Spaces of smooth functions and distributions on infinite-dimensional compact groups

Several scales of smooth functions are introduced in the setting of connected infinite-dimensional compact groups. These are spaces of functions on the group with continuous derivatives in certain directions. We study properties of these spaces and of associated distribution spaces. Some of these sp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of functional analysis Ročník 218; číslo 1; s. 168 - 218
Hlavní autoři: Bendikov, A., Saloff-Coste, L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 2005
Témata:
ISSN:0022-1236, 1096-0783
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Several scales of smooth functions are introduced in the setting of connected infinite-dimensional compact groups. These are spaces of functions on the group with continuous derivatives in certain directions. We study properties of these spaces and of associated distribution spaces. Some of these spaces are intrinsically associated with the infinitesimal generator of a given Gaussian convolution semigroup. One of the reasons for studying these smooth function and distribution spaces is to obtain sharp results concerning the hypoellipticity of the infinitesimal generators of Gaussian convolution semigroups, i.e., invariant sub-Laplacians on compact groups.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2004.06.006