On Fuzzy Simulations for Expected Values of Functions of Fuzzy Numbers and Intervals
Based on existing fuzzy simulation algorithms, this article presents two innovative techniques for approximating the expected values of fuzzy numbers' monotone functions, which is of utmost importance in fuzzy optimization literature. In this regard, the stochastic discretization algorithm of L...
Saved in:
| Published in: | IEEE transactions on fuzzy systems Vol. 29; no. 6; pp. 1446 - 1459 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1063-6706, 1941-0034 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Based on existing fuzzy simulation algorithms, this article presents two innovative techniques for approximating the expected values of fuzzy numbers' monotone functions, which is of utmost importance in fuzzy optimization literature. In this regard, the stochastic discretization algorithm of Liu and Liu (2002) is enhanced by updating the discretization procedure for the simulation of the membership function and the calculation formula for the expected values. This is achieved through initiating a novel uniform sampling process and employing a formula for discrete fuzzy numbers, respectively, as the generated membership function in the stochastic discretization algorithm would adversely affect its accuracy to some extent. What is more, considering that the bisection procedure involved in the numerical integration algorithm of Li (2015) is time-consuming and also, not necessary for the specified types of fuzzy numbers, a special numerical integration algorithm is proposed, which can simplify the simulation procedure by adopting the analytical expressions of <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-optimistic values. Subsequently, concerning the extensive applications of regular fuzzy intervals, several theorems are introduced and proved as an extended effort to apply the improved stochastic discretization algorithm and the special numerical integration algorithm to the issues of fuzzy intervals. Throughout this article, a series of numerical experiments are conducted from which the superiority of both the two novel techniques over others are conspicuously displayed in aspects of accuracy, stability, and efficiency. |
|---|---|
| AbstractList | Based on existing fuzzy simulation algorithms, this article presents two innovative techniques for approximating the expected values of fuzzy numbers’ monotone functions, which is of utmost importance in fuzzy optimization literature. In this regard, the stochastic discretization algorithm of Liu and Liu (2002) is enhanced by updating the discretization procedure for the simulation of the membership function and the calculation formula for the expected values. This is achieved through initiating a novel uniform sampling process and employing a formula for discrete fuzzy numbers, respectively, as the generated membership function in the stochastic discretization algorithm would adversely affect its accuracy to some extent. What is more, considering that the bisection procedure involved in the numerical integration algorithm of Li (2015) is time-consuming and also, not necessary for the specified types of fuzzy numbers, a special numerical integration algorithm is proposed, which can simplify the simulation procedure by adopting the analytical expressions of [Formula Omitted]-optimistic values. Subsequently, concerning the extensive applications of regular fuzzy intervals, several theorems are introduced and proved as an extended effort to apply the improved stochastic discretization algorithm and the special numerical integration algorithm to the issues of fuzzy intervals. Throughout this article, a series of numerical experiments are conducted from which the superiority of both the two novel techniques over others are conspicuously displayed in aspects of accuracy, stability, and efficiency. Based on existing fuzzy simulation algorithms, this article presents two innovative techniques for approximating the expected values of fuzzy numbers' monotone functions, which is of utmost importance in fuzzy optimization literature. In this regard, the stochastic discretization algorithm of Liu and Liu (2002) is enhanced by updating the discretization procedure for the simulation of the membership function and the calculation formula for the expected values. This is achieved through initiating a novel uniform sampling process and employing a formula for discrete fuzzy numbers, respectively, as the generated membership function in the stochastic discretization algorithm would adversely affect its accuracy to some extent. What is more, considering that the bisection procedure involved in the numerical integration algorithm of Li (2015) is time-consuming and also, not necessary for the specified types of fuzzy numbers, a special numerical integration algorithm is proposed, which can simplify the simulation procedure by adopting the analytical expressions of <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>-optimistic values. Subsequently, concerning the extensive applications of regular fuzzy intervals, several theorems are introduced and proved as an extended effort to apply the improved stochastic discretization algorithm and the special numerical integration algorithm to the issues of fuzzy intervals. Throughout this article, a series of numerical experiments are conducted from which the superiority of both the two novel techniques over others are conspicuously displayed in aspects of accuracy, stability, and efficiency. |
| Author | Zhou, Jian Liu, Yuanyuan Pantelous, Athanasios A. Ji, Ping Miao, Yunwen |
| Author_xml | – sequence: 1 givenname: Yuanyuan surname: Liu fullname: Liu, Yuanyuan email: 20171818@sdufe.edu.cn organization: School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan, China – sequence: 2 givenname: Yunwen orcidid: 0000-0001-5377-3435 surname: Miao fullname: Miao, Yunwen email: yunwen.miao@connect.polyu.hk organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong – sequence: 3 givenname: Athanasios A. orcidid: 0000-0001-5738-1471 surname: Pantelous fullname: Pantelous, Athanasios A. email: athanasios.pantelous@monash.edu organization: Monash Business School, Department of Econometrics and Business Statistics, Monash University, Clayton, VIC, Australia – sequence: 4 givenname: Jian orcidid: 0000-0001-7835-8879 surname: Zhou fullname: Zhou, Jian email: zhou_jian@shu.edu.cn organization: School of Management, Shanghai University, Shanghai, China – sequence: 5 givenname: Ping orcidid: 0000-0002-7841-6677 surname: Ji fullname: Ji, Ping email: p.ji@polyu.edu.hk organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong |
| BookMark | eNp9kE1PAjEQhhuDiYD-Ab008bw4_diPHg0BJSFyEDxw2XTbbrIEutjuGuHXW1jiwYOnmSbPM515B6hna2sQuicwIgTE03K6Wq9HFCiMqEgFIfQK9YngJAJgvBd6SFiUpJDcoIH3GwDCY5L10XJh8bQ9Hg_4vdq1W9lUtfW4rB2efO-NaozGH3LbGo_rMoBWdcD5cbLe2l1hnMfSajyzjXFfcutv0XUZirm71CFaTSfL8Ws0X7zMxs_zSFERN5GmusxSoksqGFVMCZIJUJTQJBU8KwwHymNNGYm1FFxLVRgdoCLmRaq1IGyIHru5e1d_hh2bfFO3zoYvcxqzBBhkSRyorKOUq713psxV1ZwPbZystjmB_JRhfs4wP2WYXzIMKv2j7l21k-7wv_TQSZUx5lcQQJNMcPYDPaJ_iQ |
| CODEN | IEFSEV |
| CitedBy_id | crossref_primary_10_1016_j_ast_2024_109688 crossref_primary_10_1109_TFUZZ_2022_3197326 crossref_primary_10_3390_sym14071384 crossref_primary_10_1007_s00500_022_07434_9 crossref_primary_10_3390_sym14081554 crossref_primary_10_1109_TFUZZ_2020_3034718 crossref_primary_10_1016_j_ijepes_2023_109640 crossref_primary_10_1109_TFUZZ_2023_3323093 crossref_primary_10_1109_TIA_2022_3231582 crossref_primary_10_1016_j_rico_2025_100576 crossref_primary_10_3390_math11173750 |
| Cites_doi | 10.3233/JIFS-181467 10.1109/TFUZZ.2002.800692 10.1016/j.ymssp.2019.02.012 10.1007/978-3-662-44354-5 10.1016/0020-0255(75)90036-5 10.3390/e21030289 10.1016/j.cie.2005.03.003 10.1016/j.camwa.2007.04.042 10.1016/0165-0114(87)90028-5 10.1016/S0165-0114(97)00291-1 10.1007/978-3-540-39987-2 10.1109/TFUZZ.2016.2543753 10.3233/IFS-151712 10.1016/S0165-0114(00)00043-9 10.1080/00207727808941724 10.1016/j.cie.2018.06.028 10.1016/j.ejor.2014.10.061 10.1109/TFUZZ.2005.864077 10.1016/0165-0114(78)90029-5 10.1109/TFUZZ.2014.2336262 10.1016/S0165-0114(96)00236-9 10.1016/j.apm.2009.04.011 10.1109/TFUZZ.2017.2738607 10.1007/s10700-006-0016-x 10.1016/0165-0114(92)90062-9 10.1007/978-3-7908-1781-2 10.1016/j.cam.2009.07.019 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TFUZZ.2020.2979112 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1941-0034 |
| EndPage | 1459 |
| ExternalDocumentID | 10_1109_TFUZZ_2020_2979112 9026894 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Shandong Provincial Natural Science Foundation of China grantid: ZR2018BG008 – fundername: National Natural Science Foundation of China grantid: 71872110 funderid: 10.13039/501100001809 – fundername: Research Committee of The Hong Kong Polytechnic University grantid: RK23 – fundername: High-End Foreign Experts Recruitment Program of China grantid: GDW20183100431 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c295t-d2df871df2932c3c91890c21267948be40245d2315da94dacbedc91b54b7dd913 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000658338600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6706 |
| IngestDate | Sun Nov 09 07:19:57 EST 2025 Sat Nov 29 03:12:39 EST 2025 Tue Nov 18 21:52:54 EST 2025 Wed Aug 27 02:14:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-d2df871df2932c3c91890c21267948be40245d2315da94dacbedc91b54b7dd913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7835-8879 0000-0001-5377-3435 0000-0001-5738-1471 0000-0002-7841-6677 |
| PQID | 2536030865 |
| PQPubID | 85428 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_9026894 crossref_primary_10_1109_TFUZZ_2020_2979112 crossref_citationtrail_10_1109_TFUZZ_2020_2979112 proquest_journals_2536030865 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref18 liu (ref13) 2006; 14 miao (ref16) 2020 liu (ref4) 2002; 10 ref24 ref23 ref26 ref25 zadeh (ref28) 0 ref20 ref22 ref21 ref27 dubois (ref30) 1988 ref29 ref8 ref7 liu (ref19) 1998; 100 ref9 ref3 ref6 ref5 |
| References_xml | – ident: ref24 doi: 10.3233/JIFS-181467 – year: 2020 ident: ref16 article-title: A novel fuzzy simulation technique on possibilistic constraints – volume: 10 start-page: 445 year: 2002 ident: ref4 article-title: Expected value of fuzzy variable and fuzzy expected value models publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2002.800692 – ident: ref5 doi: 10.1016/j.ymssp.2019.02.012 – ident: ref22 doi: 10.1007/978-3-662-44354-5 – ident: ref21 doi: 10.1016/0020-0255(75)90036-5 – year: 1988 ident: ref30 publication-title: Possibility Theory – start-page: 149 year: 0 ident: ref28 article-title: A theory of approximate reasoning publication-title: Machine Intelligence – ident: ref25 doi: 10.3390/e21030289 – ident: ref6 doi: 10.1016/j.cie.2005.03.003 – ident: ref8 doi: 10.1016/j.camwa.2007.04.042 – ident: ref1 doi: 10.1016/0165-0114(87)90028-5 – volume: 100 start-page: 229 year: 1998 ident: ref19 article-title: A note on chance constrained programming with fuzzy coefficients publication-title: Fuzzy Sets Syst doi: 10.1016/S0165-0114(97)00291-1 – ident: ref23 doi: 10.1007/978-3-540-39987-2 – ident: ref10 doi: 10.1109/TFUZZ.2016.2543753 – ident: ref15 doi: 10.3233/IFS-151712 – ident: ref3 doi: 10.1016/S0165-0114(00)00043-9 – ident: ref29 doi: 10.1080/00207727808941724 – ident: ref7 doi: 10.1016/j.cie.2018.06.028 – ident: ref26 doi: 10.1016/j.ejor.2014.10.061 – volume: 14 start-page: 295 year: 2006 ident: ref13 article-title: Convergent results about the use of fuzzy simulation in fuzzy optimization problems publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2005.864077 – ident: ref27 doi: 10.1016/0165-0114(78)90029-5 – ident: ref14 doi: 10.1109/TFUZZ.2014.2336262 – ident: ref18 doi: 10.1016/S0165-0114(96)00236-9 – ident: ref12 doi: 10.1016/j.apm.2009.04.011 – ident: ref11 doi: 10.1109/TFUZZ.2017.2738607 – ident: ref20 doi: 10.1007/s10700-006-0016-x – ident: ref2 doi: 10.1016/0165-0114(92)90062-9 – ident: ref17 doi: 10.1007/978-3-7908-1781-2 – ident: ref9 doi: 10.1016/j.cam.2009.07.019 |
| SSID | ssj0014518 |
| Score | 2.4267936 |
| Snippet | Based on existing fuzzy simulation algorithms, this article presents two innovative techniques for approximating the expected values of fuzzy numbers' monotone... Based on existing fuzzy simulation algorithms, this article presents two innovative techniques for approximating the expected values of fuzzy numbers’ monotone... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1446 |
| SubjectTerms | Algorithms Analytical models Approximation algorithms Business Computational modeling Discretization Electronic mail Expected value Expected values fuzzy simulation Intervals Mathematical analysis Monotone functions Numerical integration Numerical models Optimization regular fuzzy interval regular fuzzy number Simulation Stochastic processes |
| Title | On Fuzzy Simulations for Expected Values of Functions of Fuzzy Numbers and Intervals |
| URI | https://ieeexplore.ieee.org/document/9026894 https://www.proquest.com/docview/2536030865 |
| Volume | 29 |
| WOSCitedRecordID | wos000658338600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED6miOiD06k4nZIH37SaJm3SPIpYfJApuIn4UpofA2F2sm6C_vUmaTsURfCthQsN_XK5u1zuO4BjjHMVSSWDRDMROAasQCoqAsoce7pJBNeeXf-G9_vJ46O4a8HpohbGGOMvn5kz9-hz-Xqi5u6o7FzYgCER0RIscc6qWq1FxsB-pSp7YzRgHLOmQAaL80E6fHqyoSDBZ0Rwq93kmxHyXVV-bMXevqTt_81sEzZqPxJdVMBvQcsUHVhtrrF3oN20a0C19nZg_Qv34DYMbguUzj8-3tH980vdw6tE1oVFjv1YWUcUPeRjO1M0GVnBQlUC_sWN6vtWIiXKC438saJdsuUODNOrweV1ULdYCBQR8SzQRI9syKRH1uoTRZUIE4GVNWfM6mkiTeQys9r6gLHORaRzJY22QjKOJNdahHQXlotJYfYAKSaIyTk1jvCdh7mkMY2jCEtuckZx1IWw-eeZqvnHXRuMcebjECwyj1PmcMpqnLpwshjzWrFv_Cm97ZBZSNagdKHXQJvVClpmJKbMUfWweP_3UQewRtz1FX_g0oPl2XRuDmFFvc2ey-mRX3ufOQLVUA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90ih8PTjfF-ZkH37RblrRp8yjimDin4BTxpTQfA0E7WTdB_3qTtB2KIvjWwoWG_nK5u1zudwBHGCfSF1J4kWLcswxYnpCUe5RZ9nQd8VA5dv1e2O9HDw_8Zg5OZrUwWmt3-Uw37aPL5auRnNqjshY3AUPE_XlYCHyf4Lxaa5YzMN_JC98Y9ViIWVkig3lr0Ll7fDTBIMFNwkOj3-SbGXJ9VX5sxs7CdKr_m9s6rBWeJDrNod-AOZ3WYKm8yF6DatmwARX6W4PVL-yDdRhcp6gz_fh4R7dPL0UXrwwZJxZZ_mNpXFF0nzybmaLR0AimMhdwL3ZU3zUTyVCSKuQOFs2izTbhrnM-OOt6RZMFTxIeTDxF1NAETWpo7D6RVPJ2xLE0Bo0ZTY2E9m1uVhkvMFAJ91UihVZGSAS-CJXibboFlXSU6m1AknGik5BqS_kethNBA2qAwiLUCaPYb0C7_OexLBjIbSOM59hFIpjHDqfY4hQXODXgeDbmNeff-FO6bpGZSRagNGCvhDYuVDSLSUCZJethwc7vow5huTu46sW9i_7lLqwQe5nFHb_sQWUynup9WJRvk6dsfODW4Sd6N9iX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Fuzzy+Simulations+for+Expected+Values+of+Functions+of+Fuzzy+Numbers+and+Intervals&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Liu%2C+Yuanyuan&rft.au=Miao%2C+Yunwen&rft.au=Pantelous%2C+Athanasios+A.&rft.au=Zhou%2C+Jian&rft.date=2021-06-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=29&rft.issue=6&rft.spage=1446&rft.epage=1459&rft_id=info:doi/10.1109%2FTFUZZ.2020.2979112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2020_2979112 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |