On Fuzzy Simulations for Expected Values of Functions of Fuzzy Numbers and Intervals

Based on existing fuzzy simulation algorithms, this article presents two innovative techniques for approximating the expected values of fuzzy numbers' monotone functions, which is of utmost importance in fuzzy optimization literature. In this regard, the stochastic discretization algorithm of L...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on fuzzy systems Vol. 29; no. 6; pp. 1446 - 1459
Main Authors: Liu, Yuanyuan, Miao, Yunwen, Pantelous, Athanasios A., Zhou, Jian, Ji, Ping
Format: Journal Article
Language:English
Published: New York IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1063-6706, 1941-0034
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Based on existing fuzzy simulation algorithms, this article presents two innovative techniques for approximating the expected values of fuzzy numbers' monotone functions, which is of utmost importance in fuzzy optimization literature. In this regard, the stochastic discretization algorithm of Liu and Liu (2002) is enhanced by updating the discretization procedure for the simulation of the membership function and the calculation formula for the expected values. This is achieved through initiating a novel uniform sampling process and employing a formula for discrete fuzzy numbers, respectively, as the generated membership function in the stochastic discretization algorithm would adversely affect its accuracy to some extent. What is more, considering that the bisection procedure involved in the numerical integration algorithm of Li (2015) is time-consuming and also, not necessary for the specified types of fuzzy numbers, a special numerical integration algorithm is proposed, which can simplify the simulation procedure by adopting the analytical expressions of <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-optimistic values. Subsequently, concerning the extensive applications of regular fuzzy intervals, several theorems are introduced and proved as an extended effort to apply the improved stochastic discretization algorithm and the special numerical integration algorithm to the issues of fuzzy intervals. Throughout this article, a series of numerical experiments are conducted from which the superiority of both the two novel techniques over others are conspicuously displayed in aspects of accuracy, stability, and efficiency.
AbstractList Based on existing fuzzy simulation algorithms, this article presents two innovative techniques for approximating the expected values of fuzzy numbers’ monotone functions, which is of utmost importance in fuzzy optimization literature. In this regard, the stochastic discretization algorithm of Liu and Liu (2002) is enhanced by updating the discretization procedure for the simulation of the membership function and the calculation formula for the expected values. This is achieved through initiating a novel uniform sampling process and employing a formula for discrete fuzzy numbers, respectively, as the generated membership function in the stochastic discretization algorithm would adversely affect its accuracy to some extent. What is more, considering that the bisection procedure involved in the numerical integration algorithm of Li (2015) is time-consuming and also, not necessary for the specified types of fuzzy numbers, a special numerical integration algorithm is proposed, which can simplify the simulation procedure by adopting the analytical expressions of [Formula Omitted]-optimistic values. Subsequently, concerning the extensive applications of regular fuzzy intervals, several theorems are introduced and proved as an extended effort to apply the improved stochastic discretization algorithm and the special numerical integration algorithm to the issues of fuzzy intervals. Throughout this article, a series of numerical experiments are conducted from which the superiority of both the two novel techniques over others are conspicuously displayed in aspects of accuracy, stability, and efficiency.
Based on existing fuzzy simulation algorithms, this article presents two innovative techniques for approximating the expected values of fuzzy numbers' monotone functions, which is of utmost importance in fuzzy optimization literature. In this regard, the stochastic discretization algorithm of Liu and Liu (2002) is enhanced by updating the discretization procedure for the simulation of the membership function and the calculation formula for the expected values. This is achieved through initiating a novel uniform sampling process and employing a formula for discrete fuzzy numbers, respectively, as the generated membership function in the stochastic discretization algorithm would adversely affect its accuracy to some extent. What is more, considering that the bisection procedure involved in the numerical integration algorithm of Li (2015) is time-consuming and also, not necessary for the specified types of fuzzy numbers, a special numerical integration algorithm is proposed, which can simplify the simulation procedure by adopting the analytical expressions of <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-optimistic values. Subsequently, concerning the extensive applications of regular fuzzy intervals, several theorems are introduced and proved as an extended effort to apply the improved stochastic discretization algorithm and the special numerical integration algorithm to the issues of fuzzy intervals. Throughout this article, a series of numerical experiments are conducted from which the superiority of both the two novel techniques over others are conspicuously displayed in aspects of accuracy, stability, and efficiency.
Author Zhou, Jian
Liu, Yuanyuan
Pantelous, Athanasios A.
Ji, Ping
Miao, Yunwen
Author_xml – sequence: 1
  givenname: Yuanyuan
  surname: Liu
  fullname: Liu, Yuanyuan
  email: 20171818@sdufe.edu.cn
  organization: School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan, China
– sequence: 2
  givenname: Yunwen
  orcidid: 0000-0001-5377-3435
  surname: Miao
  fullname: Miao, Yunwen
  email: yunwen.miao@connect.polyu.hk
  organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong
– sequence: 3
  givenname: Athanasios A.
  orcidid: 0000-0001-5738-1471
  surname: Pantelous
  fullname: Pantelous, Athanasios A.
  email: athanasios.pantelous@monash.edu
  organization: Monash Business School, Department of Econometrics and Business Statistics, Monash University, Clayton, VIC, Australia
– sequence: 4
  givenname: Jian
  orcidid: 0000-0001-7835-8879
  surname: Zhou
  fullname: Zhou, Jian
  email: zhou_jian@shu.edu.cn
  organization: School of Management, Shanghai University, Shanghai, China
– sequence: 5
  givenname: Ping
  orcidid: 0000-0002-7841-6677
  surname: Ji
  fullname: Ji, Ping
  email: p.ji@polyu.edu.hk
  organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong
BookMark eNp9kE1PAjEQhhuDiYD-Ab008bw4_diPHg0BJSFyEDxw2XTbbrIEutjuGuHXW1jiwYOnmSbPM515B6hna2sQuicwIgTE03K6Wq9HFCiMqEgFIfQK9YngJAJgvBd6SFiUpJDcoIH3GwDCY5L10XJh8bQ9Hg_4vdq1W9lUtfW4rB2efO-NaozGH3LbGo_rMoBWdcD5cbLe2l1hnMfSajyzjXFfcutv0XUZirm71CFaTSfL8Ws0X7zMxs_zSFERN5GmusxSoksqGFVMCZIJUJTQJBU8KwwHymNNGYm1FFxLVRgdoCLmRaq1IGyIHru5e1d_hh2bfFO3zoYvcxqzBBhkSRyorKOUq713psxV1ZwPbZystjmB_JRhfs4wP2WYXzIMKv2j7l21k-7wv_TQSZUx5lcQQJNMcPYDPaJ_iQ
CODEN IEFSEV
CitedBy_id crossref_primary_10_1016_j_ast_2024_109688
crossref_primary_10_1109_TFUZZ_2022_3197326
crossref_primary_10_3390_sym14071384
crossref_primary_10_1007_s00500_022_07434_9
crossref_primary_10_3390_sym14081554
crossref_primary_10_1109_TFUZZ_2020_3034718
crossref_primary_10_1016_j_ijepes_2023_109640
crossref_primary_10_1109_TFUZZ_2023_3323093
crossref_primary_10_1109_TIA_2022_3231582
crossref_primary_10_1016_j_rico_2025_100576
crossref_primary_10_3390_math11173750
Cites_doi 10.3233/JIFS-181467
10.1109/TFUZZ.2002.800692
10.1016/j.ymssp.2019.02.012
10.1007/978-3-662-44354-5
10.1016/0020-0255(75)90036-5
10.3390/e21030289
10.1016/j.cie.2005.03.003
10.1016/j.camwa.2007.04.042
10.1016/0165-0114(87)90028-5
10.1016/S0165-0114(97)00291-1
10.1007/978-3-540-39987-2
10.1109/TFUZZ.2016.2543753
10.3233/IFS-151712
10.1016/S0165-0114(00)00043-9
10.1080/00207727808941724
10.1016/j.cie.2018.06.028
10.1016/j.ejor.2014.10.061
10.1109/TFUZZ.2005.864077
10.1016/0165-0114(78)90029-5
10.1109/TFUZZ.2014.2336262
10.1016/S0165-0114(96)00236-9
10.1016/j.apm.2009.04.011
10.1109/TFUZZ.2017.2738607
10.1007/s10700-006-0016-x
10.1016/0165-0114(92)90062-9
10.1007/978-3-7908-1781-2
10.1016/j.cam.2009.07.019
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2020.2979112
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1941-0034
EndPage 1459
ExternalDocumentID 10_1109_TFUZZ_2020_2979112
9026894
Genre orig-research
GrantInformation_xml – fundername: Shandong Provincial Natural Science Foundation of China
  grantid: ZR2018BG008
– fundername: National Natural Science Foundation of China
  grantid: 71872110
  funderid: 10.13039/501100001809
– fundername: Research Committee of The Hong Kong Polytechnic University
  grantid: RK23
– fundername: High-End Foreign Experts Recruitment Program of China
  grantid: GDW20183100431
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-d2df871df2932c3c91890c21267948be40245d2315da94dacbedc91b54b7dd913
IEDL.DBID RIE
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000658338600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Sun Nov 09 07:19:57 EST 2025
Sat Nov 29 03:12:39 EST 2025
Tue Nov 18 21:52:54 EST 2025
Wed Aug 27 02:14:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-d2df871df2932c3c91890c21267948be40245d2315da94dacbedc91b54b7dd913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7835-8879
0000-0001-5377-3435
0000-0001-5738-1471
0000-0002-7841-6677
PQID 2536030865
PQPubID 85428
PageCount 14
ParticipantIDs ieee_primary_9026894
crossref_primary_10_1109_TFUZZ_2020_2979112
crossref_citationtrail_10_1109_TFUZZ_2020_2979112
proquest_journals_2536030865
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref18
liu (ref13) 2006; 14
miao (ref16) 2020
liu (ref4) 2002; 10
ref24
ref23
ref26
ref25
zadeh (ref28) 0
ref20
ref22
ref21
ref27
dubois (ref30) 1988
ref29
ref8
ref7
liu (ref19) 1998; 100
ref9
ref3
ref6
ref5
References_xml – ident: ref24
  doi: 10.3233/JIFS-181467
– year: 2020
  ident: ref16
  article-title: A novel fuzzy simulation technique on possibilistic constraints
– volume: 10
  start-page: 445
  year: 2002
  ident: ref4
  article-title: Expected value of fuzzy variable and fuzzy expected value models
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2002.800692
– ident: ref5
  doi: 10.1016/j.ymssp.2019.02.012
– ident: ref22
  doi: 10.1007/978-3-662-44354-5
– ident: ref21
  doi: 10.1016/0020-0255(75)90036-5
– year: 1988
  ident: ref30
  publication-title: Possibility Theory
– start-page: 149
  year: 0
  ident: ref28
  article-title: A theory of approximate reasoning
  publication-title: Machine Intelligence
– ident: ref25
  doi: 10.3390/e21030289
– ident: ref6
  doi: 10.1016/j.cie.2005.03.003
– ident: ref8
  doi: 10.1016/j.camwa.2007.04.042
– ident: ref1
  doi: 10.1016/0165-0114(87)90028-5
– volume: 100
  start-page: 229
  year: 1998
  ident: ref19
  article-title: A note on chance constrained programming with fuzzy coefficients
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/S0165-0114(97)00291-1
– ident: ref23
  doi: 10.1007/978-3-540-39987-2
– ident: ref10
  doi: 10.1109/TFUZZ.2016.2543753
– ident: ref15
  doi: 10.3233/IFS-151712
– ident: ref3
  doi: 10.1016/S0165-0114(00)00043-9
– ident: ref29
  doi: 10.1080/00207727808941724
– ident: ref7
  doi: 10.1016/j.cie.2018.06.028
– ident: ref26
  doi: 10.1016/j.ejor.2014.10.061
– volume: 14
  start-page: 295
  year: 2006
  ident: ref13
  article-title: Convergent results about the use of fuzzy simulation in fuzzy optimization problems
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2005.864077
– ident: ref27
  doi: 10.1016/0165-0114(78)90029-5
– ident: ref14
  doi: 10.1109/TFUZZ.2014.2336262
– ident: ref18
  doi: 10.1016/S0165-0114(96)00236-9
– ident: ref12
  doi: 10.1016/j.apm.2009.04.011
– ident: ref11
  doi: 10.1109/TFUZZ.2017.2738607
– ident: ref20
  doi: 10.1007/s10700-006-0016-x
– ident: ref2
  doi: 10.1016/0165-0114(92)90062-9
– ident: ref17
  doi: 10.1007/978-3-7908-1781-2
– ident: ref9
  doi: 10.1016/j.cam.2009.07.019
SSID ssj0014518
Score 2.4267936
Snippet Based on existing fuzzy simulation algorithms, this article presents two innovative techniques for approximating the expected values of fuzzy numbers' monotone...
Based on existing fuzzy simulation algorithms, this article presents two innovative techniques for approximating the expected values of fuzzy numbers’ monotone...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1446
SubjectTerms Algorithms
Analytical models
Approximation algorithms
Business
Computational modeling
Discretization
Electronic mail
Expected value
Expected values
fuzzy simulation
Intervals
Mathematical analysis
Monotone functions
Numerical integration
Numerical models
Optimization
regular fuzzy interval
regular fuzzy number
Simulation
Stochastic processes
Title On Fuzzy Simulations for Expected Values of Functions of Fuzzy Numbers and Intervals
URI https://ieeexplore.ieee.org/document/9026894
https://www.proquest.com/docview/2536030865
Volume 29
WOSCitedRecordID wos000658338600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED6miOiD06k4nZIH37SaJm3SPIpYfJApuIn4UpofA2F2sm6C_vUmaTsURfCthQsN_XK5u1zuO4BjjHMVSSWDRDMROAasQCoqAsoce7pJBNeeXf-G9_vJ46O4a8HpohbGGOMvn5kz9-hz-Xqi5u6o7FzYgCER0RIscc6qWq1FxsB-pSp7YzRgHLOmQAaL80E6fHqyoSDBZ0Rwq93kmxHyXVV-bMXevqTt_81sEzZqPxJdVMBvQcsUHVhtrrF3oN20a0C19nZg_Qv34DYMbguUzj8-3tH980vdw6tE1oVFjv1YWUcUPeRjO1M0GVnBQlUC_sWN6vtWIiXKC438saJdsuUODNOrweV1ULdYCBQR8SzQRI9syKRH1uoTRZUIE4GVNWfM6mkiTeQys9r6gLHORaRzJY22QjKOJNdahHQXlotJYfYAKSaIyTk1jvCdh7mkMY2jCEtuckZx1IWw-eeZqvnHXRuMcebjECwyj1PmcMpqnLpwshjzWrFv_Cm97ZBZSNagdKHXQJvVClpmJKbMUfWweP_3UQewRtz1FX_g0oPl2XRuDmFFvc2ey-mRX3ufOQLVUA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90ih8PTjfF-ZkH37RblrRp8yjimDin4BTxpTQfA0E7WTdB_3qTtB2KIvjWwoWG_nK5u1zudwBHGCfSF1J4kWLcswxYnpCUe5RZ9nQd8VA5dv1e2O9HDw_8Zg5OZrUwWmt3-Uw37aPL5auRnNqjshY3AUPE_XlYCHyf4Lxaa5YzMN_JC98Y9ViIWVkig3lr0Ll7fDTBIMFNwkOj3-SbGXJ9VX5sxs7CdKr_m9s6rBWeJDrNod-AOZ3WYKm8yF6DatmwARX6W4PVL-yDdRhcp6gz_fh4R7dPL0UXrwwZJxZZ_mNpXFF0nzybmaLR0AimMhdwL3ZU3zUTyVCSKuQOFs2izTbhrnM-OOt6RZMFTxIeTDxF1NAETWpo7D6RVPJ2xLE0Bo0ZTY2E9m1uVhkvMFAJ91UihVZGSAS-CJXibboFlXSU6m1AknGik5BqS_kethNBA2qAwiLUCaPYb0C7_OexLBjIbSOM59hFIpjHDqfY4hQXODXgeDbmNeff-FO6bpGZSRagNGCvhDYuVDSLSUCZJethwc7vow5huTu46sW9i_7lLqwQe5nFHb_sQWUynup9WJRvk6dsfODW4Sd6N9iX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Fuzzy+Simulations+for+Expected+Values+of+Functions+of+Fuzzy+Numbers+and+Intervals&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Liu%2C+Yuanyuan&rft.au=Miao%2C+Yunwen&rft.au=Pantelous%2C+Athanasios+A.&rft.au=Zhou%2C+Jian&rft.date=2021-06-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=29&rft.issue=6&rft.spage=1446&rft.epage=1459&rft_id=info:doi/10.1109%2FTFUZZ.2020.2979112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2020_2979112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon