossref_primary_10_1007_s10489_022_03766_z
crossref_primary_10_1109_TIFS_2022_3176188
crossref_primary_10_3389_fsoc_2022_907199
crossref_primary_10_1080_00963402_2021_1912093
crossref_primary_10_1016_j_osnem_2023_100249
crossref_primary_10_1007_s11042_023_15609_1
crossref_primary_10_1016_j_imavis_2023_104868
crossref_primary_10_1111_1468_5973_70031
crossref_primary_10_1007_s11042_024_18706_x
crossref_primary_10_1016_j_patrec_2024_03_025
crossref_primary_10_3390_bdcc8090119
crossref_primary_10_3390_jimaging7040069
crossref_primary_10_1002_widm_1520
crossref_primary_10_3390_electronics14132680
crossref_primary_10_1049_ipr2_12578
crossref_primary_10_1007_s11760_024_03775_0
crossref_primary_10_1016_j_jvcir_2023_104017
crossref_primary_10_3389_fdata_2024_1400024
crossref_primary_10_1007_s11263_024_02054_2
crossref_primary_10_32604_cmc_2023_032826
crossref_primary_10_1109_TMM_2022_3182509
crossref_primary_10_3390_s24165103
crossref_primary_10_3233_JIFS_210625
crossref_primary_10_1016_j_jvcir_2021_103119
crossref_primary_10_1007_s11263_022_01606_8
crossref_primary_10_1016_j_patrec_2024_03_008
crossref_primary_10_1109_ACCESS_2022_3151186
crossref_primary_10_37251_jske_v6i3_1798
crossref_primary_10_3390_s22239121
crossref_primary_10_3390_jimaging6030009
crossref_primary_10_1109_TPAMI_2024_3386985
crossref_primary_10_4108_eetpht_10_5912
crossref_primary_10_18466_cbayarfbe_1530209
crossref_primary_10_1007_s11042_022_14307_8
crossref_primary_10_1109_MITP_2022_3172653
crossref_primary_10_1109_TIFS_2025_3592557
crossref_primary_10_1049_bme2_12032
crossref_primary_10_1145_3575656
crossref_primary_10_1007_s11042_024_19308_3
crossref_primary_10_3390_jimaging7070108
crossref_primary_10_1109_LSP_2023_3245947
crossref_primary_10_1007_s11042_024_18111_4
crossref_primary_10_1016_j_inffus_2023_102037
crossref_primary_10_1109_JPROC_2023_3238024
crossref_primary_10_1108_JCOM_09_2022_0113
crossref_primary_10_1080_10286608_2025_2539766
crossref_primary_10_51583_IJLTEMAS_2025_140400116
crossref_primary_10_1109_MMUL_2022_3169769
crossref_primary_10_1007_s11760_024_03440_6
crossref_primary_10_1016_j_neucom_2022_09_135
crossref_primary_10_1109_TPAMI_2022_3233586
crossref_primary_10_1007_s11042_022_13100_x
crossref_primary_10_1109_TPAMI_2022_3204971
crossref_primary_10_1109_TPAMI_2023_3313648
crossref_primary_10_1007_s12652_024_04829_4
crossref_primary_10_1016_j_image_2023_117010
crossref_primary_10_1109_LSP_2021_3130525
crossref_primary_10_1186_s13640_024_00635_2
crossref_primary_10_1093_pnasnexus_pgaf194
crossref_primary_10_1049_2024_6523854
crossref_primary_10_3390_computers14010001
crossref_primary_10_1007_s13278_024_01280_3
crossref_primary_10_1016_j_fsidi_2024_301795
crossref_primary_10_1080_17512786_2021_1965905
crossref_primary_10_1016_j_patrec_2024_02_019
crossref_primary_10_1038_s41598_024_73913_8
crossref_primary_10_1109_JIOT_2024_3406954
crossref_primary_10_1109_TPAMI_2022_3180556
crossref_primary_10_1007_s11263_022_01617_5
crossref_primary_10_1016_j_inffus_2020_06_014
crossref_primary_10_5565_rev_enrahonar_1570
crossref_primary_10_1016_j_procs_2024_09_382
crossref_primary_10_1016_j_eswa_2025_126492
crossref_primary_10_1109_ACCESS_2024_3410974
crossref_primary_10_3390_computers12100216
crossref_primary_10_1109_ACCESS_2024_3391809
crossref_primary_10_1109_ACCESS_2022_3142508
crossref_primary_10_1109_TPAMI_2025_3541028
crossref_primary_10_1038_s41598_022_21535_3
crossref_primary_10_1177_21676968241234091
crossref_primary_10_1093_isr_viae013
crossref_primary_10_1007_s40843_023_2710_0
crossref_primary_10_1109_TIFS_2023_3346312
crossref_primary_10_1007_s12559_022_10008_4
crossref_primary_10_1080_21670811_2022_2026797
crossref_primary_10_1109_MSP_2021_3120982
crossref_primary_10_1007_s00500_023_08605_y
crossref_primary_10_1155_2022_9655452
crossref_primary_10_3390_electronics12163407
crossref_primary_10_1016_j_imavis_2025_105418
crossref_primary_10_3390_blockchains3010005
crossref_primary_10_3390_jimaging11030073
crossref_primary_10_1016_j_techfore_2023_122644
crossref_primary_10_1109_ACCESS_2025_3545152
crossref_primary_10_3390_jimaging10010004
crossref_primary_10_1016_j_technovation_2023_102784
crossref_primary_10_1109_JSTSP_2025_3554136
crossref_primary_10_1109_TIFS_2023_3235579
crossref_primary_10_3390_jimaging7100193
crossref_primary_10_1016_j_eswa_2025_128571
crossref_primary_10_1016_j_datak_2023_102182
crossref_primary_10_1016_j_imavis_2023_104771
crossref_primary_10_1109_TMM_2025_3535369
Cites_doi 10.1109/ICIP.2009.5414611
10.1016/j.sigpro.2009.03.025
10.1109/WIFS.2015.7368565
10.1109/WIFS.2009.5386461
10.1109/TIFS.2018.2799421
10.1109/MSEC.2019.2934193
10.1016/j.jvcir.2018.05.011
10.23919/BIOSIG.2018.8553251
10.1214/aoms/1177698950
10.1109/TIFS.2011.2128309
10.2352/ISSN.2470-1173.2017.7.MWSF-330
10.1109/TIFS.2007.916285
10.7551/mitpress/10451.001.0001
10.1007/978-3-319-68548-9_52
10.1145/2909827.2930786
10.1109/TCSVT.2017.2676162
10.1186/s13635-016-0047-y
10.1109/ICCV.2019.01013
10.1109/ICASSP.2019.8683772
10.1109/ICIP.2019.8803661
10.1109/ICASSP.2007.366211
10.1145/1161366.1161375
10.1109/ICCVW.2019.00152
10.1016/j.patcog.2018.07.023
10.1109/CVPR.2016.90
10.1145/1459359.1459406
10.1117/1.2401138
10.1109/CVPR.2017.243
10.1109/ACCESS.2019.2922145
10.1109/TIFS.2011.2106121
10.1109/CVPR.2019.00882
10.1109/CVPR42600.2020.00808
10.1109/CVPR.2019.00453
10.1109/ICASSP.2014.6854801
10.1109/ICMEW.2015.7169839
10.1109/WIFS47025.2019.9035099
10.1109/ChinaSIP.2013.6625374
10.1109/TIFS.2013.2272377
10.1109/WACVW.2019.00020
10.1016/j.patcog.2009.03.019
10.1109/TIFS.2019.2902826
10.1145/1161366.1161376
10.1109/TIFS.2012.2187516
10.1109/ICCV.2019.00839
10.1007/978-3-030-31456-9_15
10.1109/TIFS.2007.916010
10.23919/EUSIPCO.2019.8903181
10.1109/ICCV.2019.00603
10.1109/TIFS.2019.2951313
10.1145/1978802.1978805
10.1109/ICIP.2014.7026074
10.1007/978-3-030-01228-1_39
10.1109/TIFS.2011.2129512
10.1109/CVPR.2017.632
10.1109/TIFS.2017.2725201
10.1109/WACVW.2019.00018
10.1109/ICPR.2018.8545428
10.1109/ISCAS.2010.5537505
10.1109/TIFS.2013.2248727
10.1109/WACV.2018.00170
10.1145/3306346.3323028
10.1109/TIFS.2010.2099220
10.1109/TIFS.2019.2916364
10.1016/j.sigpro.2020.107616
10.1109/JSTSP.2020.3001516
10.1109/TCSVT.2018.2804768
10.1109/AVSS.2018.8639163
10.1145/2487228.2487236
10.1145/1531326.1531330
10.1109/CVPR.2016.308
10.1109/TIFS.2018.2859760
10.1109/CVPRW.2019.00010
10.1109/TIFS.2010.2077628
10.1109/TIFS.2010.2074194
10.1109/TIFS.2012.2218597
10.1109/TIFS.2008.2008214
10.1109/CVPR.2019.00244
10.1186/s13635-017-0067-2
10.1117/12.704723
10.1109/MIPR.2019.00103
10.2352/ISSN.2470-1173.2018.07.MWSF-214
10.1016/j.jvcir.2018.01.010
10.1007/s13735-017-0143-x
10.1145/3335203.3335724
10.1109/ACCESS.2019.2905689
10.1109/TIFS.2012.2190402
10.1109/TIFS.2008.2012215
10.1145/3130800.3130818
10.1109/ACCESS.2013.2260814
10.1109/TIFS.2012.2195492
10.1109/ICIP.2017.8296533
10.1145/3082031.3083247
10.1109/TIFS.2019.2945198
10.1109/WIFS.2018.8630761
10.1109/WIFS.2011.6123127
10.1109/WIFS.2016.7823911
10.1016/j.dsp.2017.08.009
10.1109/ICCV.2019.00955
10.1109/FG.2018.00024
10.1145/3306346.3323035
10.1117/12.640109
10.1109/TIFS.2015.2394231
10.1109/CVPRW.2017.230
10.1002/9781118705773.ch15
10.1007/978-3-642-04438-0_7
10.1016/j.jvcir.2017.09.003
10.1016/j.jvcir.2015.01.016
10.1145/3219819.3219910
10.1109/ICIP.2014.7026073
10.1109/WIFS.2016.7823898
10.1109/WIFS47025.2019.9035107
10.1109/TIFS.2015.2427778
10.1109/ICIP.2016.7532339
10.1109/CVPR42600.2020.00791
10.1109/ICCV.2019.00765
10.1109/MIPR.2018.00084
10.1109/TCSVT.2016.2599849
10.1109/LSP.2017.2782363
10.1109/ICASSP.2019.8682602
10.1109/CVPRW.2017.233
10.1109/ICASSP.2018.8462585
10.1109/ICASSP.2019.8683164
10.1109/CVPRW50498.2020.00337
10.1109/CVPR.2019.00977
10.1016/j.image.2018.04.007
10.1109/ICCV.2019.00009
10.1109/TIFS.2019.2926777
10.1109/ICCV.2019.01017
10.1109/TIFS.2017.2745687
10.1007/s11042-016-3795-2
10.1007/978-3-642-41184-7_27
10.1109/TSP.2004.839896
10.1145/1291233.1291252
10.1109/ICCV.2019.00728
10.1609/aaai.v34i07.7007
10.1017/ATSIP.2012.2
10.1109/MMSP.2013.6659337
10.23919/EUSIPCO.2018.8553560
10.2352/ISSN.2470-1173.2019.5.MWSF-532
10.1007/s11263-010-0403-1
10.1109/WIFS.2016.7823921
10.1109/WIFS.2017.8267647
10.1109/WACV.2018.00211
10.1109/ICCVW.2019.00213
10.1109/TSP.2005.855406
10.1007/11744078_33
10.1109/WIFS.2018.8630787
10.1109/TIP.2016.2518870
10.3390/s18113801
10.1109/TIP.2019.2895466
10.2352/ISSN.2470-1173.2018.07.MWSF-213
10.1145/2713168.2713194
10.1016/j.imavis.2009.02.001
10.1109/ICIP.2013.6738919
10.1108/OIR-03-2018-0101
10.1109/ICIP.2005.1530330
10.1109/ICIP.2019.8803740
10.1109/WACVW50321.2020.9096940
10.1109/TIFS.2007.903848
10.1109/ICME.2006.262447
10.1109/CVPR.2018.00116
10.1109/ICMEW.2015.7169770
10.1145/2929464.2929475
10.1145/1774088.1774427
10.1109/CVPRW.2003.10093
10.1109/CVPR.2018.00916
10.1109/ICIP.2014.7025049
10.23919/EUSIPCO.2018.8553305
10.1109/CVPRW.2017.232
10.1109/MSP.2008.931079
10.1109/ICASSP.2014.6854802
10.1145/1411328.1411333
10.1145/3335203.3335722
10.1145/3123266.3123411
10.1145/3319535.3363269
10.1007/s11263-013-0688-y
10.1109/CVPR.2017.195
10.1145/3072959.3073640
10.1007/978-3-540-30114-1_10
10.1109/ICIP.2014.7026072
10.1109/ICCV.2017.244
10.1109/CVPR42600.2020.00296
10.23919/EUSIPCO.2018.8553581
10.1109/TIFS.2013.2265677
10.1109/CVPRW.2017.229
10.1109/CVPRW.2008.4562984
10.1109/TIFS.2012.2202227
10.1016/j.patcog.2012.05.014
10.2352/ISSN.2470-1173.2017.7.MWSF-331
10.1109/WIFS.2014.7084319
10.1109/TIP.2002.807361
10.1109/TIFS.2014.2302078
10.1109/WIFS.2017.8267668
10.1109/TIFS.2019.2957693
10.1109/NBiS.2014.82
10.1109/ICIP.2019.8802966
10.1109/CVPR.2017.434
10.1109/TIFS.2015.2455334
10.1109/TIFS.2009.2033749
10.1109/WIFS.2012.6412641
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
H8D
L7M
DOI 10.1109/JSTSP.2020.3002101
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0484
EndPage 932
ExternalDocumentID 10_1109_JSTSP_2020_3002101
9115874
Genre orig-research
GrantInformation_xml – fundername: Defense Advanced Research Projects Agency
  grantid: FA8750-16-2-0204
  funderid: 10.13039/100000185
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
7SP
8FD
H8D
L7M
ID FETCH-LOGICAL-c295t-d2e4c1e18655e3cf543a2a606ef48c1bea2820a24469b8fa5918534999950f5e3
IEDL.DBID RIE
ISICitedReferencesCount 412
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564205000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-4553
IngestDate Mon Jun 30 10:24:45 EDT 2025
Tue Nov 18 22:30:42 EST 2025
Sat Nov 29 04:10:33 EST 2025
Wed Aug 27 02:29:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-d2e4c1e18655e3cf543a2a606ef48c1bea2820a24469b8fa5918534999950f5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7286-7963
PQID 2438688689
PQPubID 75721
PageCount 23
ParticipantIDs proquest_journals_2438688689
ieee_primary_9115874
crossref_citationtrail_10_1109_JSTSP_2020_3002101
crossref_primary_10_1109_JSTSP_2020_3002101
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of selected topics in signal processing
PublicationTitleAbbrev JSTSP
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref207
szegedy (ref250) 0
ref56
ref208
ref59
ref205
ref206
ref53
ref52
wang (ref185) 0
ref55
ref54
fu (ref60) 2012; 7
tralic (ref219) 0
chen (ref109) 0
farid (ref88) 2006
suwajanakorn (ref46) 2017; 36
huang (ref42) 2018
ref210
ref50
ref218
ref45
ref48
ref216
güera (ref18) 0
ref217
ref214
ref41
ref215
ref213
fan (ref76) 2003; 12
szegedy (ref255) 0
ref49
ref8
ref7
li (ref212) 2019
ref9
ref4
ref3
ref5
ref100
ref101
ref222
ref40
ref220
qian (ref145) 0; 9409 y
cozzolino (ref265) 2019
ref34
ho (ref67) 0
ref30
ref32
li (ref192) 0
ref39
cox (ref21) 2008
ref38
ref24
nguyen (ref181) 0
ref23
ref26
ref20
ref22
hsu (ref72) 0
ciftci (ref189) 2019
korshunov (ref229) 2018
ref29
cao (ref62) 2009; 4
ref200
ref128
ref249
ref129
ref97
ref126
ref247
ref96
ref127
ref248
ref99
ref124
ref125
ref246
böhme (ref245) 2012
long (ref134) 0
li (ref25) 2019
ref93
ref133
ref254
ref92
ref95
ref131
ref94
ref132
barni (ref141) 2019
ref253
ref130
ref251
ref91
ref90
karras (ref176) 2019
ref139
ref86
ref137
ref258
ref85
ref138
ref259
ref135
ref256
ref87
ref136
ref257
agarwal (ref195) 0
ref82
ref144
ref266
ref84
ref142
ref263
ref83
ref143
ref261
ref262
ref80
(ref225) 0
ref79
ref108
ref78
ref227
ref106
ref75
ref104
ref74
ref226
ref105
ref77
ref223
ref103
piva (ref6) 2012
(ref232) 0
lin (ref118) 0
ref71
ref111
ref70
ref112
ref73
ref110
ref68
ref119
ref238
ref117
ref69
ref64
ref115
neves (ref264) 2019
ref63
ref237
ref116
cozzolino (ref165) 0
ref66
ref234
ref65
ref235
ref114
albright (ref175) 0
ref243
ref122
ref244
ref123
ref241
ref120
ref61
ref242
ref121
brock (ref31) 0
marra (ref155) 2019
ref240
du (ref182) 2019
wang (ref44) 0
ref168
ref169
frank (ref173) 2020
ref170
ref177
ref178
sabir (ref209) 0
ref174
ref171
ref172
wu (ref107) 0
neekhara (ref260) 2020
ref179
dufour (ref230) 2019
korshunov (ref273) 0
li (ref233) 0
lukáš (ref81) 0
ref188
ref186
chung (ref47) 0
ref187
ref184
ref183
cozzolino (ref180) 2018
ref269
ref148
ref149
ref267
ref146
ref268
ref147
heller (ref224) 2018
dolhansky (ref231) 2019
ryu (ref102) 2013; 8
shetty (ref28) 0
moreira (ref11) 2018; 14
ref156
ref274
ref153
ref154
ref151
ref152
ref270
ref271
ref150
zhu (ref167) 2019
wu (ref36) 0
ref159
abu-el-haija (ref236) 2016
ref157
ref158
huh (ref162) 0
li (ref202) 2019
marra (ref252) 0
kumar (ref204) 2020
karras (ref43) 0
ref166
agarwal (ref89) 0
kim (ref51) 2018; 37
ref164
ref163
ref160
ref161
ref13
ref12
thies (ref27) 2019; 38
ref15
ref14
ref10
chakraborty (ref113) 0
ref17
ref16
engstrom (ref37) 2019
singh (ref19) 0
dhruv (ref272) 0
rössler (ref201) 2018
(ref228) 0
ng (ref221) 2004
wang (ref33) 0; 32
stehouwer (ref203) 0
ref2
ref1
(ref239) 0
ref191
ref190
ref199
ref197
ref198
wu (ref140) 0
ref196
ref193
ref194
fridrich (ref98) 0
gloe (ref58) 0; 7541
reed (ref35) 0
fernando (ref211) 2019
References_xml – ident: ref65
  doi: 10.1109/ICIP.2009.5414611
– volume: 14
  start-page: 6109
  year: 2018
  ident: ref11
  article-title: Image provenance analysis at scale
  publication-title: IEEE Trans Image Process
– ident: ref78
  doi: 10.1016/j.sigpro.2009.03.025
– year: 2019
  ident: ref265
  article-title: SpoC: Spoofing camera fingerprints
  publication-title: arxiv org/abs/1911 12069
– ident: ref71
  doi: 10.1109/WIFS.2015.7368565
– ident: ref119
  doi: 10.1109/WIFS.2009.5386461
– ident: ref59
  doi: 10.1109/TIFS.2018.2799421
– year: 2019
  ident: ref37
  article-title: Adversarial robustness as a prior for learned representations
  publication-title: arXiv 1906 00945v2
– ident: ref23
  doi: 10.1109/MSEC.2019.2934193
– ident: ref80
  doi: 10.1016/j.jvcir.2018.05.011
– ident: ref179
  doi: 10.23919/BIOSIG.2018.8553251
– year: 2020
  ident: ref260
  article-title: Adversarial deepfakes: Evaluating vulnerability of deepfake detectors to adversarial examples
  publication-title: arXiv 2002 12749v2
– ident: ref268
  doi: 10.1214/aoms/1177698950
– year: 2019
  ident: ref264
  article-title: Real or fake? Spoofing state-of-the-art face synthesis detection systems
  publication-title: arXiv 1911 05351v2
– volume: 32
  start-page: 1
  year: 0
  ident: ref33
  article-title: Few-shot Video-to-Video Synthesis
  publication-title: Neural Inf Process Syst
– ident: ref16
  doi: 10.1109/TIFS.2011.2128309
– ident: ref157
  doi: 10.2352/ISSN.2470-1173.2017.7.MWSF-330
– start-page: 38
  year: 0
  ident: ref195
  article-title: Protecting world leaders against deep fakes
  publication-title: Proc IEEE CVPR Workshop
– ident: ref110
  doi: 10.1109/TIFS.2007.916285
– ident: ref2
  doi: 10.7551/mitpress/10451.001.0001
– ident: ref114
  doi: 10.1007/978-3-319-68548-9_52
– ident: ref144
  doi: 10.1145/2909827.2930786
– ident: ref74
  doi: 10.1109/TCSVT.2017.2676162
– ident: ref129
  doi: 10.1186/s13635-016-0047-y
– year: 2019
  ident: ref141
  article-title: Copy move source-target disambiguation through multi-branch CNNs
  publication-title: arXiv 1912 12640v1
– ident: ref49
  doi: 10.1109/ICCV.2019.01013
– ident: ref257
  doi: 10.1109/ICASSP.2019.8683772
– ident: ref168
  doi: 10.1109/ICIP.2019.8803661
– year: 2019
  ident: ref211
  article-title: Exploiting human social cognition for the detection of fake and fraudulent faces via memory networks
  publication-title: arXiv 1911 07844v1
– start-page: 3207
  year: 0
  ident: ref233
  article-title: Celeb-DF: A large-scale challenging dataset for DeepFake forensics
  publication-title: Proc IEEE Conf Comp Vis Patt Recogn
– ident: ref77
  doi: 10.1109/ICASSP.2007.366211
– ident: ref91
  doi: 10.1145/1161366.1161375
– ident: ref210
  doi: 10.1109/ICCVW.2019.00152
– year: 2019
  ident: ref167
  article-title: Detecting GAN generated errors
  publication-title: arXiv 1912 00527v1
– ident: ref251
  doi: 10.1016/j.patcog.2018.07.023
– ident: ref135
  doi: 10.1109/CVPR.2016.90
– start-page: 130
  year: 0
  ident: ref165
  article-title: Extracting camera-based fingerprints for video forensics
  publication-title: Proc CVPR Workshops
– start-page: 1
  year: 0
  ident: ref252
  article-title: Counter-forensics in machine learning based forgery detection
  publication-title: Proc of the SPIE Media Watermarking Security and Forensics
– ident: ref9
  doi: 10.1145/1459359.1459406
– ident: ref121
  doi: 10.1117/1.2401138
– ident: ref199
  doi: 10.1109/CVPR.2017.243
– year: 0
  ident: ref89
  article-title: Photo forensics from JPEG dimples
  publication-title: Proc IEEE Int Workshop Inf Forensics and Secur
– start-page: 1
  year: 0
  ident: ref113
  article-title: PRNU-based forgery detection with discriminative random fields
  publication-title: Proc Int Symp Electron Imag Media Watermarking Secur Forensics
– ident: ref243
  doi: 10.1109/ACCESS.2019.2922145
– start-page: 1
  year: 0
  ident: ref47
  publication-title: Proc Brit Mach Vision Conf
– ident: ref82
  doi: 10.1109/TIFS.2011.2106121
– year: 2020
  ident: ref173
  article-title: Leveraging frequency analysis for deep fake image recognition
  publication-title: arXiv 2003 08685v2
– ident: ref24
  doi: 10.1109/CVPR.2019.00882
– year: 2019
  ident: ref176
  article-title: Analyzing and improving the image quality of StyleGAN
  publication-title: arXiv 1912 04958
– ident: ref186
  doi: 10.1109/CVPR42600.2020.00808
– ident: ref30
  doi: 10.1109/CVPR.2019.00453
– ident: ref93
  doi: 10.1109/ICASSP.2014.6854801
– ident: ref222
  doi: 10.1109/ICMEW.2015.7169839
– ident: ref183
  doi: 10.1109/WIFS47025.2019.9035099
– year: 2016
  ident: ref236
  article-title: YouTube-8M: A largescale video classification benchmark
  publication-title: arXiv 1609 08675
– year: 0
  ident: ref239
  article-title: Kaggle Camera Model Identification Challenge
– ident: ref215
  doi: 10.1109/ChinaSIP.2013.6625374
– volume: 8
  start-page: 1355
  year: 2013
  ident: ref102
  article-title: Rotation invariant localization of duplicated image regions based on Zernike moments
  publication-title: IEEE Trans Inf Forensics and Security
  doi: 10.1109/TIFS.2013.2272377
– start-page: 8695
  year: 0
  ident: ref185
  article-title: CNN-generated images are surprisingly easy to spot... for now
  publication-title: IEEE Conf Comput Vision Pattern Recognit
– ident: ref166
  doi: 10.1109/WACVW.2019.00020
– year: 2020
  ident: ref204
  article-title: Detecting deepfakes with metric learning
  publication-title: 2nd International Workshop on Biometrics and Forensics
– start-page: 46
  year: 0
  ident: ref192
  article-title: Exposing deepfake videos by detecting face warping artifacts
  publication-title: Proc IEEE CVPR Workshop
– ident: ref79
  doi: 10.1016/j.patcog.2009.03.019
– start-page: 1
  year: 0
  ident: ref162
  article-title: Fighting fake news: Image splice detection via learned self-consistency
  publication-title: Proc Eur Conf Comput Vision
– ident: ref8
  doi: 10.1109/TIFS.2019.2902826
– ident: ref56
  doi: 10.1145/1161366.1161376
– ident: ref84
  doi: 10.1109/TIFS.2012.2187516
– ident: ref149
  doi: 10.1109/ICCV.2019.00839
– ident: ref184
  doi: 10.1007/978-3-030-31456-9_15
– ident: ref55
  doi: 10.1109/TIFS.2007.916010
– year: 2019
  ident: ref189
  article-title: FakeCatcher: Detection of synthetic portrait videos using biological signals
  publication-title: arXiv 1901 02212v2
– ident: ref226
  doi: 10.23919/EUSIPCO.2019.8903181
– ident: ref54
  doi: 10.1109/ICCV.2019.00603
– ident: ref94
  doi: 10.1109/TIFS.2019.2951313
– ident: ref12
  doi: 10.1145/1978802.1978805
– ident: ref248
  doi: 10.1109/ICIP.2014.7026074
– ident: ref130
  doi: 10.1007/978-3-030-01228-1_39
– ident: ref100
  doi: 10.1109/TIFS.2011.2129512
– ident: ref34
  doi: 10.1109/CVPR.2017.632
– ident: ref87
  doi: 10.1109/TIFS.2017.2725201
– ident: ref223
  doi: 10.1109/WACVW.2019.00018
– ident: ref271
  doi: 10.1109/ICPR.2018.8545428
– ident: ref83
  doi: 10.1109/ISCAS.2010.5537505
– ident: ref266
  doi: 10.1109/TIFS.2013.2248727
– ident: ref26
  doi: 10.1109/WACV.2018.00170
– ident: ref40
  doi: 10.1145/3306346.3323028
– ident: ref247
  doi: 10.1109/TIFS.2010.2099220
– ident: ref163
  doi: 10.1109/TIFS.2019.2916364
– ident: ref169
  doi: 10.1016/j.sigpro.2020.107616
– ident: ref161
  doi: 10.1109/JSTSP.2020.3001516
– start-page: 2674
  year: 0
  ident: ref107
  article-title: Exposing video interframe forgery based on velocity field consistency
  publication-title: Proc IEEE Int Conf Acoust Speech Signal Process
– ident: ref106
  doi: 10.1109/TCSVT.2018.2804768
– start-page: 5913
  year: 0
  ident: ref36
  article-title: RelGAN: Multi-Domain Image-to-Image Translation via Relative Attributes
  publication-title: Proc Int Conf Comput Vision
– start-page: 1
  year: 0
  ident: ref134
  article-title: A Coarse-to-fine Deep Convolutional Neural Network Framework for Frame Duplication Detection and Localization in Forged Videos
  publication-title: Proc IEEE CVPR Workshop
– ident: ref207
  doi: 10.1109/AVSS.2018.8639163
– ident: ref4
  doi: 10.1145/2487228.2487236
– ident: ref41
  doi: 10.1145/1531326.1531330
– ident: ref198
  doi: 10.1109/CVPR.2016.308
– start-page: 1
  year: 0
  ident: ref81
  article-title: Estimation of primary quantization matrix in double compressed JPEG images
  publication-title: Proc Digital Forensic Res Workshop
– ident: ref17
  doi: 10.1109/TIFS.2018.2859760
– ident: ref137
  doi: 10.1109/CVPRW.2019.00010
– ident: ref120
  doi: 10.1109/TIFS.2010.2077628
– ident: ref75
  doi: 10.1109/TIFS.2010.2074194
– ident: ref99
  doi: 10.1109/TIFS.2012.2218597
– start-page: 170
  year: 0
  ident: ref72
  article-title: Video forgery detection using correlation of noise residue
  publication-title: Proc IEEE Int Workshop Multimedia Signal Process
– ident: ref246
  doi: 10.1109/TIFS.2008.2008214
– ident: ref32
  doi: 10.1109/CVPR.2019.00244
– ident: ref241
  doi: 10.1186/s13635-017-0067-2
– start-page: 1
  year: 0
  ident: ref31
  article-title: Large scale GAN training for high fidelity natural image synthesis
  publication-title: Proc Int Conf Learn Representations
– ident: ref86
  doi: 10.1117/12.704723
– ident: ref170
  doi: 10.1109/MIPR.2019.00103
– year: 2018
  ident: ref42
  article-title: An introduction to image synthesis with generative adversarial nets
  publication-title: arXiv 1803 04469v2
– ident: ref158
  doi: 10.2352/ISSN.2470-1173.2018.07.MWSF-214
– ident: ref136
  doi: 10.1016/j.jvcir.2018.01.010
– start-page: 1087
  year: 0
  ident: ref118
  article-title: Detecting doctored images using camera response normality and consistency
  publication-title: Proc IEEE Conf Comput Vision Pattern Recognit
– ident: ref274
  doi: 10.1007/s13735-017-0143-x
– ident: ref193
  doi: 10.1145/3335203.3335724
– ident: ref22
  doi: 10.1109/ACCESS.2019.2905689
– year: 2019
  ident: ref25
  article-title: Hiding faces in plain sight: Disrupting AI face synthesis with adversarial perturbations
  publication-title: arXiv 1906 09288v1
– year: 2018
  ident: ref224
  article-title: The PS-battles dataset-An image collection for image manipulation detection
  publication-title: CoRR
– ident: ref127
  doi: 10.1109/TIFS.2012.2190402
– ident: ref85
  doi: 10.1109/TIFS.2008.2012215
– ident: ref53
  doi: 10.1145/3130800.3130818
– year: 2018
  ident: ref180
  article-title: ForensicTransfer: Weakly-supervised domain adaptation for forgery detection
  publication-title: arXiv 1812 02510
– ident: ref14
  doi: 10.1109/ACCESS.2013.2260814
– volume: 7
  start-page: 1301
  year: 2012
  ident: ref60
  article-title: Forgery authentication in extreme wide-angle lens using distortion cue and fake saliency map
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2012.2195492
– year: 2018
  ident: ref201
  article-title: Faceforensics: A large-scale video dataset for forgery detection in human faces
  publication-title: arXiv 1803 09179
– ident: ref73
  doi: 10.1109/ICIP.2017.8296533
– ident: ref146
  doi: 10.1145/3082031.3083247
– ident: ref263
  doi: 10.1109/TIFS.2019.2945198
– year: 2019
  ident: ref212
  article-title: Face X-ray for more general face forgery detection
  publication-title: arXiv 1912 13458v1
– ident: ref196
  doi: 10.1109/WIFS.2018.8630761
– ident: ref10
  doi: 10.1109/WIFS.2011.6123127
– volume: 7541
  start-page: 1
  year: 0
  ident: ref58
  article-title: Efficient estimation and large scale evaluation of lateral chromatic aberration for digital image forensics
  publication-title: Proc SPIE
– year: 2019
  ident: ref182
  article-title: Towards generalizable forgery detection with locality-aware autoencoder
  publication-title: arXiv 1909 05999v1
– year: 2019
  ident: ref231
  article-title: The deepfake detection challenge (DFDC) preview dataset
  publication-title: arXiv 1910 08854v2
– ident: ref143
  doi: 10.1109/WIFS.2016.7823911
– ident: ref15
  doi: 10.1016/j.dsp.2017.08.009
– year: 2008
  ident: ref21
  article-title: Digital Watermarking and Steganography
– ident: ref45
  doi: 10.1109/ICCV.2019.00955
– ident: ref39
  doi: 10.1109/FG.2018.00024
– volume: 38
  year: 2019
  ident: ref27
  article-title: Deferred neural rendering: image synthesis using neural textures
  publication-title: ACM Trans Graph (TOG)
  doi: 10.1145/3306346.3323035
– ident: ref108
  doi: 10.1117/12.640109
– volume: 37
  start-page: 1
  year: 2018
  ident: ref51
  article-title: Deep video portraits
  publication-title: ACM Trans Graph (TOG)
– start-page: 1
  year: 0
  ident: ref18
  article-title: We need no pixels: Video manipulation detection using stream descriptors
  publication-title: Proc ICML Workshop
– ident: ref97
  doi: 10.1109/TIFS.2015.2394231
– start-page: 1
  year: 0
  ident: ref43
  article-title: Progressive growing of GANs for improved quality, stability, and variation
  publication-title: Proc Int Conf Learn Representations
– start-page: 1
  year: 0
  ident: ref98
  article-title: Detection of copy-move forgery in digital images
  publication-title: Proc Digital Forensic Res Workshop
– ident: ref254
  doi: 10.1109/CVPRW.2017.230
– ident: ref213
  doi: 10.1002/9781118705773.ch15
– ident: ref96
  doi: 10.1007/978-3-642-04438-0_7
– ident: ref131
  doi: 10.1016/j.jvcir.2017.09.003
– ident: ref101
  doi: 10.1016/j.jvcir.2015.01.016
– ident: ref258
  doi: 10.1145/3219819.3219910
– ident: ref104
  doi: 10.1109/ICIP.2014.7026073
– ident: ref217
  doi: 10.1109/WIFS.2016.7823898
– start-page: 2915
  year: 0
  ident: ref272
  article-title: MVAE: Multimodal variational autoencoder for fake news detection
  publication-title: Proc ACM World Wide Web Conf
– ident: ref172
  doi: 10.1109/WIFS47025.2019.9035107
– ident: ref187
  doi: 10.1109/TIFS.2015.2427778
– ident: ref220
  doi: 10.1109/ICIP.2016.7532339
– ident: ref174
  doi: 10.1109/CVPR42600.2020.00791
– ident: ref171
  doi: 10.1109/ICCV.2019.00765
– ident: ref177
  doi: 10.1109/MIPR.2018.00084
– ident: ref123
  doi: 10.1109/TCSVT.2016.2599849
– ident: ref262
  doi: 10.1109/LSP.2017.2782363
– ident: ref205
  doi: 10.1109/ICASSP.2019.8682602
– ident: ref132
  doi: 10.1109/CVPRW.2017.233
– start-page: 80
  year: 0
  ident: ref209
  article-title: Recurrent convolutional strategies for face manipulation detection in videos
  publication-title: Proc CVPR Workshops
– year: 2004
  ident: ref221
  article-title: A data set of authentic and spliced image blocks
– year: 2006
  ident: ref88
  article-title: Digital image ballistics from JPEG quantization
– ident: ref160
  doi: 10.1109/ICASSP.2018.8462585
– ident: ref194
  doi: 10.1109/ICASSP.2019.8683164
– ident: ref261
  doi: 10.1109/CVPRW50498.2020.00337
– year: 0
  ident: ref228
  article-title: GAN datasets
– ident: ref150
  doi: 10.1109/CVPR.2019.00977
– ident: ref259
  doi: 10.1016/j.image.2018.04.007
– ident: ref197
  doi: 10.1109/ICCV.2019.00009
– ident: ref20
  doi: 10.1109/TIFS.2019.2926777
– year: 2019
  ident: ref155
  article-title: A full-image full-resolution end-to-end-trainable CNN framework for image forgery detection
  publication-title: arXiv 1909 06751
– ident: ref142
  doi: 10.1109/ICCV.2019.01017
– ident: ref117
  doi: 10.1109/TIFS.2017.2745687
– start-page: 1
  year: 0
  ident: ref181
  article-title: Multi-task learning for detecting and segmenting manipulated facial images and videos
  publication-title: Proc IEEE Int Conf Biometrics Theory Appl Syst
– ident: ref218
  doi: 10.1007/s11042-016-3795-2
– ident: ref269
  doi: 10.1007/978-3-642-41184-7_27
– ident: ref124
  doi: 10.1109/TSP.2004.839896
– ident: ref244
  doi: 10.1145/1291233.1291252
– ident: ref52
  doi: 10.1109/ICCV.2019.00728
– ident: ref152
  doi: 10.1609/aaai.v34i07.7007
– ident: ref13
  doi: 10.1017/ATSIP.2012.2
– ident: ref105
  doi: 10.1109/MMSP.2013.6659337
– ident: ref256
  doi: 10.23919/EUSIPCO.2018.8553560
– ident: ref178
  doi: 10.2352/ISSN.2470-1173.2019.5.MWSF-532
– year: 0
  ident: ref225
  article-title: MFC2019
– ident: ref57
  doi: 10.1007/s11263-010-0403-1
– start-page: 1475
  year: 0
  ident: ref67
  article-title: Inter-channel demosaicing traces for digital image forensics
  publication-title: Proc IEEE Int Conf Multimedia Expo
– ident: ref156
  doi: 10.1109/WIFS.2016.7823921
– ident: ref153
  doi: 10.1109/WIFS.2017.8267647
– ident: ref138
  doi: 10.1109/WACV.2018.00211
– start-page: 1060
  year: 0
  ident: ref35
  article-title: Generative adversarial text-to-image synthesis
  publication-title: Proc Int Conf Mach Learn
– ident: ref190
  doi: 10.1109/ICCVW.2019.00213
– ident: ref63
  doi: 10.1109/TSP.2005.855406
– year: 2018
  ident: ref229
  article-title: DeepFakes: A new threat to face recognition? Assessment and detection
  publication-title: arXiv 1812 08685v1
– ident: ref116
  doi: 10.1007/11744078_33
– ident: ref188
  doi: 10.1109/WIFS.2018.8630787
– start-page: 96
  year: 0
  ident: ref175
  article-title: Source generator attribution via inversion
  publication-title: Proc CVPR Workshops
– ident: ref270
  doi: 10.1109/TIP.2016.2518870
– ident: ref240
  doi: 10.3390/s18113801
– ident: ref151
  doi: 10.1109/TIP.2019.2895466
– ident: ref154
  doi: 10.2352/ISSN.2470-1173.2018.07.MWSF-213
– ident: ref238
  doi: 10.1145/2713168.2713194
– ident: ref70
  doi: 10.1016/j.imavis.2009.02.001
– ident: ref122
  doi: 10.1109/ICIP.2013.6738919
– ident: ref235
  doi: 10.1108/OIR-03-2018-0101
– start-page: 1
  year: 2012
  ident: ref6
  article-title: An overview on image forensics
  publication-title: ISRN Signal Process
– ident: ref61
  doi: 10.1109/ICIP.2005.1530330
– ident: ref206
  doi: 10.1109/ICIP.2019.8803740
– start-page: 1
  year: 0
  ident: ref28
  article-title: Adversarial scene editing: Automatic object removal from weak supervision
  publication-title: Proc Conf Neural Inf Process Syst
– start-page: 1
  year: 0
  ident: ref255
  article-title: Intriguing properties of neural networks
  publication-title: Proc Int Conf Learn Represent
– ident: ref227
  doi: 10.1109/WACVW50321.2020.9096940
– ident: ref3
  doi: 10.1109/TIFS.2007.903848
– ident: ref214
  doi: 10.1109/ICME.2006.262447
– ident: ref148
  doi: 10.1109/CVPR.2018.00116
– ident: ref267
  doi: 10.1109/ICMEW.2015.7169770
– ident: ref50
  doi: 10.1145/2929464.2929475
– ident: ref237
  doi: 10.1145/1774088.1774427
– ident: ref126
  doi: 10.1109/CVPRW.2003.10093
– ident: ref48
  doi: 10.1109/CVPR.2018.00916
– ident: ref191
  doi: 10.1109/ICIP.2014.7025049
– ident: ref249
  doi: 10.23919/EUSIPCO.2018.8553305
– ident: ref159
  doi: 10.1109/CVPRW.2017.232
– ident: ref1
  doi: 10.1109/MSP.2008.931079
– ident: ref112
  doi: 10.1109/ICASSP.2014.6854802
– ident: ref95
  doi: 10.1145/1411328.1411333
– ident: ref90
  doi: 10.1145/3335203.3335722
– ident: ref7
  doi: 10.1145/3123266.3123411
– start-page: 1152
  year: 0
  ident: ref44
  article-title: Video-to-video synthesis
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref208
  doi: 10.1145/3319535.3363269
– start-page: 49
  year: 0
  ident: ref219
  article-title: CoMoFoD - New database for copy-move forgery detection
  publication-title: Proc 55th Int'l Symp ELMAR
– year: 2019
  ident: ref230
  article-title: Deepfakes detection dataset by google and JigSaw
– start-page: 5781
  year: 0
  ident: ref203
  article-title: On the detection of digital face manipulation
  publication-title: IEEE Conf Comput Vision Pattern Recognit
– ident: ref69
  doi: 10.1007/s11263-013-0688-y
– ident: ref200
  doi: 10.1109/CVPR.2017.195
– volume: 36
  year: 2017
  ident: ref46
  article-title: Synthesizing Obama: Learning lip sync from audio
  publication-title: ACM Trans Graph
  doi: 10.1145/3072959.3073640
– year: 2019
  ident: ref202
  article-title: Zooming into Face Forensics: A Pixel-level Analysis
  publication-title: arXiv 1912 05790v1
– ident: ref68
  doi: 10.1007/978-3-540-30114-1_10
– ident: ref128
  doi: 10.1109/ICIP.2014.7026072
– ident: ref38
  doi: 10.1109/ICCV.2017.244
– volume: 9409 y
  start-page: 1
  year: 0
  ident: ref145
  article-title: Deep learning for steganalysis via convolutional neural networks
  publication-title: Proc SPIE
– ident: ref234
  doi: 10.1109/CVPR42600.2020.00296
– ident: ref164
  doi: 10.23919/EUSIPCO.2018.8553581
– ident: ref5
  doi: 10.1109/TIFS.2013.2265677
– ident: ref147
  doi: 10.1109/CVPRW.2017.229
– ident: ref64
  doi: 10.1109/CVPRW.2008.4562984
– ident: ref66
  doi: 10.1109/TIFS.2012.2202227
– ident: ref125
  doi: 10.1016/j.patcog.2012.05.014
– ident: ref242
  doi: 10.2352/ISSN.2470-1173.2017.7.MWSF-331
– ident: ref115
  doi: 10.1109/WIFS.2014.7084319
– volume: 12
  start-page: 230
  year: 2003
  ident: ref76
  article-title: Identification of bitmap compression history: JPEG detection and quantizer estimation
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2002.807361
– start-page: 170
  year: 0
  ident: ref140
  article-title: BusterNet: Detecting copy-move image forgery with source/target localization
  publication-title: Proc Eur Conf Comput Vision
– ident: ref111
  doi: 10.1109/TIFS.2014.2302078
– ident: ref253
  doi: 10.1109/WIFS.2017.8267668
– start-page: 11
  year: 0
  ident: ref19
  article-title: Robust homomorphic image hashing
  publication-title: Proc IEEE CVPR Workshop
– ident: ref139
  doi: 10.1109/TIFS.2019.2957693
– start-page: 342
  year: 0
  ident: ref109
  article-title: Imaging sensor noise as digital x-ray for revealing forgeries
  publication-title: Proc Int Workshop Inf Hiding
– ident: ref216
  doi: 10.1109/NBiS.2014.82
– start-page: 1
  year: 0
  ident: ref250
  article-title: Intriguing properties of neural networks
  publication-title: Proc Int Conf Learn Representations
– ident: ref133
  doi: 10.1109/ICIP.2019.8802966
– ident: ref29
  doi: 10.1109/CVPR.2017.434
– year: 0
  ident: ref232
  article-title: Deepfake Detection Challenge
– year: 2012
  ident: ref245
  article-title: Counter-forensics: Attacking image forensics
  publication-title: Digital Image Forensics
– ident: ref103
  doi: 10.1109/TIFS.2015.2455334
– volume: 4
  start-page: 899
  year: 2009
  ident: ref62
  article-title: Accurate detection of demosaicing regularity for digital image forensics
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2009.2033749
– start-page: 1
  year: 0
  ident: ref273
  article-title: Tampered speaker inconsistency detection with phonetically aware audio-visual features
  publication-title: Proc ICML Workshop Detecting Audio-Visual Fakes
– ident: ref92
  doi: 10.1109/WIFS.2012.6412641
SSID ssj0057614
Score 2.7059298
Snippet With the rapid progress in recent years, techniques that generate and manipulate multimedia content can now provide a very advanced level of realism. The...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 910
SubjectTerms Computer & video games
Deception
Deep learning
deepfakes
Digital forensics
digital image forensics
Elections
Forensics
Fraud
Generative adversarial networks
Image manipulation
Information integrity
Machine learning
Media
Multimedia
video forensics
Videos
Title Media Forensics and DeepFakes: An Overview
URI https://ieeexplore.ieee.org/document/9115874
https://www.proquest.com/docview/2438688689
Volume 14
WOSCitedRecordID wos000564205000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057614
  issn: 1932-4553
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4kEPvqpYrZKDJzW2-0qy3opaPNWCCr2FzWYCoqSlaevfd3eTFEURhBxy2FnCN7sz82V3ZgDOVcKo4gHxVUiVz7MMfUlTQ1UyE_6iIixhZbOJcDSKJhM5bsDVOhcGEd3lM7y2r-4sP53qpf1V1jMbU0Qhb0IzDIMyV6u2uiZsJtUJMvW5EKxOkOnLnlniT2NDBalhqI7jkG9OyHVV-WGKnX8Z7vzvy3Zhu4ojvUGp-D1oYL4PW1-qC7bhwh7CKM8238yNLgpP5al3hzgbqjcsbrxB7j2urKnAjwN4Gd4_3z74VWsEX1MpFn5KkWuCxKaVItOZ4ExRZcgIZjzSJEFlqFRfGd8dyCTKlJDWL1t2I0U_MyKH0MqnOR6BlyZMaMOjEqZsPTAqjfUWkpPMEI0EBe0AqbGKdVU33LaveI8df-jL2OEbW3zjCt8OXK5lZmXVjD9Hty2i65EVmB3o1iqJq41VxJSzKIjMI49_lzqBTTt3eUevC63FfImnsKFXi9difubWzCd757rk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSDryrWZw6e1Njsq816K2qpWGvBCr2FzWYCoqSlaevfdzdJi6IIQg457LDhm92Z-bI7MwBnKmRU8TpxVYMql8cxupJGhqrEJvxFRVjI8mYTjW7XHwxkrwSXi1wYRMwun-GVfc3O8qOhntpfZTWzMYXf4EuwLDinXp6tNbe7JnAmxRkydbkQbJ4i48maWeTPPUMGqeGoGcsh39xQ1lflhzHOPExr83_ftgUbRSTpNHPVb0MJkx1Y_1JfsALn9hhGObb9ZmK0kToqiZxbxFFLvWF67TQT52lmjQV-7MJL665_03aL5giuplJM3Igi1wSJTSxFpmPBmaLK0BGMua9JiMqQKU8Z712XoR8rIa1ntvxGCi82IntQToYJ7oMThUxow6RCpmxFMCqN_RaSk9hQjRAFrQKZYxXoonK4bWDxHmQMwpNBhm9g8Q0KfKtwsZAZ5XUz_hxdsYguRhZgVuForpKg2FppQDnz67555MHvUqew2u4_doLOfffhENbsPPmNvSMoT8ZTPIYVPZu8puOTbP18AmaJvis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Media+Forensics+and+DeepFakes%3A+An+Overview&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Verdoliva%2C+Luisa&rft.date=2020-08-01&rft.pub=IEEE&rft.issn=1932-4553&rft.volume=14&rft.issue=5&rft.spage=910&rft.epage=932&rft_id=info:doi/10.1109%2FJSTSP.2020.3002101&rft.externalDocID=9115874
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon