Edge Intelligence: Empowering Intelligence to the Edge of Network
Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and u...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the IEEE Jg. 109; H. 11; S. 1778 - 1837 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9219, 1558-2256 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions. |
|---|---|
| AbstractList | Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions. |
| Author | Li, Tong Su, Xiang Xu, Dianlei Crowcroft, Jon Li, Yong Jiang, Tao Hui, Pan Tarkoma, Sasu |
| Author_xml | – sequence: 1 givenname: Dianlei orcidid: 0000-0002-9091-5129 surname: Xu fullname: Xu, Dianlei email: dianlei.xu@helsinki.fi organization: Department of Computer Science, University of Helsinki, Helsinki, Finland – sequence: 2 givenname: Tong orcidid: 0000-0002-4343-703X surname: Li fullname: Li, Tong email: t.li@connect.ust.hk organization: Department of Computer Science, University of Helsinki, Helsinki, Finland – sequence: 3 givenname: Yong orcidid: 0000-0001-5617-1659 surname: Li fullname: Li, Yong email: liyong07@tsinghua.edu.cn organization: Beijing National Research Center for Information Science and Technology (BNRist), Department of Electronic Engineering, Tsinghua University, Beijing 100084, China – sequence: 4 givenname: Xiang orcidid: 0000-0003-1342-6759 surname: Su fullname: Su, Xiang email: xiang.su@ntnu.no organization: Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway – sequence: 5 givenname: Sasu orcidid: 0000-0003-4220-3650 surname: Tarkoma fullname: Tarkoma, Sasu email: sasu.tarkoma@helsinki.fi organization: Department of Computer Science, University of Helsinki, Helsinki, Finland – sequence: 6 givenname: Tao surname: Jiang fullname: Jiang, Tao email: taojiang@ieee.org organization: School of Electronics Information and Communications, Huazhong University of Science and Technology, Wuhan, China – sequence: 7 givenname: Jon orcidid: 0000-0002-7013-0121 surname: Crowcroft fullname: Crowcroft, Jon email: jon.crowcroft@cl.cam.ac.uk organization: Computer Laboratory, University of Cambridge, Cambridge, U.K – sequence: 8 givenname: Pan orcidid: 0000-0002-0848-2599 surname: Hui fullname: Hui, Pan email: panhui@cse.ust.hk organization: Department of Computer Science, University of Helsinki, Helsinki, Finland |
| BookMark | eNp9kE1Lw0AURQepYFv9A7oJuE59M5OXZNyVUrVSrIiuhyR9U1PTTJ1MKf570w8EXbh6i3vPfXB6rFPbmhi75DDgHNTN4_PLbDQQIPhAcq4UwgnrcsQ0FALjDusC8DRUgqsz1muaJQBIjGWXDcfzBQWT2lNVlQuqC7oNxqu13ZIr68WvIPA28O8U7AlrgifyW-s-ztmpyaqGLo63z97uxq-jh3A6u5-MhtOwEAp9mCPOIxQIxiDnfG6kiRKIRZRIynJAxLjNI8SEK2Mgz6MdB5EwRZZCkcs-uz7srp393FDj9dJuXN2-1AKVaJeUTNpWemgVzjaNI6OL0me-tLV3WVlpDnonTO-F6Z0wfRTWouIPunblKnNf_0NXB6gkoh9AoYpjDvIb_id3Bw |
| CODEN | IEEPAD |
| CitedBy_id | crossref_primary_10_1016_j_hcc_2023_100150 crossref_primary_10_1016_j_suscom_2025_101132 crossref_primary_10_1109_ACCESS_2024_3521579 crossref_primary_10_1109_MC_2022_3203613 crossref_primary_10_1080_15623599_2025_2537727 crossref_primary_10_1016_j_scib_2023_11_042 crossref_primary_10_1145_3663482 crossref_primary_10_1109_JSYST_2024_3442958 crossref_primary_10_3390_fi16110421 crossref_primary_10_1109_TSC_2024_3451170 crossref_primary_10_1007_s11356_023_31779_9 crossref_primary_10_3390_s22239404 crossref_primary_10_1109_TPDS_2024_3413751 crossref_primary_10_1145_3639825 crossref_primary_10_1109_TMC_2025_3567459 crossref_primary_10_1109_TCE_2024_3378509 crossref_primary_10_3390_electronics13183763 crossref_primary_10_1109_TMM_2024_3521770 crossref_primary_10_3390_fi17040175 crossref_primary_10_1109_COMST_2024_3482978 crossref_primary_10_4018_IJeC_388554 crossref_primary_10_1007_s11432_024_4463_0 crossref_primary_10_1016_j_ins_2024_120259 crossref_primary_10_3390_mi14050897 crossref_primary_10_3390_electronics14122401 crossref_primary_10_1016_j_adhoc_2025_103916 crossref_primary_10_1016_j_comnet_2024_110756 crossref_primary_10_1109_TCC_2023_3258982 crossref_primary_10_1109_TNSE_2025_3551148 crossref_primary_10_1109_JIOT_2025_3567545 crossref_primary_10_3390_math12152383 crossref_primary_10_1109_MIS_2022_3181504 crossref_primary_10_1109_TNSM_2024_3416947 crossref_primary_10_1186_s13677_023_00493_9 crossref_primary_10_1051_itmconf_20246503015 crossref_primary_10_3390_fi17040140 crossref_primary_10_1109_JIOT_2023_3317785 crossref_primary_10_1109_TMC_2023_3349315 crossref_primary_10_1109_JIOT_2025_3529185 crossref_primary_10_1109_JIOT_2025_3572900 crossref_primary_10_1109_TNSM_2025_3561739 crossref_primary_10_1109_COMST_2023_3244674 crossref_primary_10_1109_TVT_2023_3265479 crossref_primary_10_1016_j_jksuci_2022_12_013 crossref_primary_10_1109_JPROC_2022_3226481 crossref_primary_10_1109_ACCESS_2024_3384233 crossref_primary_10_1109_TVT_2024_3518836 crossref_primary_10_1109_COMST_2022_3211462 crossref_primary_10_1145_3657283 crossref_primary_10_1016_j_ins_2023_119169 crossref_primary_10_1016_j_future_2024_107588 crossref_primary_10_1145_3700792 crossref_primary_10_1109_ACCESS_2024_3421652 crossref_primary_10_1109_JPROC_2024_3437365 crossref_primary_10_1109_TSC_2022_3187118 crossref_primary_10_1109_ACCESS_2022_3183634 crossref_primary_10_1109_TCC_2025_3591482 crossref_primary_10_1109_TMC_2023_3329444 crossref_primary_10_1109_TMC_2025_3556243 crossref_primary_10_1016_j_future_2022_10_006 crossref_primary_10_1109_MNET_2024_3469988 crossref_primary_10_1049_ipr2_12802 crossref_primary_10_32604_cmes_2023_023684 crossref_primary_10_1007_s11227_025_07295_7 crossref_primary_10_1109_IOTM_001_2300169 crossref_primary_10_1109_TMC_2024_3361876 crossref_primary_10_1002_cpe_70269 crossref_primary_10_3390_info14070414 crossref_primary_10_3390_electronics12010001 crossref_primary_10_3390_fi16100373 crossref_primary_10_1049_cth2_12761 crossref_primary_10_1109_JIOT_2025_3546577 crossref_primary_10_1109_LWC_2024_3412674 crossref_primary_10_1016_j_compeleceng_2025_110146 crossref_primary_10_1109_TCOMM_2024_3418901 crossref_primary_10_1007_s00779_024_01821_9 crossref_primary_10_3390_bdcc7010044 crossref_primary_10_1109_ACCESS_2024_3425350 crossref_primary_10_3390_w17152269 crossref_primary_10_3390_diagnostics14232708 crossref_primary_10_1016_j_adhoc_2024_103751 crossref_primary_10_1145_3724420 crossref_primary_10_3390_s25072089 crossref_primary_10_1109_MNET_2024_3380647 crossref_primary_10_1109_JIOT_2023_3340298 crossref_primary_10_1109_TCSII_2022_3161717 crossref_primary_10_1007_s11831_023_10032_z crossref_primary_10_1109_ACCESS_2024_3459925 crossref_primary_10_1109_JIOT_2023_3280069 crossref_primary_10_1109_MWC_006_2100699 crossref_primary_10_1109_TITS_2023_3241479 crossref_primary_10_1109_TCCN_2024_3439589 crossref_primary_10_1109_TSUSC_2024_3521401 crossref_primary_10_1016_j_comnet_2024_110624 crossref_primary_10_1016_j_patcog_2025_111831 crossref_primary_10_1109_TMC_2025_3554816 crossref_primary_10_3390_jsan11030047 crossref_primary_10_1109_TII_2022_3154473 crossref_primary_10_1016_j_future_2024_107691 crossref_primary_10_1109_ACCESS_2024_3469956 crossref_primary_10_1007_s13198_025_02940_z crossref_primary_10_1007_s11276_025_03903_9 crossref_primary_10_1109_COMST_2022_3163176 crossref_primary_10_1063_5_0194194 crossref_primary_10_1007_s10844_024_00909_1 crossref_primary_10_1016_j_procs_2025_04_204 crossref_primary_10_1109_JIOT_2023_3281603 crossref_primary_10_1109_JIOT_2022_3160691 |
| Cites_doi | 10.1109/MSP.2007.4286571 10.1109/TVT.2020.2973651 10.1007/978-3-319-69462-7_27 10.1109/ACCESS.2017.2706741 10.1109/TWC.2020.2971981 10.1109/TCSI.2020.2966243 10.1145/3194658.3194666 10.1109/TITS.2014.2311123 10.1007/978-3-319-46448-0_2 10.1007/978-3-030-01249-6_18 10.1145/3298981 10.1109/JIOT.2021.3056185 10.1007/s11222-007-9033-z 10.1109/MCOM.2014.6736753 10.1109/WACV.2014.6836013 10.1609/aimag.v35i4.2513 10.1109/LCOMM.2018.2875978 10.3390/jlpea7020010 10.1007/s11277-018-5360-y 10.1145/1150402.1150464 10.1109/TSC.2020.3032724 10.1109/TNSE.2020.3033938 10.1109/TIM.2020.3018831 10.1109/ICDCS.2017.94 10.1109/ICDCS.2018.00154 10.1109/JIOT.2021.3049173 10.1109/PERCOMW.2019.8730706 10.1109/ICNSC.2019.8743164 10.3390/fi9040066 10.1109/TITS.2018.2877059 10.1145/3363347.3363366 10.1109/JSTSP.2020.2977090 10.1007/s11265-006-4190-4 10.1109/ICNP.2017.8117585 10.1145/3089801.3089804 10.1145/1536414.1536440 10.1109/TPAMI.2018.2884462 10.1145/2968219.2971461 10.1109/TII.2019.2900665 10.1109/ICPR.2018.8546129 10.1109/TII.2018.2842821 10.1145/2742647.2742663 10.1006/ijhc.2001.0499 10.1109/SiPS.2016.31 10.1109/ACCESS.2018.2846609 10.1109/TII.2018.2877217 10.1145/2938559.2949718 10.1109/INFCOM.2012.6195845 10.1109/HPCA.2018.00018 10.1109/JSSC.2016.2616357 10.1016/j.adhoc.2018.05.014 10.1109/VNC.2017.8275621 10.1109/PerCom45495.2020.9127360 10.1109/ACCESS.2016.2607719 10.1109/MNET.2018.1700202 10.1109/VTS-APWCS.2019.8851649 10.1109/WoWMoM.2019.8792973 10.1137/0718026 10.1109/CVPR.2017.195 10.1145/3123266.3123453 10.1098/rsta.2019.0155 10.1109/VNC.2016.7835943 10.1145/3081333.3081336 10.1145/2030112.2030164 10.1145/3081333.3081358 10.1007/s00521-010-0362-z 10.1145/2906388.2906395 10.1186/s40537-014-0008-6 10.1109/MVT.2018.2883777 10.1109/NCA.2017.8171350 10.1109/EMC2.2018.00012 10.1002/nem.2146 10.1109/TPAMI.2013.50 10.1109/PDP2018.2018.00023 10.1109/JIOT.2020.3037194 10.1038/nbt1206-1565 10.23919/JCC.2020.09.008 10.1145/3081333.3081347 10.1109/MSP.2006.1657817 10.1016/j.future.2019.01.059 10.1109/MCC.2018.1081070 10.1145/2594368.2594388 10.1109/WACV45572.2020.9093331 10.1109/MedHocNet.2012.6257116 10.1145/2964284.2967280 10.1109/MCOM.2017.1600863 10.1109/CAC.2017.8243585 10.1109/COMST.2018.2844341 10.1109/TVT.2013.2291811 10.1109/BigData.2018.8622396 10.1007/s11042-016-3316-3 10.1109/ICCV.2019.00140 10.1109/IC2E48712.2020.00009 10.1109/SocialSens.2018.00017 10.1016/j.agsy.2017.01.023 10.1016/j.acha.2019.06.004 10.1109/TITS.2019.2906038 10.1109/MC.2017.3641638 10.1109/INFOCOM.2015.7218644 10.1109/TWC.2019.2961673 10.1145/3243734.3243781 10.1109/TCSVT.2019.2903421 10.1109/ICC40277.2020.9148862 10.1109/TCOMM.2019.2956472 10.1145/3338501.3357371 10.1109/ACCESS.2018.2810264 10.1145/3132211.3134457 10.1109/ICCE.2016.7430525 10.1109/CVPR.2018.00745 10.1145/3378679.3394533 10.1016/j.adhoc.2016.02.002 10.1109/TITS.2020.3040557 10.1109/TII.2019.2952645 10.1109/AVSS.2018.8639121 10.1145/3196494.3196532 10.1145/3131895 10.1145/3173162.3173185 10.1109/CVPR.2016.521 10.1109/INFOCOM.2016.7524381 10.1109/SEC.2016.38 10.1145/3359993.3366644 10.1145/3213344.3213345 10.1145/2906388.2906396 10.1145/3152127 10.1109/JETCAS.2019.2910232 10.1145/2964284.2973801 10.1109/CVPR.2017.634 10.1109/ICIP.2012.6467224 10.1109/ICCSE.2016.7581655 10.1109/TII.2017.2679740 10.1145/3267305.3267505 10.1109/MCC.2016.124 10.1109/TCOMM.2020.2979149 10.1016/j.procs.2015.05.043 10.1007/s00779-016-0932-x 10.1109/JIOT.2016.2579198 10.1109/ICASSP.2013.6638947 10.1145/2976749.2978318 10.1145/3020078.3021736 10.1145/3140582.3081040 10.1109/JIOT.2020.2984887 10.1109/TSC.2017.2662008 10.1109/CVPR.2016.91 10.1109/ICASSP40776.2020.9054634 10.1109/INFOCOM.2018.8485905 10.1145/3397461 10.1109/LCN.2016.039 10.1109/COMST.2020.3007787 10.1109/MNET.001.1900287 10.1016/j.aci.2018.05.002 10.1145/3351260 10.1109/ACCESS.2020.3038287 10.1016/j.phycom.2021.101381 10.1109/MPRV.2017.2940968 10.1145/2619239.2626296 10.1016/j.patcog.2020.107461 10.1145/3089801.3089805 10.1002/nav.3800010110 10.1109/IUCC/DSCI/SmartCNS.2019.00126 10.4108/eai.30-11-2016.2267463 10.1109/TSG.2016.2553647 10.1109/ICECC.2011.6066743 10.1109/TIFS.2015.2400395 10.1109/ACCESS.2018.2843341 10.1109/GLOBECOM38437.2019.9013587 10.1145/3241539.3241565 10.1109/TSE.2017.2685387 10.1109/ICSCC.2019.8843640 10.1145/3126555 10.1016/j.future.2017.03.034 10.1109/TWC.2020.3037554 10.1145/2030613.2030625 10.1109/COMST.2018.2820021 10.1007/978-3-319-46493-0_38 10.1109/ICDCS.2018.00041 10.1109/JIOT.2019.2897005 10.1145/3229556.3229562 10.1109/MVT.2019.2921208 10.1109/IPDPS47924.2020.00033 10.1145/3299710.3211336 10.1145/3126686.3126739 10.1007/s11633-017-1054-2 10.1109/JIOT.2020.2988697 10.1109/CVPR.2016.308 10.2200/S00737ED1V01Y201610AIM033 10.3390/s18051532 10.1109/ICPADS.2017.00069 10.1049/cje.2016.11.016 10.1016/j.compag.2020.105233 10.1038/s41928-018-0059-3 10.3390/s18072203 10.1145/3197231.3197256 10.1109/TMC.2020.3019988 10.1109/JIOT.2020.2979691 10.1007/978-981-10-8339-6_6 10.1109/JIOT.2017.2750180 10.1126/science.aaa8415 10.1109/VNC51378.2020.9318400 10.1109/ICCCBDA51879.2021.9442600 10.1145/3132211.3134459 10.1145/3131672.3131675 10.1145/3109761.3109804 10.3390/s20237000 10.1109/JIOT.2019.2902141 10.1145/2973750.2973777 10.1145/3083187.3084016 10.1145/3210240.3210337 10.1109/MCOM.001.1900103 10.1109/AINA.2015.254 10.1007/BF00992698 10.1109/WACV45572.2020.9093377 10.1145/3093337.3037698 10.5244/C.28.88 10.1109/MNET.011.2000180 10.1109/COMST.2020.2970550 10.1109/ICWS49710.2020.00073 10.1109/TMC.2016.2567378 10.1145/3081333.3089331 10.1007/978-3-319-57959-7 10.1145/3241539.3241557 10.1109/MIS.2020.2988604 10.1109/JIOT.2020.2964162 10.1109/SEC50012.2020.00041 10.1016/j.comcom.2019.12.054 10.1109/ICRA.2019.8794182 10.1109/CVPR.2005.177 10.1109/ICC.2019.8761315 10.1056/NEJMsa1204142 10.1145/3089801.3089803 10.1145/2639189.2670273 10.1109/IPSN.2018.00048 10.1109/CSTIC.2019.8755642 10.1109/COMST.2018.2808242 10.1109/JIOT.2020.2978286 10.1145/3213344.3213351 10.1109/ACCESS.2019.2951587 10.1145/3278721.3278778 10.1145/3097895.3097903 10.1016/j.compeleceng.2017.12.009 10.1016/j.ins.2019.01.014 10.1109/SmartCloud.2016.18 10.1109/MNET.001.1900506 10.1145/3089801.3089806 10.1145/2831347.2831354 10.1145/3220192.3220460 10.1007/978-1-4302-4000-6_9 10.1109/CIT/IUCC/DASC/PICOM.2015.170 10.3390/electronics5040088 10.1109/TWC.2020.2974748 10.1145/1999995.2000000 10.1145/3191752 10.24963/ijcai.2018/429 10.1016/j.jss.2018.03.032 10.1007/978-3-319-46493-0_32 10.1109/ICDCS.2018.00139 10.1109/HotWeb.2015.22 10.1109/TITS.2021.3081560 10.1109/JIOT.2020.3036157 10.1145/2753509.2753518 10.1145/3194554.3194565 10.21437/Interspeech.2016-128 10.1109/ITAIC49862.2020.9338964 10.1109/SMARTCOMP.2018.00087 10.3233/JIFS-169699 10.1109/GLOBECOM38437.2019.9013821 10.1109/NGCAS.2017.16 10.1109/TWC.2020.3003744 10.1145/2594368.2594383 10.1109/IJCNN48605.2020.9207469 10.1109/JSAC.2019.2904348 10.1016/0169-7439(87)80084-9 10.1109/ACCESS.2014.2325029 10.1145/2342509.2342513 10.3390/app7080826 10.1109/EMC2-NIPS53020.2019.00013 10.1016/j.ecolind.2020.107124 10.1016/S0043-1648(00)00427-0 10.1109/TMC.2020.2984364 10.1109/TMC.2018.2815694 10.1109/JPROC.2019.2922285 10.1145/3154503 10.1109/TITS.2020.3002712 10.5244/C.29.41 10.1109/PCCC.2017.8280500 10.1109/LCA.2020.2979965 10.1109/CVPR.2018.00474 10.1145/2906388.2906405 10.1109/PERCOMW.2016.7457169 10.1109/TMC.2016.2607716 10.1145/3152130.3152135 10.1016/j.jpdc.2018.11.006 10.1145/1390156.1390177 10.1007/s11042-020-09740-6 10.1145/2935643.2935650 10.1109/CVPR.2018.00716 10.1109/COMSNETS.2018.8328270 10.1145/2809695.2809711 10.1145/3240508.3240697 10.1145/3373087.3375312 10.1109/T-C.1971.223174 10.1109/TPDS.2020.3016344 10.3390/ijgi8090412 10.3115/v1/D14-1179 10.1109/CFEC.2018.8358733 10.23919/INM.2017.7987297 10.1109/TITS.2020.3023446 10.1109/ICASSP.2015.7178146 10.1109/TCOMM.2020.3019527 10.3390/electronics8080896 10.1145/3212725.3212728 10.1002/cem.873 10.1109/JPROC.2019.2918951 10.1002/wcm.2591 10.1145/3161174 10.1145/3240508.3240561 10.1016/j.pmcj.2017.07.014 10.1109/INFOCOM42981.2021.9488804 10.1109/CVPR.2017.643 10.1162/neco.1997.9.8.1735 10.2196/24207 10.1109/TNSE.2020.3014455 10.1109/IPSN.2016.7460664 10.1109/TVLSI.2018.2825145 10.1609/aaai.v33i01.33014780 10.1109/TVT.2010.2043968 10.1145/2757384.2757397 10.1109/COMST.2019.2904897 10.1109/CVPR.2016.90 10.1109/ICACSIS.2017.8355051 10.1109/PERCOMW.2015.7134002 10.1109/ICCCN.2018.8487352 10.1109/PerCom45495.2020.9127387 10.1109/MNET.2019.1700470 10.1109/IC2E.2018.00042 10.1109/CHASE.2017.115 10.1145/3193025.3193041 10.1145/3161181 10.1109/5.726791 10.1109/ICITBS.2019.00104 10.1145/2633661.2633671 10.1109/GCWkshps45667.2019.9024587 10.1145/2994551.2994564 10.1007/978-3-642-31537-4_13 10.1109/MVT.2018.2848498 10.1145/3131885.3131906 10.1109/MCOM.2014.6736756 10.1080/03071847.2019.1693801 10.1109/Oceans-Spain.2011.6003654 10.1109/JSAC.2016.2545413 10.1007/3-540-45748-8_24 10.1109/LES.2018.2815954 10.1007/978-1-4419-5906-5_752 10.1109/TIFS.2020.2988575 10.1109/ICCV.2017.298 10.1016/j.compenvurbsys.2017.12.005 10.1007/s00779-020-01440-0 10.1109/MIS.2020.2988525 10.1145/2906388.2906418 10.1109/MNET.2019.1800286 10.1109/MC.2016.145 10.3390/s18113726 10.1109/JSEN.2006.886995 10.1109/ACCESS.2019.2918213 10.1109/ICCNC.2019.8685481 10.1109/VTCSpring.2018.8417759 10.1007/978-3-319-16292-8_28 10.1109/CVPR.2018.00907 10.1007/978-3-030-30490-4_56 10.1109/MC.2018.2381112 10.1145/2820975.2820980 10.1109/JPROC.2019.2920341 10.1109/WF-IoT.2015.7389148 10.1109/JSAC.2018.2844939 10.1145/3204949.3204975 10.1145/3212725.3212729 10.1145/3241539.3241563 10.1145/3081333.3081359 10.1145/3038912.3052577 10.1109/ICSENS.2010.5690033 10.1109/JIOT.2020.2967734 10.3115/1658616.1658635 10.1109/ICDCS.2017.226 10.1109/MC.2018.2381129 10.1145/2750858.2804262 10.1145/2809695.2809718 10.1145/3371154 10.1002/ett.3942 10.1109/TNET.2019.2936939 10.1109/TNSE.2021.3053588 10.1145/3154448.3154452 10.1109/MCI.2006.329691 10.1145/2413176.2413189 10.1145/3090076 10.1145/3154815 10.1109/TCSVT.2020.2996231 10.1109/CVPR.2019.00293 10.1109/CySWater.2016.7469060 10.1145/3133956.3133982 10.1109/JIOT.2020.2967772 10.1109/ICDCS.2019.00106 10.1109/CVPR.2015.7298594 10.1109/CVPR.2018.00171 10.1007/978-3-642-38652-7_2 10.1109/ISCIT.2017.8261188 10.1016/j.procs.2015.05.038 10.1007/978-3-319-97909-0_46 10.1023/A:1019956318069 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/JPROC.2021.3119950 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2256 |
| EndPage | 1837 |
| ExternalDocumentID | 10_1109_JPROC_2021_3119950 9596610 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Beijing National Research Center for Information Science and Technology grantid: 20031887521 funderid: 10.13039/501100017582 – fundername: Academy of Finland grantid: 319669; 319670; 325570; 326305; 325774; 335934 funderid: 10.13039/501100002341 – fundername: National Natural Science Foundation of China grantid: U1936217; 61971267; 61972223; 61941117; 61861136003 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2020YFA0711400; 2020AAA0106000 funderid: 10.13039/501100012166 – fundername: Beijing Natural Science Foundation grantid: L182038 funderid: 10.13039/501100004826 |
| GroupedDBID | -DZ -~X .DC 0R~ 123 1OL 29P 3EH 4.4 6IK 85S 97E 9M8 AAJGR AAWTH ABAZT ABFSI ABJNI ABQJQ ABVLG ACBEA ACGFS AENEX AETEA AETIX AFOGA AGNAY AGQYO AGSQL AHBIQ AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD FA8 HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MVM O9- OCL RIA RIE RIU RNS TAE TN5 TWZ UDY UHB UKR UQL VOH WHG XJT XOL YNT ZCA ZXP ZY4 ~02 AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c295t-b55d45250ff5111df3f47062473eab05556d45455719ff0bb4c295042fca80cb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 144 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000714203700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9219 |
| IngestDate | Thu Sep 25 04:52:14 EDT 2025 Sat Nov 29 06:01:44 EST 2025 Tue Nov 18 21:14:42 EST 2025 Wed Aug 27 02:26:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-b55d45250ff5111df3f47062473eab05556d45455719ff0bb4c295042fca80cb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4220-3650 0000-0002-0848-2599 0000-0002-9091-5129 0000-0003-1342-6759 0000-0001-5617-1659 0000-0002-7013-0121 0000-0002-4343-703X |
| PQID | 2592624937 |
| PQPubID | 85453 |
| PageCount | 60 |
| ParticipantIDs | crossref_citationtrail_10_1109_JPROC_2021_3119950 ieee_primary_9596610 crossref_primary_10_1109_JPROC_2021_3119950 proquest_journals_2592624937 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Proceedings of the IEEE |
| PublicationTitleAbbrev | JPROC |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref207 ref57 ref449 ref328 hennessy (ref426) 2011 ref56 ref329 ref59 ref326 ref58 ref448 ref327 ref53 ref445 ref324 ref52 ref446 ref201 ref55 ref322 ref54 ref444 ref323 lin (ref298) 2015 peltonen (ref32) 2020 ref452 ref331 ref453 ref332 ref51 ref450 zhang (ref232) 2017 ref50 ref451 chen (ref31) 2019 ref339 ref219 drolia (ref132) 2017 ref45 kone?n? (ref155) 2016 lin (ref167) 2017 ref458 ref337 ref217 ref47 ref459 ref338 ref42 oskouei (ref316) 2015 ref456 ref215 ref41 ref457 ref336 ref44 ref454 ref333 lopes (ref266) 2017 ref43 ref455 ref334 ref49 ref221 ref463 ref342 ref101 ref222 ref343 ref40 ref461 ref340 ref220 ref462 ref341 ref460 ref35 ref548 ref427 ref34 ref549 ref307 ref428 ref37 ref546 ref304 ref425 ref36 ref547 ref544 ref302 ref545 ref303 ref424 ref33 ref542 ref300 ref543 ref301 mcmahan (ref193) 2017 marjanovi? (ref66) 2017 ref38 ref308 ref429 ref309 zhuo (ref194) 2019 han (ref277) 2015 gebhart (ref508) 2017; 18 ref551 ref430 ref552 ref310 ref431 van leeuwen (ref515) 1976 ref550 you (ref553) 2020; 64 ref24 ref317 ref438 ref23 ref318 ref439 ref26 ref436 ref25 ref437 bagdasaryan (ref204) 2020 ref555 ref20 ref313 ref434 ref314 han (ref293) 2015 ref22 ref432 ref554 ref21 ref312 ref433 hasselt (ref414) 2010; 23 ref28 ref27 ref319 ref29 mo (ref171) 2020 bonawitz (ref208) 2019 ref320 ref441 ref321 ref442 ref440 bo (ref248) 2013 you (ref281) 2019 ref128 ref249 ref129 ref126 ref247 ref368 ref97 ref127 ref369 ref96 ref124 ref245 ref487 ref99 ref125 ref246 ref488 ref367 ref98 tseng (ref100) 2017 das (ref541) 2014 ref254 ref496 ref375 ref93 ref134 ref497 ref376 ref252 ref95 ref495 ref250 ref492 ref371 ref130 ref251 ref372 ref490 ref91 ref90 ref89 ref139 ref258 ref379 ref86 ref138 ref85 ref135 ref256 ref498 ref377 ref88 ref257 ref499 ref378 ref87 sau (ref262) 2016 xu (ref370) 2017 iandola (ref270) 2016 ref144 ref386 ref82 ref145 ref387 li (ref447) 2019 ref81 ref142 ref384 ref84 ref143 ref385 bengio (ref3) 2003; 3 ref83 bhagoji (ref205) 2018 ref140 ref382 ref141 ref383 ref380 ref80 ref381 ref229 ref108 lv (ref8) 2015; 16 ref79 ref78 ref227 ref106 crowley (ref263) 2018 ref348 ref469 ref107 ref349 ref104 ref346 ref467 ref75 ref226 ref105 ref347 ref468 ref74 ref102 ref344 ref77 goodfellow (ref423) 2014 ref224 ref103 ref466 ref76 mccarthy (ref399) 1998 chen (ref210) 2019 talagala (ref374) 2018 (ref465) 2019 ref111 ref353 ref474 ref71 ref233 ref112 ref354 ref475 ref70 ref351 ref73 ref110 ref473 ref72 elsken (ref493) 2018 ref470 ref350 ref119 ref68 hinton (ref259) 2015 ref238 ref117 ref359 ref239 ref118 ref69 ref236 ref115 ref357 ref64 ref237 ref116 ref358 ref63 ref234 ref113 ref355 ref476 ref235 ref114 ref356 ref477 ref65 (ref464) 2019 xu (ref311) 2017 courbariaux (ref296) 2016 chabanne (ref534) 2017; 2017 ref243 ref122 ref364 ref485 ref60 ref244 ref365 ref486 ref241 ref120 ref362 ref483 ref62 smith (ref152) 2017 ref242 ref363 ref484 wang (ref160) 2017 ref360 ref481 ref240 ref361 ref482 (ref12) 2016 ref480 molchanov (ref280) 2016 gilad-bachrach (ref533) 2016 ref168 ref289 kendall (ref5) 2017 nguyen (ref223) 2018; abs 1804 7474 ref290 ref170 lee (ref537) 2017 ref177 ref178 ref175 ref176 romero (ref260) 2014 ref173 ref294 ref174 ref172 kone?ný (ref166) 2017 ref179 kim (ref255) 2015 ref180 ref181 appleyard (ref522) 2016 ref188 kone?ný (ref154) 2015 ref186 ref187 ref184 ref185 ref182 ref183 montgomery (ref407) 2021 ref269 ref148 ref149 ref267 ref146 ref268 ref147 ref389 ref390 cui (ref531) 2017 ref276 ref397 ref398 ref274 ref153 ref395 ref275 ref396 ref151 ref393 ref273 ref394 ref391 ref150 ref392 ref159 ref278 seraj (ref67) 2015 ref279 ref158 russell (ref400) 1995 chen (ref292) 2015 ref287 ref288 mazhar (ref61) 2019 ref285 ref164 ref286 ref283 ref162 ref284 ref163 ref282 ref161 tian (ref366) 2019 qayyum (ref218) 2021 xu (ref46) 2017 kong (ref491) 2017 hard (ref209) 2018 silver (ref417) 2014 schwabacher (ref388) 2007 potes (ref11) 2016 zaremba (ref422) 2014 vanhoucke (ref299) 2011 fang (ref137) 2020 ref1 yang (ref211) 2018 ref191 ref192 ref190 sun (ref2) 2015 ref199 rastegari (ref297) 2016 denil (ref510) 2013 geyer (ref189) 2017 ogden (ref136) 2018 mcmahan (ref39) 2017; 3 yin (ref202) 2018; 80 gong (ref291) 2014 lv (ref131) 2007 blanchard (ref200) 2017 szegedy (ref271) 2017 hadidi (ref373) 2018 malki (ref516) 2003; 3 esser (ref306) 2015 ref7 ref9 ref4 simonyan (ref472) 2014 psaras (ref92) 2018 osband (ref416) 2016 ma (ref345) 2017 morris (ref518) 1971; c 20 steinhardt (ref197) 2017 alhaija (ref6) 2017; 1 sheller (ref213) 2018 hu (ref18) 2015; 11 denton (ref253) 2014 venugopal (ref133) 2018 chen (ref165) 2016 chen (ref30) 2018 chen (ref335) 2018; 2 liu (ref230) 2018 hassibi (ref514) 1993 motamedi (ref325) 2016 gao (ref216) 2019 cheng (ref195) 2019 zhou (ref265) 2018 wistuba (ref494) 2019 trivedi (ref443) 2020 komodakis (ref261) 2017 o’connor (ref121) 2016 liu (ref94) 2020 li (ref264) 2018 chen (ref203) 2017 courbariaux (ref295) 2015 jaggi (ref489) 2014 he (ref479) 2016 rallapalli (ref330) 2016 konda (ref418) 2000 duong (ref225) 2018 buckler (ref123) 2018 mavromoustakis (ref109) 2015; 141 mcmahan (ref156) 2016 roy (ref214) 2019 sprague (ref415) 2003 zhao (ref157) 2018 caldas (ref169) 2018 polese (ref435) 2020 hamerly (ref408) 2004; 16 liu (ref352) 2017 liu (ref520) 2016 shafiee (ref272) 2017 gustafson (ref517) 2017; 4 loukadakis (ref315) 2018 howard (ref231) 2017 ref526 ref405 ref13 ref527 hesamifard (ref535) 2017 ref406 ref524 ref403 ref15 ref525 ref404 ref14 ref401 ref523 ref402 ref521 ref10 ref409 ref17 ref16 ref528 ref19 ref529 ref530 nielsen (ref419) 2015; 25 hyvärinen (ref411) 1999 ref538 ref536 ref412 ref413 biggio (ref196) 2012 ref410 ref532 gal (ref206) 2016 o’shea (ref421) 2015 ref539 (ref48) 2019 lecun (ref513) 1990 ref540 ref420 krizhevsky (ref471) 2012 ref504 ref505 ref502 ref503 fung (ref198) 2018 ref500 ref501 ref509 ref506 ref507 soudry (ref305) 2014 ioffe (ref478) 2015 ref511 ref512 ramaswamy (ref212) 2019 ref519 cortes (ref228) 2017 |
| References_xml | – ident: ref512 doi: 10.1109/MSP.2007.4286571 – ident: ref221 doi: 10.1109/TVT.2020.2973651 – ident: ref377 doi: 10.1007/978-3-319-69462-7_27 – year: 2018 ident: ref205 article-title: Analyzing federated learning through an adversarial lens publication-title: arXiv 1811 12470 – ident: ref84 doi: 10.1109/ACCESS.2017.2706741 – ident: ref158 doi: 10.1109/TWC.2020.2971981 – volume: 1 start-page: 2 year: 2017 ident: ref6 article-title: Augmented reality meets deep learning for car instance segmentation in urban scenes publication-title: Proc Brit Mach Vis Conf – start-page: 119 year: 2017 ident: ref200 article-title: Machine learning with adversaries: Byzantine tolerant gradient descent publication-title: Proc Adv Neural Inf Process Syst – ident: ref469 doi: 10.1109/TCSI.2020.2966243 – ident: ref151 doi: 10.1145/3194658.3194666 – ident: ref7 doi: 10.1109/TITS.2014.2311123 – start-page: 21 year: 2016 ident: ref520 article-title: SSD: Single shot multibox detector publication-title: Computer Vision-ECCV 2016 doi: 10.1007/978-3-319-46448-0_2 – ident: ref344 doi: 10.1007/978-3-030-01249-6_18 – ident: ref40 doi: 10.1145/3298981 – ident: ref217 doi: 10.1109/JIOT.2021.3056185 – ident: ref409 doi: 10.1007/s11222-007-9033-z – year: 2015 ident: ref154 article-title: Federated optimization: Distributed optimization beyond the datacenter publication-title: arXiv 1511 03575 – start-page: 1 year: 2017 ident: ref311 article-title: Fast and low-power behavior analysis on vehicles using smartphones publication-title: Proc 6th Int Symp Next Gener Electron (ISNE) – ident: ref438 doi: 10.1109/MCOM.2014.6736753 – volume: 2 start-page: 3l year: 2018 ident: ref335 article-title: Understanding the limitations of existing energy-efficient design approaches for deep neural networks publication-title: Energy – ident: ref473 doi: 10.1109/WACV.2014.6836013 – year: 2016 ident: ref325 article-title: Fast and energy-efficient CNN inference on IoT devices publication-title: arXiv 1611 07151 – year: 2019 ident: ref465 publication-title: Microsoft HoloLens – start-page: 387 year: 2014 ident: ref417 article-title: Deterministic policy gradient algorithms publication-title: Proc Int Conf Mach Learn – volume: 16 start-page: 865 year: 2015 ident: ref8 article-title: Traffic flow prediction with big data: A deep learning approach publication-title: IEEE Trans Intell Transp Syst – ident: ref482 doi: 10.1609/aimag.v35i4.2513 – year: 2017 ident: ref352 article-title: DEEProtect: Enabling inference-based access control on mobile sensing applications publication-title: arXiv 1702 06159 – year: 2018 ident: ref30 article-title: Federated meta-learning with fast convergence and efficient communication publication-title: arXiv 1802 07876 – volume: 80 start-page: 5650 year: 2018 ident: ref202 article-title: Byzantine-robust distributed learning: Towards optimal statistical rates publication-title: Proc 35th Int Conf Mach Learn – ident: ref28 doi: 10.1109/LCOMM.2018.2875978 – ident: ref322 doi: 10.3390/jlpea7020010 – ident: ref455 doi: 10.1007/s11277-018-5360-y – ident: ref258 doi: 10.1145/1150402.1150464 – start-page: 1 year: 2018 ident: ref264 article-title: DeepRebirth: Accelerating deep neural network execution on mobile devices publication-title: Proc 32nd AAAI Conf Artif Intell – ident: ref441 doi: 10.1109/TSC.2020.3032724 – ident: ref86 doi: 10.1109/TNSE.2020.3033938 – year: 2019 ident: ref216 article-title: HHHFL: Hierarchical heterogeneous horizontal federated learning for electroencephalography publication-title: arXiv 1909 05784 – ident: ref312 doi: 10.1109/TIM.2020.3018831 – ident: ref130 doi: 10.1109/ICDCS.2017.94 – year: 2016 ident: ref262 article-title: Deep model compression: Distilling knowledge from noisy teachers publication-title: arXiv 1610 09650 – ident: ref368 doi: 10.1109/ICDCS.2018.00154 – ident: ref56 doi: 10.1109/JIOT.2021.3049173 – start-page: 1117 year: 2015 ident: ref306 article-title: Backpropagation for energy-efficient neuromorphic computing publication-title: Proc Adv Neural Inf Process Syst – ident: ref9 doi: 10.1109/PERCOMW.2019.8730706 – ident: ref538 doi: 10.1109/ICNSC.2019.8743164 – start-page: 950 year: 2007 ident: ref131 article-title: Multi-probe LSH: Efficient indexing for high-dimensional similarity search publication-title: Proc Int Conf On Very Large Data Bases – ident: ref320 doi: 10.3390/fi9040066 – ident: ref60 doi: 10.1109/TITS.2018.2877059 – year: 2020 ident: ref171 article-title: Energy-efficient federated edge learning with joint communication and computation design publication-title: arXiv 2003 00199 – ident: ref380 doi: 10.1145/3363347.3363366 – ident: ref290 doi: 10.1109/JSTSP.2020.2977090 – year: 2016 ident: ref270 article-title: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size publication-title: arXiv 1602 07360 – ident: ref122 doi: 10.1007/s11265-006-4190-4 – ident: ref348 doi: 10.1109/ICNP.2017.8117585 – ident: ref323 doi: 10.1145/3089801.3089804 – ident: ref188 doi: 10.1145/1536414.1536440 – ident: ref503 doi: 10.1109/TPAMI.2018.2884462 – ident: ref241 doi: 10.1145/2968219.2971461 – ident: ref185 doi: 10.1109/TII.2019.2900665 – ident: ref279 doi: 10.1109/ICPR.2018.8546129 – year: 2018 ident: ref493 article-title: Neural architecture search: A survey publication-title: arXiv 1808 05377 – ident: ref383 doi: 10.1109/TII.2018.2842821 – ident: ref126 doi: 10.1145/2742647.2742663 – start-page: 2938 year: 2020 ident: ref204 article-title: How to backdoor federated learning publication-title: Proc Int Conf Artif Intell Statist – year: 2018 ident: ref157 article-title: Federated learning with non-IID data publication-title: arXiv 1806 00582 – volume: 64 start-page: 1 year: 2020 ident: ref553 article-title: Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts publication-title: Sci China Inf Sci – ident: ref511 doi: 10.1145/1150402.1150464 – ident: ref483 doi: 10.1006/ijhc.2001.0499 – ident: ref285 doi: 10.1109/SiPS.2016.31 – ident: ref387 doi: 10.1109/ACCESS.2018.2846609 – ident: ref77 doi: 10.1109/TII.2018.2877217 – ident: ref342 doi: 10.1145/2938559.2949718 – ident: ref529 doi: 10.1109/INFCOM.2012.6195845 – ident: ref372 doi: 10.1109/HPCA.2018.00018 – year: 2018 ident: ref211 article-title: Applied federated learning: Improving Google keyboard query suggestions publication-title: arXiv 1812 02903 – ident: ref336 doi: 10.1109/JSSC.2016.2616357 – ident: ref106 doi: 10.1016/j.adhoc.2018.05.014 – ident: ref105 doi: 10.1109/VNC.2017.8275621 – ident: ref466 doi: 10.1109/PerCom45495.2020.9127360 – year: 2017 ident: ref166 article-title: Stochastic, distributed and federated optimization for machine learning publication-title: arXiv 1707 01155 – year: 2014 ident: ref541 article-title: Fingerprinting smart devices through embedded acoustic components publication-title: arXiv 1403 3366 – year: 2017 ident: ref46 article-title: Accelerating convolutional neural networks for continuous mobile vision via cache reuse publication-title: arXiv 1712 01670 – ident: ref62 doi: 10.1109/ACCESS.2016.2607719 – ident: ref347 doi: 10.1109/MNET.2018.1700202 – ident: ref177 doi: 10.1109/VTS-APWCS.2019.8851649 – ident: ref111 doi: 10.1109/WoWMoM.2019.8792973 – ident: ref412 doi: 10.1137/0718026 – ident: ref495 doi: 10.1109/CVPR.2017.195 – ident: ref477 doi: 10.1145/3123266.3123453 – ident: ref526 doi: 10.1098/rsta.2019.0155 – ident: ref107 doi: 10.1109/VNC.2016.7835943 – ident: ref308 doi: 10.1145/3081333.3081336 – ident: ref507 doi: 10.1145/2030112.2030164 – ident: ref340 doi: 10.1145/3081333.3081358 – ident: ref390 doi: 10.1007/s00521-010-0362-z – ident: ref52 doi: 10.1145/2906388.2906395 – ident: ref392 doi: 10.1186/s40537-014-0008-6 – ident: ref382 doi: 10.1109/MVT.2018.2883777 – start-page: 1 year: 2017 ident: ref66 article-title: Air and noise pollution monitoring in the city of zagreb by using mobile crowdsensing publication-title: Proc 25th Int Conf Softw Telecommun Comput Netw (SoftCOM) – ident: ref168 doi: 10.1109/NCA.2017.8171350 – ident: ref304 doi: 10.1109/EMC2.2018.00012 – ident: ref381 doi: 10.1002/nem.2146 – ident: ref431 doi: 10.1109/TPAMI.2013.50 – ident: ref147 doi: 10.1109/PDP2018.2018.00023 – ident: ref547 doi: 10.1109/JIOT.2020.3037194 – ident: ref405 doi: 10.1038/nbt1206-1565 – ident: ref552 doi: 10.23919/JCC.2020.09.008 – year: 2016 ident: ref156 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: arXiv 1602 05629 – ident: ref125 doi: 10.1145/3081333.3081347 – ident: ref484 doi: 10.1109/MSP.2006.1657817 – ident: ref367 doi: 10.1016/j.future.2019.01.059 – ident: ref378 doi: 10.1109/MCC.2018.1081070 – ident: ref138 doi: 10.1145/2594368.2594388 – ident: ref289 doi: 10.1109/WACV45572.2020.9093331 – ident: ref103 doi: 10.1109/MedHocNet.2012.6257116 – ident: ref256 doi: 10.1145/2964284.2967280 – ident: ref16 doi: 10.1109/MCOM.2017.1600863 – year: 2018 ident: ref209 article-title: Federated learning for mobile keyboard prediction publication-title: arXiv 1811 03604 – year: 2015 ident: ref255 article-title: Compression of deep convolutional neural networks for fast and low power mobile applications publication-title: arXiv 1511 06530 – year: 2014 ident: ref260 article-title: FitNets: Hints for thin deep nets publication-title: arXiv 1412 6550 – ident: ref302 doi: 10.1109/CAC.2017.8243585 – ident: ref13 doi: 10.1109/COMST.2018.2844341 – ident: ref71 doi: 10.1109/TVT.2013.2291811 – year: 2018 ident: ref315 article-title: Accelerating deep neural networks on low power heterogeneous architectures publication-title: Proc 11th Int Workshop Programmability Archit Heterogeneous Multicores (MULTIPROG) – ident: ref434 doi: 10.1109/BigData.2018.8622396 – year: 2016 ident: ref12 publication-title: Cisco Visual Networking Index Global Mobile Data Traffic Forecast Update – start-page: 25 year: 2019 ident: ref61 article-title: Mobile crowdsensing application of road condition detection publication-title: Urdu News Headline Text Classification by Using Different Machine Learning Algorithms – ident: ref10 doi: 10.1007/s11042-016-3316-3 – year: 2017 ident: ref491 article-title: Science driven innovations powering mobile product: Cloud AI vs. device AI solutions on smart device publication-title: arXiv 1711 07580 – year: 2017 ident: ref167 article-title: Deep gradient compression: Reducing the communication bandwidth for distributed training publication-title: arXiv 1712 01887 – ident: ref519 doi: 10.1109/ICCV.2019.00140 – ident: ref386 doi: 10.1109/IC2E48712.2020.00009 – year: 2014 ident: ref422 article-title: Recurrent neural network regularization publication-title: arXiv 1409 2329 – ident: ref243 doi: 10.1109/SocialSens.2018.00017 – ident: ref112 doi: 10.1016/j.agsy.2017.01.023 – ident: ref420 doi: 10.1016/j.acha.2019.06.004 – ident: ref76 doi: 10.1109/TITS.2019.2906038 – ident: ref354 doi: 10.1109/MC.2017.3641638 – ident: ref78 doi: 10.1109/INFOCOM.2015.7218644 – ident: ref161 doi: 10.1109/TWC.2019.2961673 – year: 2017 ident: ref231 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv 1704 04861 – year: 2017 ident: ref535 article-title: CryptoDL: Deep neural networks over encrypted data publication-title: arXiv 1711 05189 – ident: ref449 doi: 10.1145/3243734.3243781 – ident: ref119 doi: 10.1109/TCSVT.2019.2903421 – start-page: 1467 year: 2012 ident: ref196 article-title: Poisoning attacks against support vector machines publication-title: Proc 29th Int Conf Mach Learn (ICML) – ident: ref179 doi: 10.1109/ICC40277.2020.9148862 – start-page: 3517 year: 2017 ident: ref197 article-title: Certified defenses for data poisoning attacks publication-title: Proc Adv Neural Inf Process Syst – ident: ref220 doi: 10.1109/TCOMM.2019.2956472 – ident: ref548 doi: 10.1145/3338501.3357371 – ident: ref275 doi: 10.1109/ACCESS.2018.2810264 – ident: ref363 doi: 10.1145/3132211.3134457 – ident: ref318 doi: 10.1109/ICCE.2016.7430525 – ident: ref490 doi: 10.1109/CVPR.2018.00745 – ident: ref546 doi: 10.1145/3378679.3394533 – ident: ref73 doi: 10.1016/j.adhoc.2016.02.002 – ident: ref57 doi: 10.1109/TITS.2020.3040557 – ident: ref450 doi: 10.1109/TII.2019.2952645 – year: 1998 ident: ref399 publication-title: What Is Artificial Intelligence – ident: ref365 doi: 10.1109/AVSS.2018.8639121 – ident: ref448 doi: 10.1145/3196494.3196532 – ident: ref251 doi: 10.1145/3131895 – ident: ref127 doi: 10.1145/3173162.3173185 – ident: ref294 doi: 10.1109/CVPR.2016.521 – ident: ref440 doi: 10.1109/INFOCOM.2016.7524381 – start-page: 1 year: 2018 ident: ref92 article-title: Mobile data repositories at the edge publication-title: Proc USENIX Workshop Hot Topics Edge Comput (HotEdge) – start-page: 2285 year: 2015 ident: ref292 article-title: Compressing neural networks with the hashing trick publication-title: Proc Int Conf Mach Learn – ident: ref142 doi: 10.1109/SEC.2016.38 – ident: ref93 doi: 10.1145/3359993.3366644 – volume: 23 start-page: 2613 year: 2010 ident: ref414 article-title: Double Q-learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref371 doi: 10.1145/3213344.3213345 – ident: ref339 doi: 10.1145/2906388.2906396 – ident: ref309 doi: 10.1145/3152127 – year: 2015 ident: ref293 article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding publication-title: arXiv 1510 00149 [cs] – ident: ref337 doi: 10.1109/JETCAS.2019.2910232 – ident: ref317 doi: 10.1145/2964284.2973801 – ident: ref496 doi: 10.1109/CVPR.2017.634 – ident: ref49 doi: 10.1109/ICIP.2012.6467224 – ident: ref81 doi: 10.1109/ICCSE.2016.7581655 – year: 2016 ident: ref416 article-title: Deep exploration via bootstrapped DQN publication-title: arXiv 1602 04621 – ident: ref384 doi: 10.1109/TII.2017.2679740 – ident: ref542 doi: 10.1145/3267305.3267505 – volume: 3 start-page: 1137 year: 2003 ident: ref3 article-title: A neural probabilistic language model publication-title: J Mach Learn Res – year: 2019 ident: ref366 article-title: LEP-CNN: A lightweight edge device assisted privacy-preserving CNN inference solution for IoT publication-title: arXiv 1901 04100 – ident: ref539 doi: 10.1109/MCC.2016.124 – ident: ref162 doi: 10.1109/TCOMM.2020.2979149 – year: 2015 ident: ref298 article-title: Neural networks with few multiplications publication-title: arXiv 1510 03009 [cs] – ident: ref90 doi: 10.1016/j.procs.2015.05.043 – ident: ref79 doi: 10.1007/s00779-016-0932-x – ident: ref15 doi: 10.1109/JIOT.2016.2579198 – ident: ref506 doi: 10.1109/ICASSP.2013.6638947 – start-page: 128 year: 2015 ident: ref67 article-title: Roads: A road pavement monitoring system for anomaly detection using smart phones publication-title: Big Data Analytics in the Social and Ubiquitous Context – ident: ref192 doi: 10.1145/2976749.2978318 – ident: ref333 doi: 10.1145/3020078.3021736 – ident: ref329 doi: 10.1145/3140582.3081040 – ident: ref44 doi: 10.1109/JIOT.2020.2984887 – ident: ref385 doi: 10.1109/TSC.2017.2662008 – ident: ref331 doi: 10.1109/CVPR.2016.91 – ident: ref180 doi: 10.1109/ICASSP40776.2020.9054634 – ident: ref360 doi: 10.1109/INFOCOM.2018.8485905 – ident: ref467 doi: 10.1145/3397461 – year: 2017 ident: ref272 article-title: SquishedNets: Squishing SqueezeNet further for edge device scenarios via deep evolutionary synthesis publication-title: arXiv 1711 07459 – ident: ref113 doi: 10.1109/LCN.2016.039 – ident: ref41 doi: 10.1109/COMST.2020.3007787 – start-page: 1 year: 2018 ident: ref374 article-title: ECO: Harmonizing edge and cloud with ML/DL orchestration publication-title: Proc USENIX Workshop Hot Topics Edge Comput (HotEdge) – ident: ref554 doi: 10.1109/MNET.001.1900287 – ident: ref68 doi: 10.1016/j.aci.2018.05.002 – ident: ref528 doi: 10.1145/3351260 – ident: ref176 doi: 10.1109/ACCESS.2020.3038287 – ident: ref173 doi: 10.1016/j.phycom.2021.101381 – ident: ref36 doi: 10.1109/MPRV.2017.2940968 – ident: ref475 doi: 10.1145/2619239.2626296 – ident: ref286 doi: 10.1016/j.patcog.2020.107461 – ident: ref314 doi: 10.1145/3089801.3089805 – ident: ref536 doi: 10.1002/nav.3800010110 – year: 2017 ident: ref100 article-title: When cars meet distributed computing: Data storage as an example publication-title: arXiv 1711 02014 – ident: ref452 doi: 10.1109/IUCC/DSCI/SmartCNS.2019.00126 – ident: ref343 doi: 10.4108/eai.30-11-2016.2267463 – ident: ref550 doi: 10.1109/TSG.2016.2553647 – ident: ref395 doi: 10.1109/ICECC.2011.6066743 – ident: ref498 doi: 10.1109/TIFS.2015.2400395 – ident: ref235 doi: 10.1109/ACCESS.2018.2843341 – ident: ref222 doi: 10.1109/GLOBECOM38437.2019.9013587 – ident: ref129 doi: 10.1145/3241539.3241565 – ident: ref468 doi: 10.1109/TSE.2017.2685387 – ident: ref463 doi: 10.1109/ICSCC.2019.8843640 – ident: ref327 doi: 10.1145/3126555 – ident: ref394 doi: 10.1016/j.future.2017.03.034 – year: 2016 ident: ref121 article-title: Sigma delta quantized networks publication-title: arXiv 1611 02024 – start-page: 533 year: 2018 ident: ref123 article-title: EVA2: Exploiting temporal redundancy in live computer vision publication-title: Proc ACM/IEEE 45th Annu Int Symp Comput Archit (ISCA) – ident: ref170 doi: 10.1109/TWC.2020.3037554 – ident: ref249 doi: 10.1145/2030613.2030625 – ident: ref428 doi: 10.1109/COMST.2018.2820021 – start-page: 621 year: 2016 ident: ref11 article-title: Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds publication-title: Proc Comput Cardiol Conf (CinC) – start-page: 630 year: 2016 ident: ref479 article-title: Identity mappings in deep residual networks publication-title: Computer Vision-ECCV 2016 doi: 10.1007/978-3-319-46493-0_38 – ident: ref487 doi: 10.1109/ICDCS.2018.00041 – ident: ref353 doi: 10.1109/JIOT.2019.2897005 – ident: ref364 doi: 10.1145/3229556.3229562 – ident: ref551 doi: 10.1109/MVT.2019.2921208 – ident: ref172 doi: 10.1109/IPDPS47924.2020.00033 – ident: ref134 doi: 10.1145/3299710.3211336 – start-page: 1 year: 2018 ident: ref133 article-title: Shadow puppets: Cloud-level accurate AI inference at the speed and economy of edge publication-title: Proc USENIX Workshop Hot Topics Edge Comput (HotEdge) – ident: ref397 doi: 10.1145/3126686.3126739 – ident: ref432 doi: 10.1007/s11633-017-1054-2 – ident: ref89 doi: 10.1109/JIOT.2020.2988697 – ident: ref481 doi: 10.1109/CVPR.2016.308 – year: 2019 ident: ref194 article-title: Federated deep reinforcement learning publication-title: arXiv 1901 08277 – ident: ref543 doi: 10.2200/S00737ED1V01Y201610AIM033 – ident: ref485 doi: 10.3390/s18051532 – ident: ref146 doi: 10.1109/ICPADS.2017.00069 – ident: ref391 doi: 10.1049/cje.2016.11.016 – ident: ref459 doi: 10.1016/j.compag.2020.105233 – ident: ref509 doi: 10.1038/s41928-018-0059-3 – ident: ref242 doi: 10.3390/s18072203 – year: 1995 ident: ref400 publication-title: Artificial Intelligence A Modern Approach – year: 2017 ident: ref193 article-title: Learning differentially private recurrent language models publication-title: arXiv 1710 06963 – year: 2016 ident: ref165 article-title: Revisiting distributed synchronous SGD publication-title: arXiv 1604 00981 – ident: ref356 doi: 10.1145/3197231.3197256 – ident: ref451 doi: 10.1109/TMC.2020.3019988 – ident: ref87 doi: 10.1109/JIOT.2020.2979691 – year: 2016 ident: ref330 article-title: Are very deep neural networks feasible on mobile devices publication-title: IEEE Trans Circuits Syst Video Technol – ident: ref461 doi: 10.1007/978-981-10-8339-6_6 – ident: ref527 doi: 10.1109/JIOT.2017.2750180 – ident: ref402 doi: 10.1126/science.aaa8415 – start-page: 3068 year: 2014 ident: ref489 article-title: Communication-efficient distributed dual coordinate ascent publication-title: Proc Adv Neural Inf Process Syst – year: 2014 ident: ref291 article-title: Compressing deep convolutional networks using vector quantization publication-title: arXiv 1412 6115 – ident: ref104 doi: 10.1109/VNC51378.2020.9318400 – ident: ref313 doi: 10.1109/ICCCBDA51879.2021.9442600 – ident: ref369 doi: 10.1145/3132211.3134459 – year: 2017 ident: ref232 article-title: Hello edge: Keyword spotting on microcontrollers publication-title: arXiv 1711 07128 – ident: ref283 doi: 10.1145/3131672.3131675 – ident: ref254 doi: 10.1145/3109761.3109804 – volume: 4 start-page: 71 year: 2017 ident: ref517 article-title: Beating floating point at its own game: Posit arithmetic publication-title: Supercomputing Frontiers and Innovations – ident: ref444 doi: 10.3390/s20237000 – ident: ref521 doi: 10.1109/JIOT.2019.2902141 – ident: ref361 doi: 10.1145/2973750.2973777 – ident: ref476 doi: 10.1145/3083187.3084016 – year: 2021 ident: ref218 article-title: Collaborative federated learning for healthcare: Multi-modal COVID-19 diagnosis at the edge publication-title: arXiv 2101 07511 – ident: ref523 doi: 10.1145/3210240.3210337 – start-page: 382 year: 1976 ident: ref515 article-title: On the construction of Huffman trees publication-title: Proc ICALP – ident: ref33 doi: 10.1109/MCOM.001.1900103 – start-page: 164 year: 1993 ident: ref514 article-title: Second order derivatives for network pruning: Optimal brain surgeon publication-title: Proc Adv Neural Inf Process Syst – start-page: 2888 year: 2018 ident: ref263 article-title: Moonshine: Distilling with cheap convolutions publication-title: Proc Adv Neural Inf Process Syst – ident: ref437 doi: 10.1109/AINA.2015.254 – volume: 25 year: 2015 ident: ref419 publication-title: Neural Networks and Deep Learning – ident: ref413 doi: 10.1007/BF00992698 – ident: ref288 doi: 10.1109/WACV45572.2020.9093377 – ident: ref350 doi: 10.1145/3093337.3037698 – ident: ref252 doi: 10.5244/C.28.88 – start-page: 199 year: 2013 ident: ref248 article-title: You're driving and texting: Detecting drivers using personal smart phones by leveraging inertial sensors publication-title: Proc 19th Annu Int Conf Mobile Comput Netw – year: 2016 ident: ref296 article-title: Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or ?1 publication-title: arXiv 1602 02830 [cs] – ident: ref115 doi: 10.1109/MNET.011.2000180 – ident: ref43 doi: 10.1109/COMST.2020.2970550 – ident: ref99 doi: 10.1109/ICWS49710.2020.00073 – ident: ref398 doi: 10.1109/TMC.2016.2567378 – ident: ref118 doi: 10.1145/3081333.3089331 – ident: ref14 doi: 10.1007/978-3-319-57959-7 – ident: ref47 doi: 10.1145/3241539.3241557 – start-page: 4424 year: 2017 ident: ref152 article-title: Federated multi-task learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref215 doi: 10.1109/MIS.2020.2988604 – ident: ref164 doi: 10.1109/JIOT.2020.2964162 – year: 2016 ident: ref522 article-title: Optimizing performance of recurrent neural networks on GPUs publication-title: arXiv 1604 01946 – ident: ref139 doi: 10.1109/SEC50012.2020.00041 – year: 2018 ident: ref373 article-title: Musical chair: Efficient real-time recognition using collaborative IoT devices publication-title: arXiv 1802 02138 – ident: ref85 doi: 10.1016/j.comcom.2019.12.054 – ident: ref233 doi: 10.1109/ICRA.2019.8794182 – volume: 16 start-page: 281 year: 2004 ident: ref408 article-title: Learning the k in k-means publication-title: Proc Adv Neural Inf Process Syst – ident: ref470 doi: 10.1109/CVPR.2005.177 – ident: ref174 doi: 10.1109/ICC.2019.8761315 – ident: ref505 doi: 10.1056/NEJMsa1204142 – ident: ref310 doi: 10.1145/3089801.3089803 – ident: ref64 doi: 10.1145/2639189.2670273 – ident: ref540 doi: 10.1109/IPSN.2018.00048 – year: 2019 ident: ref31 article-title: FedHealth: A federated transfer learning framework for wearable healthcare publication-title: arXiv 1907 09173 – year: 2011 ident: ref426 publication-title: Computer Architecture A Quantitative Approach – ident: ref149 doi: 10.1109/CSTIC.2019.8755642 – year: 2020 ident: ref435 article-title: Machine learning at the edge: A data-driven architecture with applications to 5G cellular networks publication-title: IEEE Trans Mobile Comput – ident: ref532 doi: 10.1109/COMST.2018.2808242 – start-page: 963 year: 2014 ident: ref305 article-title: Expectation backpropagation: Parameter-free training of multilayer neural networks with continuous or discrete weights publication-title: Proc Adv Neural Inf Process Syst – ident: ref549 doi: 10.1109/JIOT.2020.2978286 – ident: ref145 doi: 10.1145/3213344.3213351 – ident: ref74 doi: 10.1109/ACCESS.2019.2951587 – ident: ref135 doi: 10.1145/3278721.3278778 – ident: ref359 doi: 10.1145/3097895.3097903 – start-page: 2148 year: 2013 ident: ref510 article-title: Predicting parameters in deep learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref430 doi: 10.1016/j.compeleceng.2017.12.009 – volume: 18 start-page: 7 year: 2017 ident: ref508 article-title: Google home to the Amazon echo: 'Anything you can do... publication-title: CNET – ident: ref72 doi: 10.1016/j.ins.2019.01.014 – ident: ref23 doi: 10.1109/SmartCloud.2016.18 – year: 2015 ident: ref421 article-title: An introduction to convolutional neural networks publication-title: arXiv 1511 08458 – start-page: 1050 year: 2016 ident: ref206 article-title: Dropout as a Bayesian approximation: Representing model uncertainty in deep learning publication-title: Proc Int Conf Mach Learn – ident: ref486 doi: 10.1109/MNET.001.1900506 – year: 2019 ident: ref48 publication-title: Google Street View Image API – ident: ref276 doi: 10.1145/3089801.3089806 – ident: ref17 doi: 10.1145/2831347.2831354 – year: 2020 ident: ref32 article-title: 6G white paper on edge intelligence publication-title: arXiv 2004 14850 – ident: ref141 doi: 10.1145/3220192.3220460 – ident: ref324 doi: 10.1007/978-1-4302-4000-6_9 – ident: ref148 doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.170 – start-page: 1 year: 2017 ident: ref271 article-title: Inception-v4, inception-ResNet and the impact of residual connections on learning publication-title: Proc 31st AAAI Conf Artif Intell – ident: ref319 doi: 10.3390/electronics5040088 – year: 2017 ident: ref160 publication-title: Co-op Cooperative machine learning from mobile devices – year: 2019 ident: ref212 article-title: Federated learning for emoji prediction in a mobile keyboard publication-title: arXiv 1906 04329 – year: 2017 ident: ref370 article-title: DeepWear: Adaptive local offloading for on-wearable deep learning publication-title: arXiv 1712 03073 – ident: ref163 doi: 10.1109/TWC.2020.2974748 – volume: 11 start-page: 1 year: 2015 ident: ref18 publication-title: Mobile edge computing-A key technology towards 5G – ident: ref362 doi: 10.1145/1999995.2000000 – ident: ref65 doi: 10.1145/3191752 – ident: ref274 doi: 10.24963/ijcai.2018/429 – ident: ref375 doi: 10.1016/j.jss.2018.03.032 – start-page: 525 year: 2016 ident: ref297 article-title: XNOR-Net: ImageNet classification using binary convolutional neural networks publication-title: Computer Vision-ECCV 2016 doi: 10.1007/978-3-319-46493-0_32 – year: 2017 ident: ref345 article-title: DeepRT: Deep learning for peptide retention time prediction in proteomics publication-title: arXiv 1705 05368 – ident: ref42 doi: 10.1109/ICDCS.2018.00139 – ident: ref34 doi: 10.1109/HotWeb.2015.22 – ident: ref488 doi: 10.1109/TITS.2021.3081560 – ident: ref175 doi: 10.1109/JIOT.2020.3036157 – ident: ref247 doi: 10.1145/2753509.2753518 – ident: ref349 doi: 10.1145/3194554.3194565 – ident: ref300 doi: 10.21437/Interspeech.2016-128 – ident: ref54 doi: 10.1109/ITAIC49862.2020.9338964 – start-page: 1 year: 2018 ident: ref265 article-title: Rocket launching: A universal and efficient framework for training well-performing light net publication-title: Proc 32nd AAAI Conf Artif Intell – ident: ref376 doi: 10.1109/SMARTCOMP.2018.00087 – ident: ref238 doi: 10.3233/JIFS-169699 – year: 2021 ident: ref407 publication-title: Introduction to Linear Regression Analysis – ident: ref51 doi: 10.1109/GLOBECOM38437.2019.9013821 – ident: ref332 doi: 10.1109/NGCAS.2017.16 – ident: ref181 doi: 10.1109/TWC.2020.3003744 – ident: ref35 doi: 10.1145/2594368.2594383 – ident: ref183 doi: 10.1109/IJCNN48605.2020.9207469 – ident: ref159 doi: 10.1109/JSAC.2019.2904348 – ident: ref410 doi: 10.1016/0169-7439(87)80084-9 – ident: ref433 doi: 10.1109/ACCESS.2014.2325029 – ident: ref19 doi: 10.1145/2342509.2342513 – ident: ref321 doi: 10.3390/app7080826 – year: 2019 ident: ref195 article-title: SecureBoost: A lossless federated learning framework publication-title: arXiv 1901 08755 – volume: 3 year: 2017 ident: ref39 article-title: Federated learning: Collaborative machine learning without centralized training data publication-title: Google Research Blog – volume: 3 start-page: 261 year: 2003 ident: ref516 article-title: CNN image processing on a Xilinx Virtex-II 6000 publication-title: Proc ECCTD – ident: ref269 doi: 10.1109/EMC2-NIPS53020.2019.00013 – ident: ref460 doi: 10.1016/j.ecolind.2020.107124 – start-page: 3123 year: 2015 ident: ref295 article-title: BinaryConnect: Training deep neural networks with binary weights during propagations publication-title: Proc Adv Neural Inf Process Syst – ident: ref524 doi: 10.1016/S0043-1648(00)00427-0 – start-page: 448 year: 2015 ident: ref478 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc Int Conf Mach Learn – ident: ref429 doi: 10.1109/TMC.2020.2984364 – ident: ref454 doi: 10.1109/TMC.2018.2815694 – ident: ref25 doi: 10.1109/JPROC.2019.2922285 – volume: abs 1804 7474 year: 2018 ident: ref223 article-title: DïoT: A self-learning system for detecting compromised IoT devices publication-title: CoRR – ident: ref201 doi: 10.1145/3154503 – start-page: 5574 year: 2017 ident: ref5 article-title: What uncertainties do we need in Bayesian deep learning for computer vision? publication-title: Proc Adv Neural Inf Process Syst – ident: ref184 doi: 10.1109/TITS.2020.3002712 – ident: ref1 doi: 10.5244/C.29.41 – year: 1999 ident: ref411 publication-title: Survey on Independent Component Analysis – year: 2018 ident: ref198 article-title: Mitigating sybils in federated learning poisoning publication-title: arXiv 1808 04866 – ident: ref501 doi: 10.1109/PCCC.2017.8280500 – ident: ref338 doi: 10.1109/LCA.2020.2979965 – ident: ref236 doi: 10.1109/CVPR.2018.00474 – ident: ref530 doi: 10.1145/2906388.2906405 – year: 2016 ident: ref155 article-title: Federated learning: Strategies for improving communication efficiency publication-title: arXiv 1610 05492 – ident: ref237 doi: 10.1109/PERCOMW.2016.7457169 – year: 2016 ident: ref280 article-title: Pruning convolutional neural networks for resource efficient inference publication-title: arXiv 1611 06440 – ident: ref70 doi: 10.1109/TMC.2016.2607716 – ident: ref458 doi: 10.1145/3152130.3152135 – ident: ref98 doi: 10.1016/j.jpdc.2018.11.006 – ident: ref4 doi: 10.1145/1390156.1390177 – ident: ref462 doi: 10.1007/s11042-020-09740-6 – ident: ref328 doi: 10.1145/2935643.2935650 – ident: ref234 doi: 10.1109/CVPR.2018.00716 – ident: ref63 doi: 10.1109/COMSNETS.2018.8328270 – ident: ref124 doi: 10.1145/2809695.2809711 – ident: ref140 doi: 10.1145/3240508.3240697 – ident: ref153 doi: 10.1145/3373087.3375312 – volume: c 20 start-page: 1578 year: 1971 ident: ref518 article-title: tapered floating point: a new floating-point representation publication-title: IEEE Transactions on Computers doi: 10.1109/T-C.1971.223174 – ident: ref442 doi: 10.1109/TPDS.2020.3016344 – ident: ref69 doi: 10.3390/ijgi8090412 – year: 2018 ident: ref169 article-title: Expanding the reach of federated learning by reducing client resource requirements publication-title: arXiv 1812 07210 – ident: ref425 doi: 10.3115/v1/D14-1179 – ident: ref355 doi: 10.1109/CFEC.2018.8358733 – ident: ref95 doi: 10.23919/INM.2017.7987297 – ident: ref80 doi: 10.1109/TITS.2020.3023446 – ident: ref303 doi: 10.1109/ICASSP.2015.7178146 – start-page: 1 year: 2020 ident: ref443 article-title: Sharing and caring of data at the edge publication-title: Proc 3rd USENIX Workshop Hot Topics Edge Comput (HotEdge) – ident: ref50 doi: 10.1109/TCOMM.2020.3019527 – ident: ref114 doi: 10.3390/electronics8080896 – year: 2017 ident: ref189 article-title: Differentially private federated learning: A client level perspective publication-title: arXiv 1712 07557 – ident: ref240 doi: 10.1145/3212725.3212728 – start-page: 598 year: 1990 ident: ref513 article-title: Optimal brain damage publication-title: Proc Adv Neural Inf Process Syst – ident: ref403 doi: 10.1002/cem.873 – ident: ref45 doi: 10.1109/JPROC.2019.2918951 – start-page: 1269 year: 2014 ident: ref253 article-title: Exploiting linear structure within convolutional networks for efficient evaluation publication-title: Proc Adv Neural Inf Process Syst – start-page: 1 year: 2017 ident: ref531 article-title: Cross-platform machine learning characterization for task allocation in IoT ecosystems publication-title: Proc IEEE 7th Annu Comput Commun Workshop Conf (CCWC) – ident: ref75 doi: 10.1002/wcm.2591 – ident: ref37 doi: 10.1145/3161174 – ident: ref396 doi: 10.1145/3240508.3240561 – ident: ref144 doi: 10.1016/j.pmcj.2017.07.014 – start-page: 1 year: 2017 ident: ref261 article-title: Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer publication-title: Proc ICLR – ident: ref96 doi: 10.1109/INFOCOM42981.2021.9488804 – ident: ref282 doi: 10.1109/CVPR.2017.643 – ident: ref424 doi: 10.1162/neco.1997.9.8.1735 – year: 2017 ident: ref203 article-title: Targeted backdoor attacks on deep learning systems using data poisoning publication-title: arXiv 1712 05526 – ident: ref219 doi: 10.2196/24207 – ident: ref83 doi: 10.1109/TNSE.2020.3014455 – ident: ref341 doi: 10.1109/IPSN.2016.7460664 – ident: ref346 doi: 10.1109/TVLSI.2018.2825145 – ident: ref227 doi: 10.1609/aaai.v33i01.33014780 – ident: ref389 doi: 10.1109/TVT.2010.2043968 – year: 2020 ident: ref137 article-title: CacheNet: A model caching framework for deep learning inference on the edge publication-title: arXiv 2007 01793 – start-page: 2133 year: 2019 ident: ref281 article-title: Gate decorator: Global filter pruning method for accelerating deep convolutional neural networks publication-title: Advances in neural information processing systems – ident: ref393 doi: 10.1145/2757384.2757397 – start-page: 252 year: 2017 ident: ref537 article-title: Deep neural networks for wild fire detection with unmanned aerial vehicle publication-title: Proc IEEE Int Conf Consum Electron (ICCE) – ident: ref20 doi: 10.1109/COMST.2019.2904897 – ident: ref268 doi: 10.1109/CVPR.2016.90 – ident: ref301 doi: 10.1109/ICACSIS.2017.8355051 – ident: ref436 doi: 10.1109/PERCOMW.2015.7134002 – start-page: 1008 year: 2000 ident: ref418 article-title: Actor-critic algorithms publication-title: Proc Adv Neural Inf Process Syst – start-page: 874 year: 2017 ident: ref228 article-title: AdaNet: Adaptive structural learning of artificial neural networks publication-title: Proc 34th Int Conf Mach Learn – ident: ref143 doi: 10.1109/ICCCN.2018.8487352 – ident: ref497 doi: 10.1109/PerCom45495.2020.9127387 – ident: ref27 doi: 10.1109/MNET.2019.1700470 – ident: ref492 doi: 10.1109/IC2E.2018.00042 – ident: ref150 doi: 10.1109/CHASE.2017.115 – ident: ref334 doi: 10.1145/3193025.3193041 – ident: ref207 doi: 10.1145/3161181 – ident: ref480 doi: 10.1109/5.726791 – ident: ref53 doi: 10.1109/ICITBS.2019.00104 – ident: ref101 doi: 10.1145/2633661.2633671 – ident: ref116 doi: 10.1109/GCWkshps45667.2019.9024587 – ident: ref257 doi: 10.1145/2994551.2994564 – ident: ref404 doi: 10.1007/978-3-642-31537-4_13 – year: 2019 ident: ref208 article-title: Towards federated learning at scale: System design publication-title: arXiv 1902 01046 – start-page: 1 year: 2020 ident: ref94 article-title: Scale-out edge storage systems with embedded storage nodes to get better availability and cost-efficiency at the same time publication-title: Proc 3rd USENIX Workshop Hot Topics Edge Comput (HotEdge) – ident: ref555 doi: 10.1109/MVT.2018.2848498 – ident: ref120 doi: 10.1145/3131885.3131906 – ident: ref102 doi: 10.1109/MCOM.2014.6736756 – ident: ref401 doi: 10.1080/03071847.2019.1693801 – ident: ref456 doi: 10.1109/Oceans-Spain.2011.6003654 – ident: ref439 doi: 10.1109/JSAC.2016.2545413 – ident: ref199 doi: 10.1007/3-540-45748-8_24 – ident: ref326 doi: 10.1109/LES.2018.2815954 – ident: ref191 doi: 10.1007/978-1-4419-5906-5_752 – ident: ref190 doi: 10.1109/TIFS.2020.2988575 – ident: ref284 doi: 10.1109/ICCV.2017.298 – ident: ref58 doi: 10.1016/j.compenvurbsys.2017.12.005 – ident: ref82 doi: 10.1007/s00779-020-01440-0 – ident: ref187 doi: 10.1109/MIS.2020.2988525 – ident: ref128 doi: 10.1145/2906388.2906418 – start-page: 201 year: 2016 ident: ref533 article-title: CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy publication-title: Proc Int Conf Mach Learn – year: 2003 ident: ref415 publication-title: Multiple-Goal Reinforcement Learning with Modular Sarsa(0) – ident: ref26 doi: 10.1109/MNET.2019.1800286 – year: 2011 ident: ref299 article-title: Improving the speed of neural networks on CPUs publication-title: Proc Deep Learn Unsupervised Feature Learn Workshop (NIPS) – year: 2014 ident: ref472 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – volume: 2017 start-page: 35 year: 2017 ident: ref534 article-title: Privacy-preserving classification on deep neural network publication-title: IACR Cryptol ePrint Arch – ident: ref22 doi: 10.1109/MC.2016.145 – ident: ref457 doi: 10.1109/JIOT.2016.2579198 – ident: ref239 doi: 10.3390/s18113726 – ident: ref504 doi: 10.1109/JSEN.2006.886995 – ident: ref91 doi: 10.1109/ACCESS.2019.2918213 – ident: ref108 doi: 10.1109/ICCNC.2019.8685481 – ident: ref110 doi: 10.1109/VTCSpring.2018.8417759 – year: 2019 ident: ref210 article-title: Federated learning of out-of-vocabulary words publication-title: arXiv 1903 10635 – volume: 141 start-page: 387 year: 2015 ident: ref109 article-title: Analysis of vehicular storage and dissemination services based on floating content publication-title: Mobile Networks and Management doi: 10.1007/978-3-319-16292-8_28 – ident: ref226 doi: 10.1109/CVPR.2018.00907 – year: 2019 ident: ref494 article-title: A survey on neural architecture search publication-title: arXiv 1905 01392 – start-page: 703 year: 2019 ident: ref447 article-title: MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks publication-title: Artificial Neural Networks and Machine Learning-ICANN 2019 Text and Time Series doi: 10.1007/978-3-030-30490-4_56 – ident: ref499 doi: 10.1109/MC.2018.2381112 – ident: ref38 doi: 10.1145/2820975.2820980 – ident: ref24 doi: 10.1109/JPROC.2019.2920341 – ident: ref59 doi: 10.1109/WF-IoT.2015.7389148 – ident: ref427 doi: 10.1109/JSAC.2018.2844939 – year: 2015 ident: ref259 article-title: Distilling the knowledge in a neural network publication-title: ArXiv 1503 02531 – ident: ref357 doi: 10.1145/3204949.3204975 – ident: ref245 doi: 10.1145/3212725.3212729 – ident: ref117 doi: 10.1145/3241539.3241563 – ident: ref307 doi: 10.1145/3081333.3081359 – ident: ref244 doi: 10.1145/3038912.3052577 – ident: ref445 doi: 10.1109/ICSENS.2010.5690033 – year: 2018 ident: ref230 article-title: DARTS: Differentiable architecture search publication-title: Arxiv 1806 09055 – ident: ref351 doi: 10.1109/JIOT.2020.2967734 – ident: ref545 doi: 10.3115/1658616.1658635 – ident: ref379 doi: 10.1109/ICDCS.2017.226 – ident: ref29 doi: 10.1109/MC.2018.2381129 – ident: ref250 doi: 10.1145/2750858.2804262 – start-page: 17 year: 2017 ident: ref132 article-title: Precog: Prefetching for image recognition applications at the edge publication-title: Proc 2nd ACM/IEEE Symp Edge Comput – ident: ref502 doi: 10.1145/2809695.2809718 – ident: ref525 doi: 10.1145/3371154 – start-page: 108 year: 2007 ident: ref388 article-title: A survey of artificial intelligence for prognostics publication-title: Proc AAAI Fall Symp Artif Intell Prognostics – ident: ref55 doi: 10.1002/ett.3942 – ident: ref273 doi: 10.1109/TNET.2019.2936939 – ident: ref182 doi: 10.1109/TNSE.2021.3053588 – ident: ref246 doi: 10.1145/3154448.3154452 – year: 2017 ident: ref266 article-title: Data-free knowledge distillation for deep neural networks publication-title: arXiv 1710 07535 – ident: ref453 doi: 10.1109/MCI.2006.329691 – ident: ref474 doi: 10.1145/2413176.2413189 – start-page: 1 year: 2018 ident: ref136 article-title: MODI: Mobile deep inference made efficient by edge computing publication-title: Proc USENIX Workshop Hot Topics Edge Comput (HotEdge) – year: 2015 ident: ref2 article-title: DeepID3: Face recognition with very deep neural networks publication-title: arXiv 1502 00873 – ident: ref500 doi: 10.1145/3090076 – ident: ref21 doi: 10.1145/3154815 – ident: ref287 doi: 10.1109/TCSVT.2020.2996231 – ident: ref229 doi: 10.1109/CVPR.2019.00293 – ident: ref446 doi: 10.1109/CySWater.2016.7469060 – year: 2014 ident: ref423 article-title: Generative adversarial networks publication-title: arXiv 1406 2661 – ident: ref186 doi: 10.1145/3133956.3133982 – ident: ref178 doi: 10.1109/JIOT.2020.2967772 – year: 2018 ident: ref225 article-title: MobiFace: A lightweight deep learning face recognition on mobile devices publication-title: arXiv 1811 11080 – ident: ref97 doi: 10.1109/ICDCS.2019.00106 – ident: ref267 doi: 10.1109/CVPR.2015.7298594 – start-page: 1135 year: 2015 ident: ref277 article-title: Learning both weights and connections for efficient neural network publication-title: Proc Adv Neural Inf Process Syst – year: 2015 ident: ref316 article-title: GPU-based acceleration of deep convolutional neural networks on mobile platforms publication-title: Distrib Parallel Clust Comput – ident: ref278 doi: 10.1109/CVPR.2018.00171 – ident: ref406 doi: 10.1007/978-3-642-38652-7_2 – year: 2019 ident: ref214 article-title: BrainTorrent: A peer-to-peer environment for decentralized federated learning publication-title: arXiv 1905 06731 – ident: ref358 doi: 10.1109/ISCIT.2017.8261188 – ident: ref88 doi: 10.1016/j.procs.2015.05.038 – start-page: 92 year: 2018 ident: ref213 article-title: Multi-institutional deep learning modeling without sharing patient data: A feasibility study on brain tumor segmentation publication-title: International Workshop on Brainlesion Glioma Multiple Sclerosis Stroke and Traumatic Brain Injuries – start-page: 1097 year: 2012 ident: ref471 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – year: 2019 ident: ref464 publication-title: Google Glass – ident: ref224 doi: 10.1007/978-3-319-97909-0_46 – ident: ref544 doi: 10.1023/A:1019956318069 |
| SSID | ssj0003563 |
| Score | 2.6988194 |
| Snippet | Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1778 |
| SubjectTerms | Artificial intelligence Artificial intelligence (AI) Caching Data collection Data privacy Data processing edge caching Edge computing Electronic devices inference Inference algorithms model training offloading Systematics Taxonomy Training data |
| Title | Edge Intelligence: Empowering Intelligence to the Edge of Network |
| URI | https://ieeexplore.ieee.org/document/9596610 https://www.proquest.com/docview/2592624937 |
| Volume | 109 |
| WOSCitedRecordID | wos000714203700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2256 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003563 issn: 0018-9219 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M4UEP_pridEoO3rSuSZum8TbGhnqYQxR2K2maiKDr2Dr_fpO0KxuK4K2QvNJ-6Uvea_K-D-DKRAkypYR6aRBqL4yIlXnRwuOMxNhyTxIRO7EJNhrFkwkfN-CmroVRSrnDZ-rWXrq9_CyXS_urrMupCc5tPdUWY1FZq1XPugGtVNOwcWDjhqsCGZ93H8fPT32TChJsMlRbkuxvLEJOVeXHVOzWl-H-_57sAPaqOBL1yoE_hIaaHsHuGrtgC3qD7E2hhzXOzTs0-JxZWTTTvtGAihyZSBA5i1yjUXk4_Bheh4OX_r1XKSZ4knBaeCmlmduo1NoEUjjTgQ6ZH5GQBUqkltsrMu0hpQxzrf00Da2d8VstRezLNDiB5jSfqlNAJGIBVlhKGYmQScVxJuJMaCWClAqJ24BXECayohO3qhYfiUsrfJ442BMLe1LB3obr2mZWkmn82btlga57Vhi3obMaqaTyt0VikjhiXtPEWme_W53Djr13WUXYgWYxX6oL2JZfxftifuk-pW9kMcPv |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6MKagP3qY4ndoH37TapE0vvo2xsemsQybsLaRpIoKuYxd_v0nalQ1F8K2QHNp-6UnOaXK-D-BKRQk8IZjYietJ2_OxlnmRzI4CHCLNPYlZaMQmgjgOR6NoUIGbshZGCGEOn4lbfWn28tOML_SvsruIqOBc11NtaOWsolqrnHddUuimIeXCyhGXJTJOdPcweHluqWQQI5Wj6qJkZ20ZMroqPyZjs8J09v73bPuwW0SSVjMf-gOoiPEh7KzwC9ag2U7fhNVbYd28t9qfEy2MptrXGqx5ZqlY0DIWmbTi_Hj4Ebx22sNW1y40E2yOIzK3E0JSs1UppQqlUCpd6QWOj73AFSzR7F6-avcICVAkpZMknrZTnis5Cx2euMdQHWdjcQIW9gMXCcQ595kXcBGhlIUpk4K5CWEc1QEtIaS8IBTXuhYf1CQWTkQN7FTDTgvY63Bd2kxyOo0_e9c00GXPAuM6NJYjRQuPm1GVxmH1miraOv3d6hK2usOnPu334scz2Nb3yWsKG1CdTxfiHDb51_x9Nr0wn9U3xtnHOA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge+Intelligence%3A+Empowering+Intelligence+to+the+Edge+of+Network&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Xu%2C+Dianlei&rft.au=Li%2C+Tong&rft.au=Li%2C+Yong&rft.au=Su%2C+Xiang&rft.date=2021-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9219&rft.eissn=1558-2256&rft.volume=109&rft.issue=11&rft.spage=1778&rft_id=info:doi/10.1109%2FJPROC.2021.3119950&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon |