Deep Reinforcement Learning Based Optimization Algorithm for Permutation Flow-Shop Scheduling

As a new analogy paradigm of human learning process, reinforcement learning (RL) has become an emerging topic in computational intelligence (CI). The synergy between the RL and CI is an emerging way to develop efficient solution algorithms for solving complex combinatorial optimization (CO) problems...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on emerging topics in computational intelligence Vol. 7; no. 4; pp. 983 - 994
Main Authors: Pan, Zixiao, Wang, Ling, Wang, Jingjing, Lu, Jiawen
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2471-285X, 2471-285X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As a new analogy paradigm of human learning process, reinforcement learning (RL) has become an emerging topic in computational intelligence (CI). The synergy between the RL and CI is an emerging way to develop efficient solution algorithms for solving complex combinatorial optimization (CO) problems like machine scheduling problem. In this paper, we proposed an efficient optimization algorithm based on Deep RL for solving permutation flow-shop scheduling problem (PFSP) to minimize the maximum completion time. Firstly, a new deep neural network (PFSPNet) is designed for the PFSP to achieve the end-to-end output without limitation of problem sizes. Secondly, an actor-critic method of RL is used to train the PFSPNet without depending on the collection of high-quality labelled data. Thirdly, an improvement strategy is designed to refine the solution provided by the PFSPNet. Simulation results and statistical comparison show that the proposed optimization algorithm based on deep RL can obtain better results than the existing heuristics in similar computational time for solving the PFSP.
AbstractList As a new analogy paradigm of human learning process, reinforcement learning (RL) has become an emerging topic in computational intelligence (CI). The synergy between the RL and CI is an emerging way to develop efficient solution algorithms for solving complex combinatorial optimization (CO) problems like machine scheduling problem. In this paper, we proposed an efficient optimization algorithm based on Deep RL for solving permutation flow-shop scheduling problem (PFSP) to minimize the maximum completion time. Firstly, a new deep neural network (PFSPNet) is designed for the PFSP to achieve the end-to-end output without limitation of problem sizes. Secondly, an actor-critic method of RL is used to train the PFSPNet without depending on the collection of high-quality labelled data. Thirdly, an improvement strategy is designed to refine the solution provided by the PFSPNet. Simulation results and statistical comparison show that the proposed optimization algorithm based on deep RL can obtain better results than the existing heuristics in similar computational time for solving the PFSP.
Author Lu, Jiawen
Wang, Jingjing
Pan, Zixiao
Wang, Ling
Author_xml – sequence: 1
  givenname: Zixiao
  orcidid: 0000-0001-5153-5564
  surname: Pan
  fullname: Pan, Zixiao
  email: pzx19@mails.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Ling
  orcidid: 0000-0003-1226-2801
  surname: Wang
  fullname: Wang, Ling
  email: wangling@mail.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Jingjing
  orcidid: 0000-0003-3385-7572
  surname: Wang
  fullname: Wang, Jingjing
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Jiawen
  orcidid: 0000-0002-1059-4522
  surname: Lu
  fullname: Lu, Jiawen
  email: jiawen.lu@huawei.com
  organization: Huawei Noah's Ark Lab, Shenzhen, China
BookMark eNp9kE9LAzEQxYMoWGu_gF4WPG9NNvsnOdZqtVCo2ApeJKTZ2TZld7NmU0Q_valbRDx4moF5v5k37wwd16YGhC4IHhKC-fXybjmeDiMckSHFnNEkPkK9KM5IGLHk5fhXf4oGbbvFGEc8IV7XQ6-3AE3wBLoujFVQQe2CGUhb63od3MgW8mDeOF3pT-m0qYNRuTZWu00VeH3wCLbauW4yKc17uNiYJlioDeS70m84RyeFLFsYHGofPU-82YdwNr-fjkezUHkjLlS5gjjLVwnIjBSKx6lSZEWAMgaYYMWB5SuSZmleZFmaFmkOfpASlUsqPUz76Krb21jztoPWia3Z2dqfFBGLMWWcxdSrok6lrGlbC4VorK6k_RAEi32S4jtJsU9SHJL0EPsDKd197KzU5f_oZYdqAPi5xRMeZymjX5zlhWM
CODEN ITETCU
CitedBy_id crossref_primary_10_7717_peerj_cs_2281
crossref_primary_10_1109_TETCI_2023_3326551
crossref_primary_10_1109_TII_2022_3189725
crossref_primary_10_1016_j_cor_2024_106817
crossref_primary_10_1016_j_jmsy_2023_06_007
crossref_primary_10_1109_TEVC_2022_3219238
crossref_primary_10_1016_j_asoc_2025_113705
crossref_primary_10_1016_j_eswa_2023_121756
crossref_primary_10_3390_biomimetics8080615
crossref_primary_10_1109_TETCI_2024_3402685
crossref_primary_10_1109_ACCESS_2025_3589064
crossref_primary_10_1109_TSMC_2024_3488205
crossref_primary_10_1016_j_swevo_2025_101951
crossref_primary_10_1109_TETCI_2025_3529876
crossref_primary_10_1109_TSMC_2024_3449413
crossref_primary_10_1016_j_knosys_2025_114221
crossref_primary_10_3390_biomimetics8060478
crossref_primary_10_1109_TETCI_2024_3372441
crossref_primary_10_3390_app15136995
crossref_primary_10_1109_TASE_2025_3536198
crossref_primary_10_3390_machines12100721
crossref_primary_10_3390_math13152381
crossref_primary_10_1016_j_eswa_2025_127989
crossref_primary_10_1016_j_engappai_2024_108775
crossref_primary_10_1109_TEVC_2022_3199045
crossref_primary_10_1016_j_jmsy_2025_06_005
crossref_primary_10_1109_TETCI_2024_3444698
crossref_primary_10_1109_JIOT_2025_3584811
crossref_primary_10_1016_j_compchemeng_2024_108748
crossref_primary_10_1016_j_jmsy_2024_10_026
crossref_primary_10_1016_j_jer_2025_02_005
crossref_primary_10_1109_TITS_2022_3189979
crossref_primary_10_1016_j_cie_2024_110855
crossref_primary_10_1016_j_cie_2024_110018
crossref_primary_10_1109_TETCI_2024_3369482
crossref_primary_10_1080_00207543_2024_2449240
crossref_primary_10_1016_j_swevo_2024_101658
crossref_primary_10_1080_0305215X_2024_2408477
crossref_primary_10_1016_j_cie_2025_111465
crossref_primary_10_1016_j_cie_2025_111466
crossref_primary_10_3389_fenvs_2022_1059451
crossref_primary_10_1038_s41534_025_01034_9
crossref_primary_10_1016_j_asoc_2022_109079
crossref_primary_10_1016_j_jmsy_2025_03_028
crossref_primary_10_1109_TETCI_2022_3221940
crossref_primary_10_1109_ACCESS_2024_3355269
crossref_primary_10_1016_j_asoc_2025_113223
crossref_primary_10_1016_j_cie_2024_109917
crossref_primary_10_1016_j_swevo_2024_101808
crossref_primary_10_1080_00207543_2024_2361441
crossref_primary_10_1080_03155986_2023_2287996
crossref_primary_10_1109_TETCI_2024_3361860
crossref_primary_10_1016_j_engappai_2025_111187
crossref_primary_10_1016_j_swevo_2024_101764
crossref_primary_10_1016_j_eswa_2025_127882
Cites_doi 10.1080/00207543.2020.1717008
10.1109/TSMC.2020.2969317
10.1016/j.cor.2007.05.005
10.1016/j.cor.2013.12.012
10.1080/00207543.2020.1870013
10.1016/j.cie.2020.107082
10.1016/j.compchemeng.2020.106982
10.1016/j.ijpe.2017.06.026
10.1016/j.promfg.2018.10.019
10.1016/j.asoc.2020.106208
10.1016/j.comnet.2021.107969
10.1016/j.ifacol.2017.08.2354
10.1016/j.cor.2010.02.006
10.1016/j.ins.2009.04.009
10.1016/j.bica.2018.07.004
10.1109/TETCI.2018.2868474
10.1016/0377-2217(93)90182-M
10.1109/TNNLS.2021.3068828
10.1016/0305-0483(83)90088-9
10.1109/TETCI.2018.2823329
10.1016/j.neucom.2019.02.003
10.1109/TETCI.2020.3027300
10.1007/BF00992696
10.1145/3005745.3005750
10.1016/j.cie.2020.106778
10.1080/00207540210161650
10.1016/j.ejor.2008.08.021
10.1287/mnsc.16.10.B630
10.2307/3008015
10.1287/moor.1.2.117
10.1016/j.ejor.2016.09.055
10.1109/TETCI.2020.3022372
10.1016/j.engappai.2019.02.013
10.1609/aaai.v35i13.17430
10.1109/TETCI.2020.3035407
10.1007/s11432-018-9728-x
10.1109/ACCESS.2020.2987820
10.1109/MCI.2018.2840738
10.1016/j.cor.2007.01.020
10.1109/70.864235
10.15837/ijccc.2007.3.2356
10.1016/j.omega.2005.03.003
10.1109/TCYB.2019.2939219
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TETCI.2021.3098354
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2471-285X
EndPage 994
ExternalDocumentID 10_1109_TETCI_2021_3098354
9594768
Genre orig-research
GrantInformation_xml – fundername: National Science Fund for Distinguished Young Scholars of China
  grantid: 61525304
– fundername: National Natural Science Foundation of China
  grantid: 61873328
  funderid: 10.13039/501100001809
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-cdce47db5ea71fc946cc1b1e388e010c9e8db1676df7766f6de8e061cda3acdc3
IEDL.DBID RIE
ISICitedReferencesCount 92
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732884400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2471-285X
IngestDate Sun Jun 29 15:35:43 EDT 2025
Sat Nov 29 05:12:08 EST 2025
Tue Nov 18 22:43:33 EST 2025
Wed Aug 27 02:18:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-cdce47db5ea71fc946cc1b1e388e010c9e8db1676df7766f6de8e061cda3acdc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1059-4522
0000-0003-3385-7572
0000-0001-5153-5564
0000-0003-1226-2801
PQID 2840389843
PQPubID 4437216
PageCount 12
ParticipantIDs ieee_primary_9594768
proquest_journals_2840389843
crossref_citationtrail_10_1109_TETCI_2021_3098354
crossref_primary_10_1109_TETCI_2021_3098354
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
chen (ref35) 2019
ref52
ref11
ref55
ref10
ref17
ref16
ref19
kwon (ref37) 2020
ref18
ref51
tom (ref21) 2018; 13
chen (ref41) 2017
ref46
ref45
vinyals (ref26) 2015
ref48
ref47
ref42
dai (ref34) 2017
ref44
ref43
kingma (ref54) 0
ref49
zhang (ref50) 2020
ref8
ref7
ref9
bello (ref31) 0
ref4
ref6
ref5
ref40
ref30
nazari (ref32) 2018
ref2
ref1
ref39
ref38
wang (ref3) 2020; 24
ma (ref33) 2020
ronald (ref53) 1992; 8
ref24
ref23
ref25
ref20
ref22
ref28
ref27
ref29
kool (ref36) 0
References_xml – ident: ref46
  doi: 10.1080/00207543.2020.1717008
– ident: ref27
  doi: 10.1109/TSMC.2020.2969317
– ident: ref17
  doi: 10.1016/j.cor.2007.05.005
– start-page: 21188
  year: 2020
  ident: ref37
  article-title: POMO: Policy optimization with multiple optima for reinforcement learning
  publication-title: Proc 34th Conf Neur Inf Process Syst
– ident: ref19
  doi: 10.1016/j.cor.2013.12.012
– ident: ref49
  doi: 10.1080/00207543.2020.1870013
– ident: ref52
  doi: 10.1016/j.cie.2020.107082
– ident: ref47
  doi: 10.1016/j.compchemeng.2020.106982
– ident: ref9
  doi: 10.1016/j.ijpe.2017.06.026
– ident: ref25
  doi: 10.1016/j.promfg.2018.10.019
– ident: ref45
  doi: 10.1016/j.asoc.2020.106208
– start-page: 1
  year: 2020
  ident: ref33
  article-title: Combinatorial optimization by graph pointer networks and hierarchical reinforcement learning
  publication-title: Proc 34th AAAI Conf Artifi Intell
– ident: ref48
  doi: 10.1016/j.comnet.2021.107969
– start-page: 1
  year: 0
  ident: ref54
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc 3rd Int Conf Learn Representations
– ident: ref44
  doi: 10.1016/j.ifacol.2017.08.2354
– ident: ref18
  doi: 10.1016/j.cor.2010.02.006
– ident: ref4
  doi: 10.1016/j.ins.2009.04.009
– volume: 24
  start-page: 479
  year: 2020
  ident: ref3
  article-title: An estimation of distribution algorithm for mixed-variable newsvendor problems
  publication-title: IEEE Trans Evol Comput
– ident: ref28
  doi: 10.1016/j.bica.2018.07.004
– start-page: 1
  year: 0
  ident: ref36
  article-title: Attention, learn to solve routing problems!
  publication-title: Proc 7th Int Conf Learn Representations
– ident: ref30
  doi: 10.1109/TETCI.2018.2868474
– ident: ref55
  doi: 10.1016/0377-2217(93)90182-M
– ident: ref38
  doi: 10.1109/TNNLS.2021.3068828
– ident: ref8
  doi: 10.1016/0305-0483(83)90088-9
– ident: ref29
  doi: 10.1109/TETCI.2018.2823329
– ident: ref24
  doi: 10.1016/j.neucom.2019.02.003
– ident: ref22
  doi: 10.1109/TETCI.2020.3027300
– volume: 8
  start-page: 229
  year: 1992
  ident: ref53
  article-title: Simple statistical gradient following algorithms for connectionnist reinforcement learning
  publication-title: Mach Learn
  doi: 10.1007/BF00992696
– start-page: 6351
  year: 2017
  ident: ref34
  article-title: Learning combinatorial optimization algorithms over graphs
  publication-title: Proc 31st Conf Neur Inf Proc Syst
– start-page: 1/2
  year: 2017
  ident: ref41
  article-title: Deep reinforcement learning for multi-resource multi-machine job scheduling
  publication-title: Proc IEEE 25th Int Conf Netw Protoc
– ident: ref40
  doi: 10.1145/3005745.3005750
– ident: ref51
  doi: 10.1016/j.cie.2020.106778
– ident: ref13
  doi: 10.1080/00207540210161650
– start-page: 1
  year: 0
  ident: ref31
  article-title: Neural combinatorial optimization with reinforcement learning
  publication-title: Proc 5th Int Conf Learn Representations
– ident: ref16
  doi: 10.1016/j.ejor.2008.08.021
– start-page: 1621
  year: 2020
  ident: ref50
  article-title: Learning to dispatch for job shop scheduling via deep reinforcement learning
  publication-title: Proc 34th Conf Neur Inf Process Syst
– start-page: 6278
  year: 2019
  ident: ref35
  article-title: Learning to perform local rewriting for combinatorial optimization
  publication-title: 33th Conf Neur Inf Proc Syst
– ident: ref11
  doi: 10.1287/mnsc.16.10.B630
– ident: ref12
  doi: 10.2307/3008015
– ident: ref7
  doi: 10.1287/moor.1.2.117
– ident: ref20
  doi: 10.1016/j.ejor.2016.09.055
– ident: ref10
  doi: 10.1109/TETCI.2020.3022372
– ident: ref42
  doi: 10.1016/j.engappai.2019.02.013
– ident: ref39
  doi: 10.1609/aaai.v35i13.17430
– start-page: 9839
  year: 2018
  ident: ref32
  article-title: Reinforcement learning for solving the vehicle routing problem
  publication-title: Proc 32nd Conf Neur Inf Proc Syst
– ident: ref23
  doi: 10.1109/TETCI.2020.3035407
– ident: ref1
  doi: 10.1007/s11432-018-9728-x
– ident: ref43
  doi: 10.1109/ACCESS.2020.2987820
– volume: 13
  start-page: 55
  year: 2018
  ident: ref21
  article-title: Recent trends in deep learning based natural language processing
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2018.2840738
– ident: ref15
  doi: 10.1016/j.cor.2007.01.020
– ident: ref5
  doi: 10.1109/70.864235
– start-page: 2692
  year: 2015
  ident: ref26
  article-title: Pointer networks
  publication-title: Proc 29th Conf Neur Inf Proc Syst
– ident: ref6
  doi: 10.15837/ijccc.2007.3.2356
– ident: ref14
  doi: 10.1016/j.omega.2005.03.003
– ident: ref2
  doi: 10.1109/TCYB.2019.2939219
SSID ssj0002951354
Score 2.528395
Snippet As a new analogy paradigm of human learning process, reinforcement learning (RL) has become an emerging topic in computational intelligence (CI). The synergy...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 983
SubjectTerms Algorithms
Artificial neural networks
Combinatorial analysis
Completion time
Computational intelligence
Computing time
Decoding
Deep learning
deep neural network
Dynamic scheduling
Encoding
flow-shop scheduling
improvement strategy
Job shop scheduling
Machine learning
Optimization
optimization algorithm
Optimization algorithms
Permutations
Reinforcement learning
Title Deep Reinforcement Learning Based Optimization Algorithm for Permutation Flow-Shop Scheduling
URI https://ieeexplore.ieee.org/document/9594768
https://www.proquest.com/docview/2840389843
Volume 7
WOSCitedRecordID wos000732884400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6AePDiI2hE0fTgTRf2Rbs94oPoBYlgwsVsuu0skABLeOjfd9pdSIzGxNsm20l252s7nenMN4RcoxXyOQjXMWT7TijTyJHmClGlEidU4vJESttsgne70XAoeiVyu6uFAQCbfAYN82jv8nWmNiZU1hQtEeLxuEzKnLO8VmsXT_HxqBC0wm1djCuag8fB_TN6gL7XCFxhAhzfbI9tpvJjB7ZmpXP4vw86IgfF8ZG2c7yPSQnmVfL-ALCgr2BJUJWN99GCN3VE79BMafqCO8OsKLmk7ekoW07W4xnF8bSHe_Mmv5CnnWn26fTH2YL2EUxtstRHJ-Stg__45BRtExyFSlg7SisIuU5aILmXKhEypbzEgyCKAL0vJSDSicc40ymqkaVMA75gntIykCgcnJLKPJvDGaEBJIkwta-Br0PtprLFOELO0EmRifK9GvG2Co1VwSluWltMY-tbuCK2IMQGhLgAoUZudjKLnFHjz9FVo_bdyELjNVLf4hYXi24Vo6U1dIFRGJz_LnVB9k23-Dx_r04q6-UGLsme-lhPVssrO5--AMTyy58
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9BhwQvbAgQ3RjzA29bIB-OHT-yQQUa69AoEi8ocuxLi1Saqh_w73N20koIhLS3SDlLyf3s-_TdARySFoolqjBwzfYDrsss0C6FaEpNG6oIZaG1HzYhu93s9lZdrcCPZS0MIvrLZ3jkHn0u31Zm7kJlxypVnMzjVfiQch6HdbXWMqISk7GQpHxRGROq495Z79cF-YBxdJSEyoU4XmgfP07llQz2iqXz8f8-6RNsNgYkO6kR34IVHG3D3SnimP1D3wbV-Igfazqn9tlPUlSW_SXZ8NAUXbKTYb-a3M8GD4zo2RVJ53mdkmedYfUUXA-qMbsmOK27p97fgZsO_eN50AxOCAwxYRYYa5BLW6SoZVQaxYUxURFhkmVI_pdRmNkiElLYUkohSmGRXojIWJ1oWpzsQmtUjXAPWIJFoVz1axJbbsNSp0IS6ILcFF2YOGpDtGBobpqu4m64xTD33kWocg9C7kDIGxDa8H25Zlz31HiXetuxfUnZcLwN-wvc8ubYTXPSta5hYMaTz2-v-gbr570_l_nlRff3F9hws-Pr23z70JpN5vgV1szj7H46OfB76xmBv87m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning+Based+Optimization+Algorithm+for+Permutation+Flow-Shop+Scheduling&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Pan%2C+Zixiao&rft.au=Wang%2C+Ling&rft.au=Wang%2C+Jingjing&rft.au=Lu%2C+Jiawen&rft.date=2023-08-01&rft.pub=IEEE&rft.eissn=2471-285X&rft.volume=7&rft.issue=4&rft.spage=983&rft.epage=994&rft_id=info:doi/10.1109%2FTETCI.2021.3098354&rft.externalDocID=9594768
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon