A Proportionate Recursive Least Squares Algorithm and Its Performance Analysis

The proportionate updating (PU) mechanism has been widely adopted in least mean squares (LMS) adaptive filtering algorithms to exploit the system sparsity. In this brief, we propose a proportionate recursive least squares (PRLS) algorithm for the sparse system estimation, in which, an independent we...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems. II, Express briefs Ročník 68; číslo 1; s. 506 - 510
Hlavní autoři: Qin, Zhen, Tao, Jun, Xia, Yili
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1549-7747, 1558-3791
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The proportionate updating (PU) mechanism has been widely adopted in least mean squares (LMS) adaptive filtering algorithms to exploit the system sparsity. In this brief, we propose a proportionate recursive least squares (PRLS) algorithm for the sparse system estimation, in which, an independent weight update is assigned to each tap according to the magnitude of that estimated filter coefficient. Its mean square performance is analyzed via the energy conservation principle in both the transient and steady-state stages. In this way, an explicit condition on the control parameter of the proportionate matrix of PRLS can be obtained to ensure a better steady-state performance than that of RLS. Simulation results in a system identification setting support the analysis.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2020.3004466