Optimal Configuration of Transformer–Energy Storage Deeply Integrated System Based on Enhanced Q-Learning with Hybrid Guidance
This paper investigates the multi-objective siting and sizing problem of a transformer–energy storage deeply integrated system (TES-DIS) that serves as a grid-side common interest entity. This study is motivated by the critical role of energy storage systems in generation–grid–load–storage resource...
Uložené v:
| Vydané v: | Processes Ročník 13; číslo 10; s. 3267 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
13.10.2025
|
| Predmet: | |
| ISSN: | 2227-9717, 2227-9717 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper investigates the multi-objective siting and sizing problem of a transformer–energy storage deeply integrated system (TES-DIS) that serves as a grid-side common interest entity. This study is motivated by the critical role of energy storage systems in generation–grid–load–storage resource allocation and the superior capability of artificial intelligence algorithms in addressing multi-dimensional, multi-constrained optimization challenges. A multi-objective optimization model is first formulated with dual objectives: minimizing voltage deviation levels and comprehensive economic costs. To overcome the limitations of conventional methods in complex power systems—particularly regarding solution quality and convergence speed—an enhanced Q-learning with hybrid guidance algorithm is proposed. The improved algorithm demonstrates strengthened local search capability and accelerated late-stage convergence performance. Validation using a real-world urban power grid in China confirms the method’s effectiveness. Compared to traditional approaches, the proposed solution achieves optimal TES-DIS planning through autonomous learning, demonstrating (1) 70.73% cost reduction and (2) 89.85% faster computational efficiency. These results verify the method’s capability for intelligent, simplified power system planning with superior optimization performance. |
|---|---|
| AbstractList | This paper investigates the multi-objective siting and sizing problem of a transformer–energy storage deeply integrated system (TES-DIS) that serves as a grid-side common interest entity. This study is motivated by the critical role of energy storage systems in generation–grid–load–storage resource allocation and the superior capability of artificial intelligence algorithms in addressing multi-dimensional, multi-constrained optimization challenges. A multi-objective optimization model is first formulated with dual objectives: minimizing voltage deviation levels and comprehensive economic costs. To overcome the limitations of conventional methods in complex power systems—particularly regarding solution quality and convergence speed—an enhanced Q-learning with hybrid guidance algorithm is proposed. The improved algorithm demonstrates strengthened local search capability and accelerated late-stage convergence performance. Validation using a real-world urban power grid in China confirms the method’s effectiveness. Compared to traditional approaches, the proposed solution achieves optimal TES-DIS planning through autonomous learning, demonstrating (1) 70.73% cost reduction and (2) 89.85% faster computational efficiency. These results verify the method’s capability for intelligent, simplified power system planning with superior optimization performance. |
| Audience | Academic |
| Author | Cai, Xuan Tan, Daojun Li, Zhe Xiong, Haozhe Liu, Yonghui You, Li Kang, Yiqun |
| Author_xml | – sequence: 1 givenname: Zhe surname: Li fullname: Li, Zhe – sequence: 2 givenname: Li surname: You fullname: You, Li – sequence: 3 givenname: Yiqun surname: Kang fullname: Kang, Yiqun – sequence: 4 givenname: Daojun surname: Tan fullname: Tan, Daojun – sequence: 5 givenname: Xuan surname: Cai fullname: Cai, Xuan – sequence: 6 givenname: Haozhe surname: Xiong fullname: Xiong, Haozhe – sequence: 7 givenname: Yonghui surname: Liu fullname: Liu, Yonghui |
| BookMark | eNpNUdtKAzEQDaLg9cUvCPgmrG6SveVRa61CQaT6vGSTyRppkzVJkX3rP_iHfokpFXTmYS6cM8OcOUb71llA6JzkV4zx_HrwhJGc0areQ0eU0jrjNan3_-WH6CyE9zwZJ6wpqyO0eRqiWYklnjirTb_2IhpnsdP4xQsbtPMr8N-br6kF3494EZ0XPeA7gGE54kcboU8UUHgxhggrfCtCKtKEqX0TVqb8OZuD8NbYHn-a-IYfxs4bhWdro7aAU3SgxTLA2W88Qa_305fJQzZ_mj1ObuaZpLyMWQeNVBXpSkqUagolBOiSA-WMVLSpVFFzSej2ek0AJGl0XeiOy8SjspQdO0EXu7mDdx9rCLF9d2tv08o2KVbyguWEJdTVDtWLJbTGahe9kMkVrIxMcmuT-jdNRQvaFE2RCJc7gvQuBA-6HXzS048tydvtV9q_r7AfFtWDQQ |
| Cites_doi | 10.1109/TSG.2017.2738610 10.1109/ICISCE.2017.242 10.1109/TSG.2021.3061619 10.1109/TPWRS.2003.821625 10.1109/ICISC.2018.8399083 10.1109/TSG.2021.3064312 10.1016/j.apenergy.2020.116172 10.1016/j.est.2020.101224 10.1109/TSG.2018.2872521 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/pr13103267 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database Biological Sciences Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2227-9717 |
| ExternalDocumentID | A862428484 10_3390_pr13103267 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO IGS ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC RNS 7SR 8FD ABUWG AZQEC DWQXO GNUQQ JG9 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c295t-be8cd61b521dd84daaef59e29316286d479c121032f1eec18f74fb9cbe82c5cb3 |
| IEDL.DBID | KB. |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001601591600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-9717 |
| IngestDate | Tue Oct 28 21:21:50 EDT 2025 Tue Nov 11 03:52:46 EST 2025 Sat Nov 29 07:15:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-be8cd61b521dd84daaef59e29316286d479c121032f1eec18f74fb9cbe82c5cb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3265943013?pq-origsite=%requestingapplication% |
| PQID | 3265943013 |
| PQPubID | 2032344 |
| ParticipantIDs | proquest_journals_3265943013 gale_infotracacademiconefile_A862428484 crossref_primary_10_3390_pr13103267 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-13 |
| PublicationDateYYYYMMDD | 2025-10-13 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Processes |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Li (ref_12) 2022; 42 Walker (ref_10) 2021; 282 Nazemi (ref_8) 2021; 12 Dai (ref_11) 2021; 12 Kang (ref_13) 2017; 41 Ci (ref_7) 2021; 4 Ding (ref_5) 2014; 34 Xiao (ref_3) 2022; 54 Liu (ref_1) 2023; 43 Luo (ref_21) 2011; 35 Kim (ref_9) 2019; 10 Liang (ref_6) 2020; 44 Damousis (ref_18) 2004; 19 ref_19 Huber (ref_15) 2019; 10 ref_16 Xiao (ref_20) 2022; 29 Sheng (ref_4) 2021; 47 Guo (ref_14) 2020; 44 Zhang (ref_2) 2024; 39 Datta (ref_17) 2020; 28 |
| References_xml | – volume: 10 start-page: 317 year: 2019 ident: ref_15 article-title: Applicability of Solid-State Transformers in Today’s and Future Distribution Grids publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2738610 – ident: ref_16 doi: 10.1109/ICISCE.2017.242 – volume: 12 start-page: 3163 year: 2021 ident: ref_11 article-title: The Utilization of Shared Energy Storage in Energy Systems: A Comprehensive Review publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2021.3061619 – volume: 41 start-page: 2 year: 2017 ident: ref_13 article-title: New Form of Energy Storage for Future Power Systems: Cloud Energy Storage publication-title: Autom. Electr. Power Syst. – volume: 4 start-page: 427 year: 2021 ident: ref_7 article-title: Modeling and Operation Control of Digital Energy Storage System Based on Reconfigurable Battery Network: A Case Study of Base Station Energy Storage Application publication-title: J. Glob. Energy Interconnect. – volume: 43 start-page: 4899 year: 2023 ident: ref_1 article-title: An Overview of Morphological Development and Ol Technology of Power Electronics Dominated Distribution Area publication-title: Proc. CSEE – volume: 19 start-page: 1165 year: 2004 ident: ref_18 article-title: A solution to the unit-commitment problem using integer-coded genetic algorithm publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2003.821625 – volume: 34 start-page: 1 year: 2014 ident: ref_5 article-title: A Review on the Effect of Large-Scale PV Generation on Power Systems publication-title: Proc. CSEE – volume: 42 start-page: 6611 year: 2022 ident: ref_12 article-title: Game-Theoretic Optimal Dispatch of Distribution Network with Multi-Microgrid Leasing Shared Energy Storage publication-title: Proc. CSEE – volume: 39 start-page: 2784 year: 2024 ident: ref_2 article-title: Coordinated Operation Method of Renewable Energy Power Systems Based on Feasible Region Projection Theory publication-title: Trans. China Electrotech. Soc. – ident: ref_19 doi: 10.1109/ICISC.2018.8399083 – volume: 12 start-page: 3200 year: 2021 ident: ref_8 article-title: Uncertainty-aware Deployment of Mobile Energy Storage Systems for Distribution Grid Resilience publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2021.3064312 – volume: 54 start-page: 47 year: 2022 ident: ref_3 article-title: New Power Systems Dominated by Renewable Energy Towards the Goal of Emission Peak & Carbon Neutrality: Contribution, Key Techniques, and Challenges publication-title: Adv. Eng. Sci. – volume: 44 start-page: 1 year: 2020 ident: ref_6 article-title: Analysis of Development Trend for Intelligent Distribution Transformer publication-title: Autom. Electr. Power Syst. – volume: 47 start-page: 3072 year: 2021 ident: ref_4 article-title: Key Technologies and Application Prospects for Operation and Maintenance of Power Equipment in New Type Power System publication-title: High Volt. Eng. – volume: 282 start-page: 116172 year: 2021 ident: ref_10 article-title: Analysis on Impact of Shared Energy Storage in Residential Community: Individual Versus Shared Energy Storage publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.116172 – volume: 29 start-page: 1874 year: 2022 ident: ref_20 article-title: Two-player Optimization Control Based on Off-policy Q-learning Algorithm publication-title: Control Eng. China – volume: 28 start-page: 101224 year: 2020 ident: ref_17 article-title: Smart Control of BESS in PV Integrated EV Charging Station for Reducing Transformer Overloading and Providing Battery-to-Grid Service publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101224 – volume: 44 start-page: 1611 year: 2020 ident: ref_14 article-title: Comprehensive Optimal Allocation of Electricity/Heat Cloud Energy Storage in Regional Integrated Energy System publication-title: Power Syst. Technol. – volume: 10 start-page: 4996 year: 2019 ident: ref_9 article-title: Enhancing Distribution System Resilience with Mobile Energy Storage and Microgrids publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2018.2872521 – volume: 35 start-page: 207 year: 2011 ident: ref_21 article-title: Applications of life cycle cost theory in Decision-Making of investment for distribution transformers renovation publication-title: Power Syst. Technol. |
| SSID | ssj0000913856 |
| Score | 2.3057916 |
| Snippet | This paper investigates the multi-objective siting and sizing problem of a transformer–energy storage deeply integrated system (TES-DIS) that serves as a... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 3267 |
| SubjectTerms | Algorithms Alternative energy sources Analysis Arbitrage Artificial intelligence Convergence Economic impact Electric power systems Electric transformers Electrical equipment Electricity Energy industry Energy management systems Energy storage Learning Machine learning Multiple objective analysis Optimization Optimization models Renewable resources Resource allocation Technological change |
| Title | Optimal Configuration of Transformer–Energy Storage Deeply Integrated System Based on Enhanced Q-Learning with Hybrid Guidance |
| URI | https://www.proquest.com/docview/3265943013 |
| Volume | 13 |
| WOSCitedRecordID | wos001601591600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M7P dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: KB. dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9RAFH9R8KAHENS4fGwmgUQ9jNB2ph8nwkIRQlirYgKnpp03xU10d-numnAx_A_8h_wlzJtOXQ_Gi5deptM2eZ_z-t7vB7C9ixbWJuIyFMgJ4pwXItrlotSiUF4ZFRIt2UTU78cXF0nmCm4T11bZ-kTrqHGkqEa-Y9IMSVDhXrA3vubEGkV_Vx2FxmNYJJQEom447b3_XWMhzMtYhg0qaWBO9zvj2iNiLd_Sys_j0N-9sQ0xR8v_-3HPYckll2y_0YYVeKSHq_DsD8jBVVhxxjxhbx3i9LsXcPvROI4fZifN_w2uZo1WsFHFztu8Vtf3t3epHRRkX8w53bghdqj1-PsNO2kRJ5A1-OesZ0IjMvOEdPjNdhiwT9wBuV4xqvyy4xuaFGMfZgOkG17C16P0_OCYO2oGrvxETnmpY4WhV5rgjxgLLApdyUSb3MGjWVcUUaIImizwK09r5cVVJKoyUWafr6Qqg1ewMBwN9WtgFDtlmGBZSZPNRBhjIIvExFCBIapKd2CrFVQ-bhA4cnNyIXHmc3F24A3JMCeznNaFKtx0gXkHAVzl-3YQJhax6MBGK8Pc2esknwtw7d_L6_DUJwZg6mkJNmBhWs_0JjxRP6eDSd2FxV7azz53rRp2qY80o-uv1KxkJ2fZ5QMi3uwj |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VggQ9AC0gAgVWAgQcVo3tXXt9QFU_UhK1hCKC1Juxd9YhUpukjgPKrf-B_8GP6i9hZ20TDohbD5ztXUvr5zdv1zNvAF600dnaRFyGAjlZnPNURG0uMiNS7WVRKtE1m4j6fXVyEh-vwM-mFobSKhtOdESNE01n5FtWZkiyCveC7ek5p65R9He1aaFRweLQLL7bLdvsbW_fvt-Xvn_QGex1ed1VgGs_liXPjNIYepmNW4hKYJqaXMbGhj2PyjRRRLEmV63Azz1jtKfySORZrO04X0udBXbea3DdyghfuVTB499nOuSxqWRYuaAGQdzemhYeNfLyXRv7Zdz7O_u7kHZw539bjLtwuxbPbKdC-zqsmPEGrP1hqbgB6zVZzdjr2lH7zT24-GCJ8cyOpPrG0XBeoZ5NcjZodLspLi9-dFwhJPtU2u9iaNi-MdPTBes1jhrIKn93tmtDPzI7Q2f81WVQsI-8NqodMjrZZt0FVcKxd_MR0g334fOVrMsDWB1PxuYhMNIGMowxy6VVaxEqDGQaW40gMESdmxY8b4CRTCuHkcTuzAg-yRI-LXhFmEmIdsoi1WldPWGfQQZeyY4r9FFCiRZsNphJaj6aJUvAPPr35Wdwszt4f5Qc9fqHj-GWT92OKX8n2ITVspibJ3BDfytHs-Kpgz6DL1cNr1_CKEXq |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB71B1XlALQFNVBgJagoh1Vie9c_B4RaktCoKARIpd6MvbsOkSAJjgPKre_A2_A4PAkz9pr0gLj1wNneXWn9zcy365lvAJ62dClrE3DpC81J4pwnImhxkRqRKCcNEqnLZhNBvx9eXESDNfhZ18JQWmXtE0tHraeK7sibSDMkSYU7XjOzaRGDdvfl7CunDlL0p7Vup1FB5Mwsv-Pxbf6i18Zvfei63c7w1Sm3HQa4ciNZ8NSESvtOijFM61DoJDGZjAyGQIdKNrUIIkUKW56bOcYoJ8wCkaWRwnGukir1cN512AyQZKB1bZ50-oP3f254SHEzlH6liep5Uas5yx1q6-WWTe1XUfDvsaAMcN3b__PW3IFbllaz48oOdmDNTHbh5hWxxV3YsW5szo6s1vbzPbh8iy7zC46kysfxaFHZA5tmbFgzepP_uvzRKUsk2YcCLWZkWNuY2ecl69VaG5pVyu_sBEmBZjhDZ_KpzK1g77iVsB0xuvNmp0uqkWOvF2NNL9yF82vZl3uwMZlOzD4wYg3Sj3SaSeRxgQ61J5MI2YPQvlaZacCTGiTxrNIeifHMRlCKV1BqwDPCT0wOqcgTldi6ClyDpL3i47IEKBShaMBBjZ_Yeqp5vALP_X8_fgxbiKr4Ta9_9gC2XWqDTIk93gFsFPnCPIQb6lsxnuePrB0w-Hjd-PoNfoFP-g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Configuration+of+Transformer%E2%80%93Energy+Storage+Deeply+Integrated+System+Based+on+Enhanced+Q-Learning+with+Hybrid+Guidance&rft.jtitle=Processes&rft.au=Li%2C+Zhe&rft.au=Li%2C+You&rft.au=Kang%2C+Yiqun&rft.au=Tan+Daojun&rft.date=2025-10-13&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=13&rft.issue=10&rft.spage=3267&rft_id=info:doi/10.3390%2Fpr13103267&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |