A Proportionate Recursive Least Squares Algorithm and Its Performance Analysis

The proportionate updating (PU) mechanism has been widely adopted in least mean squares (LMS) adaptive filtering algorithms to exploit the system sparsity. In this brief, we propose a proportionate recursive least squares (PRLS) algorithm for the sparse system estimation, in which, an independent we...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on circuits and systems. II, Express briefs Ročník 68; číslo 1; s. 506 - 510
Hlavní autori: Qin, Zhen, Tao, Jun, Xia, Yili
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1549-7747, 1558-3791
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The proportionate updating (PU) mechanism has been widely adopted in least mean squares (LMS) adaptive filtering algorithms to exploit the system sparsity. In this brief, we propose a proportionate recursive least squares (PRLS) algorithm for the sparse system estimation, in which, an independent weight update is assigned to each tap according to the magnitude of that estimated filter coefficient. Its mean square performance is analyzed via the energy conservation principle in both the transient and steady-state stages. In this way, an explicit condition on the control parameter of the proportionate matrix of PRLS can be obtained to ensure a better steady-state performance than that of RLS. Simulation results in a system identification setting support the analysis.
AbstractList The proportionate updating (PU) mechanism has been widely adopted in least mean squares (LMS) adaptive filtering algorithms to exploit the system sparsity. In this brief, we propose a proportionate recursive least squares (PRLS) algorithm for the sparse system estimation, in which, an independent weight update is assigned to each tap according to the magnitude of that estimated filter coefficient. Its mean square performance is analyzed via the energy conservation principle in both the transient and steady-state stages. In this way, an explicit condition on the control parameter of the proportionate matrix of PRLS can be obtained to ensure a better steady-state performance than that of RLS. Simulation results in a system identification setting support the analysis.
Author Xia, Yili
Tao, Jun
Qin, Zhen
Author_xml – sequence: 1
  givenname: Zhen
  surname: Qin
  fullname: Qin, Zhen
  email: zqin@seu.edu.cn
  organization: Key Laboratory of Underwater Acoustic Signal Processing of the Ministry of Education, School of Information Science and Engineering, Southeast University, Nanjing, China
– sequence: 2
  givenname: Jun
  orcidid: 0000-0002-1195-9503
  surname: Tao
  fullname: Tao, Jun
  email: jtao@seu.edu.cn
  organization: Key Laboratory of Underwater Acoustic Signal Processing of the Ministry of Education, School of Information Science and Engineering, Southeast University, Nanjing, China
– sequence: 3
  givenname: Yili
  orcidid: 0000-0002-4402-8131
  surname: Xia
  fullname: Xia, Yili
  email: yili_xia@seu.edu.cn
  organization: School of Information Science and Engineering, Southeast University, Nanjing, China
BookMark eNp9kE1PAjEQhhujiYD-Ab008bzYr93SIyF-kBAlgufN0J3qEthCW0z49y5CPHjwNHN4n3cmT5ecN75BQm4463POzP18NBuP-4IJ1peMKVUUZ6TD83yQSW34-WFXJtNa6UvSjXHJmDBMig55GdJp8BsfUu0bSEjf0O5CrL-QThBiorPtDgJGOlx9-FCnzzWFpqLjFOkUg_NhDY1FOmxgtY91vCIXDlYRr0-zR94fH-aj52zy-jQeDSeZFSZPmZWqKgRYXlmTu8JVrgJtKqWMwGKhLAzyBTKNuNBcMqmtA-sqq8AJJhWA7JG7Y-8m-O0OYyqXfhfaJ2IplBayjRW8TYljygYfY0BXbkK9hrAvOSsP3sofb-XBW3ny1kKDP5CtExz0pAD16n_09ojWiPh7y3AhcybkN_IUfpM
CODEN ICSPE5
CitedBy_id crossref_primary_10_1109_LSP_2022_3182139
crossref_primary_10_1109_TASE_2025_3543411
crossref_primary_10_1109_TCSII_2021_3123055
crossref_primary_10_1109_TCSII_2023_3294437
crossref_primary_10_1109_JSEN_2024_3478332
crossref_primary_10_1109_TSP_2022_3185898
crossref_primary_10_1109_TASLP_2023_3277289
crossref_primary_10_1109_LCOMM_2024_3513934
crossref_primary_10_1121_10_0002276
crossref_primary_10_1109_JSEN_2025_3576580
crossref_primary_10_1109_TCSII_2023_3244829
crossref_primary_10_1121_10_0010370
crossref_primary_10_1109_TCSII_2022_3144195
crossref_primary_10_1109_TIE_2024_3404130
crossref_primary_10_1109_TII_2024_3438269
Cites_doi 10.1109/TCSII.2018.2887111
10.1109/89.861368
10.1007/978-3-540-37631-6
10.1016/j.sigpro.2016.04.003
10.1109/TASL.2009.2025903
10.1109/TCSII.2017.2767569
10.1109/ACCESS.2019.2911957
10.1109/JOE.2019.2946679
10.1109/LSP.2011.2159373
10.1109/TSP.2017.2773428
10.1109/LSP.2009.2024736
10.1109/TCSII.2014.2386261
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCSII.2020.3004466
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3791
EndPage 510
ExternalDocumentID 10_1109_TCSII_2020_3004466
9123502
Genre orig-research
GrantInformation_xml – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
  funderid: 10.13039/501100012246
– fundername: Fund of Science and Technology on Sonar Laboratory
– fundername: Open Funds of State Key Laboratory of Acoustics, Chinese Academy of Sciences
  grantid: SKLA202006
  funderid: 10.13039/501100002367
– fundername: Six Talent Peaks Project in Jiangsu Province
  grantid: 2018-KTHY-001
  funderid: 10.13039/501100010014
– fundername: Zhi Shan Young Scholar Program of Southeast University
  funderid: 10.13039/501100008081
– fundername: High-Level Innovation and Entrepreneurial Research Team Program in Jiangsu
– fundername: National Natural Science Foundation of China
  grantid: 61871114; 61771124
  funderid: 10.13039/501100001809
– fundername: Fund of Acoustic Science and Technology Laboratory, Harbin Engineering University
  funderid: 10.13039/501100003471
– fundername: Fund for Returning Students to Study Abroad in Nanjing
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2242020k30044
  funderid: 10.13039/501100012226
GroupedDBID 0R~
29I
4.4
5VS
6IK
6J9
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PZZ
RIA
RIE
RNS
RXW
TAE
TAF
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-c34d62ac1dc95f6fdfda79d4492e6b4ca85be07eeb713037cfacfdc4af2034aa3
IEDL.DBID RIE
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000603475200100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-7747
IngestDate Mon Jun 30 10:25:10 EDT 2025
Sat Nov 29 02:23:11 EST 2025
Tue Nov 18 19:50:36 EST 2025
Wed Aug 27 02:50:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-c34d62ac1dc95f6fdfda79d4492e6b4ca85be07eeb713037cfacfdc4af2034aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1195-9503
0000-0002-4402-8131
PQID 2472320361
PQPubID 85412
PageCount 5
ParticipantIDs crossref_primary_10_1109_TCSII_2020_3004466
ieee_primary_9123502
crossref_citationtrail_10_1109_TCSII_2020_3004466
proquest_journals_2472320361
PublicationCentury 2000
PublicationDate 2021-Jan.
2021-1-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems. II, Express briefs
PublicationTitleAbbrev TCSII
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References sayed (ref11) 2009
ref13
ref12
ref15
ref14
pelekanakis (ref10) 2011
ref2
ref1
ref7
ref9
ref4
ref6
ref5
benesty (ref8) 2002
gu (ref3) 2009; 16
References_xml – ident: ref12
  doi: 10.1109/TCSII.2018.2887111
– ident: ref7
  doi: 10.1109/89.861368
– year: 2009
  ident: ref11
  publication-title: Adaptive Filters
– start-page: 1881
  year: 2002
  ident: ref8
  article-title: An improved PNLMS algorithm
  publication-title: Proc Int Conf Acoust Speech Signal Process (ICASSP)
– ident: ref1
  doi: 10.1007/978-3-540-37631-6
– ident: ref5
  doi: 10.1016/j.sigpro.2016.04.003
– ident: ref9
  doi: 10.1109/TASL.2009.2025903
– start-page: 1403
  year: 2011
  ident: ref10
  article-title: Natural gradient-based adaptive algorithms for sparse underwater acoustic channel identification
  publication-title: Proc 4th Underwater Acoust Meas Conf (UAM)
– ident: ref15
  doi: 10.1109/TCSII.2017.2767569
– ident: ref6
  doi: 10.1109/ACCESS.2019.2911957
– ident: ref2
  doi: 10.1109/JOE.2019.2946679
– ident: ref4
  doi: 10.1109/LSP.2011.2159373
– ident: ref13
  doi: 10.1109/TSP.2017.2773428
– volume: 16
  start-page: 774
  year: 2009
  ident: ref3
  article-title: $l_{0}$ norm constraint LMS algorithm for sparse system estimation
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2009.2024736
– ident: ref14
  doi: 10.1109/TCSII.2014.2386261
SSID ssj0029032
Score 2.4359708
Snippet The proportionate updating (PU) mechanism has been widely adopted in least mean squares (LMS) adaptive filtering algorithms to exploit the system sparsity. In...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 506
SubjectTerms Adaptive algorithms
Adaptive filters
Adaptive systems
Circuits and systems
Convergence
Covariance matrices
Energy conservation
energy conservation principle
Least mean squares
Least mean squares algorithm
proportionate matrix
Recursive least squares (RLS)
Sparse matrices
sparse systems
Steady state
System identification
Title A Proportionate Recursive Least Squares Algorithm and Its Performance Analysis
URI https://ieeexplore.ieee.org/document/9123502
https://www.proquest.com/docview/2472320361
Volume 68
WOSCitedRecordID wos000603475200100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3791
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029032
  issn: 1549-7747
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5q8aAHX1WsVtmDN41Nttts9liKxYKUYiv0Fjb7UKGm2qb-fnc2DxVF8BbCLoSZJPPN7Mz3IXQR8cRwnjBP2fzHs_g28HgSCC9RAPYthCaaOrEJNhpFsxkf19BVNQujtXbNZ_oaLt1ZvlrINZTK2hwGO4E5coOxMJ_VqpIr7jsxMmAcs4iRsnJAxuftaX8yHNpUkNgMNT_A_BaEnKrKj1-xiy-D3f892R7aKXAk7uWO30c1nR6g7S_sgg006uExaCAsXbkv0_geauvQro7vQLEHT97WMH2Ee_PHxfI5e3rBIlV4mK3w-HOcAJe0JYfoYXAz7d96hXyCJwnvZp7sUBUSIQMledeERhklGFeUcqLDhEoRdRPtM60TBoGMSSOkUZIKQ_wOFaJzhOrpItXHCFMupB8YIuxdCvw4RpMk4JGycFNbVzdRUNozlgW3OEhczGOXY_g8dj6IwQdx4YMmuqz2vObMGn-uboDVq5WFwZuoVbotLj6-VUwoszjRhubg5Pddp2iLQGuKq6S0UD1brvUZ2pTv2fNqee7eqw9nCsrD
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0YNFEPfqERRd2DN620y0LZIyESiEiIYMKt2e6HkiBoKf5-d5aCGo2Jt6bZTZqZtvNmduY9gMsajw3ncegpm_94Ft8GHo8D4cUKwb6F0FQzJzYRdru14ZD31uB6NQujtXbNZ_oGL91ZvprKOZbKShwHO5E5ch2Vs7JprVV6xX0nR4acYxYzsnA5IuPz0qDRb7dtMkhtjro4wvwWhpyuyo-fsYswzd3_Pdse7GRIktQXrt-HNT05gO0v_IJ56NZJD1UQElfwSzV5wOo6NqyTDmr2kP7bHOePSH38NE1G6fMLERNF2umM9D4HCsiSuOQQHpu3g0bLywQUPEl5JfVkmakqFTJQkldM1SijRMgVY5zqasykqFVi7YdaxyGGslAaIY2STBjql5kQ5SPITaYTfQyEcSH9wFBh7zJkyDGaxgGvKQs4tXV2AYKlPSOZsYujyMU4clmGzyPngwh9EGU-KMDVas_rglvjz9V5tPpqZWbwAhSXbouyz28WURZapGiDc3Dy-64L2GwN7jtRp929O4Utio0qrq5ShFyazPUZbMj3dDRLzt079gEhKM4M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Proportionate+Recursive+Least+Squares+Algorithm+and+Its+Performance+Analysis&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+II%2C+Express+briefs&rft.au=Qin%2C+Zhen&rft.au=Tao%2C+Jun&rft.au=Xia%2C+Yili&rft.date=2021-01-01&rft.pub=IEEE&rft.issn=1549-7747&rft.volume=68&rft.issue=1&rft.spage=506&rft.epage=510&rft_id=info:doi/10.1109%2FTCSII.2020.3004466&rft.externalDocID=9123502
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-7747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-7747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-7747&client=summon