Spectral-Spatial Feature Extraction With Dual Graph Autoencoder for Hyperspectral Image Clustering
Autoencoder (AE) is an unsupervised neural network framework for efficient and effective feature extraction. Most AE-based methods do not consider spatial information and band correlations for hyperspectral image (HSI) analysis. In addition, graph-based AE methods often learn discriminative represen...
Uložené v:
| Vydané v: | IEEE transactions on circuits and systems for video technology Ročník 32; číslo 12; s. 8500 - 8511 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1051-8215, 1558-2205 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Autoencoder (AE) is an unsupervised neural network framework for efficient and effective feature extraction. Most AE-based methods do not consider spatial information and band correlations for hyperspectral image (HSI) analysis. In addition, graph-based AE methods often learn discriminative representations with the assumption that connected samples share the same label and they cannot directly embed the geometric structure into feature extraction. To address these issues, in this paper, we propose a dual graph autoencoder (DGAE) to learn discriminative representations for HSIs. Utilizing the relationships of pair-wise pixels within homogenous regions and pair-wise spectral bands, DGAE first constructs the superpixel-based similarity graph with spatial information and band-based similarity graph to characterize the geometric structures of HSIs. With the developed dual graph convolution, more discriminative feature representations are learnt from the hidden layer via the encoder-decoder structure of DGAE. The main advantage of DGAE is that it fully exploits both the geometric structures of pixels with spatial information and spectral bands to promote nonlinear feature extraction of HSIs. Experiments on HSI datasets show the superiority of the proposed DGAE over the state-of-the-art methods. The source code of DGAE is available at https://github.com/ZhangYongshan/DGAE . |
|---|---|
| AbstractList | Autoencoder (AE) is an unsupervised neural network framework for efficient and effective feature extraction. Most AE-based methods do not consider spatial information and band correlations for hyperspectral image (HSI) analysis. In addition, graph-based AE methods often learn discriminative representations with the assumption that connected samples share the same label and they cannot directly embed the geometric structure into feature extraction. To address these issues, in this paper, we propose a dual graph autoencoder (DGAE) to learn discriminative representations for HSIs. Utilizing the relationships of pair-wise pixels within homogenous regions and pair-wise spectral bands, DGAE first constructs the superpixel-based similarity graph with spatial information and band-based similarity graph to characterize the geometric structures of HSIs. With the developed dual graph convolution, more discriminative feature representations are learnt from the hidden layer via the encoder-decoder structure of DGAE. The main advantage of DGAE is that it fully exploits both the geometric structures of pixels with spatial information and spectral bands to promote nonlinear feature extraction of HSIs. Experiments on HSI datasets show the superiority of the proposed DGAE over the state-of-the-art methods. The source code of DGAE is available at https://github.com/ZhangYongshan/DGAE . |
| Author | Wang, Yang Jiang, Xinwei Zhou, Yicong Zhang, Yongshan Chen, Xiaohong |
| Author_xml | – sequence: 1 givenname: Yongshan orcidid: 0000-0001-5817-1732 surname: Zhang fullname: Zhang, Yongshan email: yszhang.cug@gmail.com organization: School of Computer Science and the Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan, China – sequence: 2 givenname: Yang surname: Wang fullname: Wang, Yang organization: School of Computer Science and the Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan, China – sequence: 3 givenname: Xiaohong surname: Chen fullname: Chen, Xiaohong organization: School of Computer Science and the Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan, China – sequence: 4 givenname: Xinwei orcidid: 0000-0001-6783-2176 surname: Jiang fullname: Jiang, Xinwei email: ysjxw@hotmail.com organization: School of Computer Science and the Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan, China – sequence: 5 givenname: Yicong orcidid: 0000-0002-4487-6384 surname: Zhou fullname: Zhou, Yicong email: yicongzhou@um.edu.mo organization: Department of Computer and Information Science, University of Macau, Taipa, Macau, China |
| BookMark | eNp9kD1PwzAQhi1UJErhD8BiiTnFZ8eOPVahFCQkhhYYI9e5QKo0CY4j0X9PSisGBqY73b3PfbznZFQ3NRJyBWwKwMztKl2-rqaccT4VYJRKzAkZg5Q64pzJ0ZAzCZHmIM_IeddtGINYx8mYrJctuuBtFS1bG0pb0Xu0ofdI519D2YWyqelbGT7oXT80F962H3TWhwZr1-ToadF4-rBr0XfHQfRxa9-RplXfBfRl_X5BTgtbdXh5jBPycj9fpQ_R0_PiMZ09RY4bGaI1V5JDYoWNE5CgC6EL0A6FWytlpGNWC-2sktaZNeYuybVROQerhEM0VkzIzWFu65vPHruQbZre18PKjCdxogCEloNKH1TON13nschcGez-zeH4ssqAZXtHsx9Hs72j2dHRAeV_0NaXW-t3_0PXB6hExF_AaAkxxOIbTeiFZg |
| CODEN | ITCTEM |
| CitedBy_id | crossref_primary_10_1109_TSG_2022_3231592 crossref_primary_10_1109_TGRS_2024_3464648 crossref_primary_10_1109_TCSVT_2025_3538926 crossref_primary_10_1109_TCSVT_2024_3399764 crossref_primary_10_1016_j_sigpro_2023_109158 crossref_primary_10_1109_LGRS_2023_3298681 crossref_primary_10_1016_j_knosys_2024_112087 crossref_primary_10_1016_j_imavis_2024_105235 crossref_primary_10_1109_TGRS_2025_3547145 crossref_primary_10_1109_TCSVT_2024_3386578 crossref_primary_10_1109_TCSVT_2024_3435383 crossref_primary_10_1007_s11227_024_06436_8 crossref_primary_10_1109_TCSVT_2025_3535930 crossref_primary_10_1109_TGRS_2024_3515111 crossref_primary_10_1109_TMM_2024_3394975 crossref_primary_10_1109_TCSVT_2023_3266801 crossref_primary_10_1109_ACCESS_2025_3595997 crossref_primary_10_1109_TCSVT_2023_3274545 crossref_primary_10_1109_TGRS_2024_3375922 crossref_primary_10_1109_TCSVT_2024_3418610 crossref_primary_10_1109_TIA_2025_3542730 crossref_primary_10_1109_TCSVT_2025_3549365 crossref_primary_10_1080_01431161_2024_2305180 crossref_primary_10_1109_TGRS_2022_3225663 crossref_primary_10_1109_TVT_2024_3382890 crossref_primary_10_1038_s41598_025_01758_w crossref_primary_10_1109_TCSVT_2025_3533301 crossref_primary_10_1007_s10462_025_11169_y crossref_primary_10_1109_TKDE_2025_3580139 crossref_primary_10_1109_TCSVT_2024_3399821 crossref_primary_10_1109_TGRS_2024_3414128 crossref_primary_10_1109_TCSVT_2025_3526960 crossref_primary_10_1109_TGRS_2025_3556276 crossref_primary_10_1109_TGRS_2023_3277467 crossref_primary_10_1109_TGRS_2025_3545460 crossref_primary_10_1016_j_neucom_2024_128202 crossref_primary_10_1109_TGRS_2025_3548654 crossref_primary_10_1051_jeos_2025029 crossref_primary_10_1109_TCSVT_2024_3439369 crossref_primary_10_1109_TGRS_2025_3540096 crossref_primary_10_1109_TCSVT_2023_3268178 crossref_primary_10_1007_s11042_023_16854_0 crossref_primary_10_1109_JSTARS_2024_3502504 crossref_primary_10_1109_TCSVT_2024_3508844 crossref_primary_10_1109_TCSVT_2025_3543569 crossref_primary_10_3390_rs15051206 crossref_primary_10_1016_j_jag_2025_104501 crossref_primary_10_1109_TCSVT_2023_3330193 crossref_primary_10_1109_TGRS_2025_3555967 crossref_primary_10_1109_TCSVT_2024_3486186 crossref_primary_10_1109_TNNLS_2023_3298383 crossref_primary_10_1109_JSTARS_2024_3374813 crossref_primary_10_1016_j_cag_2024_104100 crossref_primary_10_1109_TCSVT_2022_3224003 crossref_primary_10_1016_j_knosys_2025_113782 |
| Cites_doi | 10.1016/j.asoc.2018.08.049 10.1109/MGRS.2016.2540798 10.1109/TKDE.2020.2981333 10.1109/TPAMI.2012.120 10.1126/science.1127647 10.1109/MGRS.2022.3145854 10.3390/rs11171983 10.1109/TMM.2020.2966887 10.1109/TGRS.2014.2333539 10.1109/TGRS.2021.3057701 10.1109/TGRS.2022.3171551 10.1109/TGRS.2014.2345739 10.1109/TGRS.2016.2543748 10.1109/TGRS.2021.3121671 10.1109/MSP.2017.2693418 10.1109/TCSVT.2017.2746684 10.3390/rs11010029 10.1109/LGRS.2008.2001282 10.1109/TNNLS.2020.2978386 10.1016/j.neunet.2018.07.016 10.1016/j.neucom.2021.04.096 10.1109/TGRS.2018.2828029 10.1109/TGRS.2011.2165957 10.1109/TGRS.2019.2944419 10.1109/TCSVT.2020.2975936 10.1109/TGRS.2018.2876123 10.1007/s11042-020-10474-8 10.1016/j.neunet.2019.01.007 10.1038/323533a0 10.1109/TIP.2016.2605010 10.1109/LGRS.2005.846011 10.1109/CVPR.2011.5995323 10.1109/CVPR52688.2022.01910 10.1109/LGRS.2018.2869563 10.1109/LGRS.2015.2482520 10.1109/TCSVT.2019.2946723 10.1109/TSP.2018.2879624 10.1109/TCSVT.2020.2975566 10.3390/rs11202454 10.1109/JSTARS.2020.3018229 10.1109/MGRS.2021.3051979 10.1109/LGRS.2019.2944970 10.1109/TGRS.2020.2999957 10.1126/science.290.5500.2323 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCSVT.2022.3196679 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2205 |
| EndPage | 8511 |
| ExternalDocumentID | 10_1109_TCSVT_2022_3196679 9851414 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62106241; 61773355; 62073300 funderid: 10.13039/501100001809 – fundername: Open Research Project of the Hubei Key Laboratory of Intelligent Geo-Information Processing grantid: KLIGIP-2021B02 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c295t-b265217a3a471518f38f18ce3cb6695c0a838ca65ac9bedc7d896d21a63cee9a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 63 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000936985600033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1051-8215 |
| IngestDate | Sun Nov 30 05:23:13 EST 2025 Sat Nov 29 01:44:19 EST 2025 Tue Nov 18 21:38:29 EST 2025 Wed Aug 27 02:15:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-b265217a3a471518f38f18ce3cb6695c0a838ca65ac9bedc7d896d21a63cee9a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6783-2176 0000-0002-4487-6384 0000-0001-5817-1732 |
| PQID | 2747611385 |
| PQPubID | 85433 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2747611385 crossref_citationtrail_10_1109_TCSVT_2022_3196679 ieee_primary_9851414 crossref_primary_10_1109_TCSVT_2022_3196679 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on circuits and systems for video technology |
| PublicationTitleAbbrev | TCSVT |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref14 ref53 ref52 niepert (ref41) 2016 ref11 ref10 ref19 gilmer (ref42) 2017 ref18 hinton (ref25) 1994; 6 vincent (ref34) 2010; 11 ref50 hinton (ref33) 2006; 313 ref46 ref45 ref48 ref47 ref44 ref43 roweis (ref16) 2000; 290 tao (ref26) 2015; 12 ref49 ref8 ref7 ref4 ref3 ref6 ref5 ref40 kipf (ref39) 2017 shao (ref9) 2016; 54 ref37 ghahramani (ref15) 1996 ref36 ref31 ref30 ref32 ref2 ref1 ref38 ref24 ref23 ref20 kingma (ref35) 2013 ref22 he (ref17) 2004; 16 ref21 ref28 ref27 ref29 kingma (ref51) 2014 |
| References_xml | – start-page: 1 year: 2017 ident: ref39 article-title: Semi-supervised classification with graph convolutional networks publication-title: Proc Int Conf Learn Represent – ident: ref27 doi: 10.1016/j.asoc.2018.08.049 – ident: ref23 doi: 10.1109/MGRS.2016.2540798 – ident: ref38 doi: 10.1109/TKDE.2020.2981333 – ident: ref48 doi: 10.1109/TPAMI.2012.120 – volume: 16 start-page: 153 year: 2004 ident: ref17 article-title: Locality preserving projections publication-title: Proc Adv Neural Inf Process Syst – volume: 313 start-page: 504 year: 2006 ident: ref33 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: ref3 doi: 10.1109/MGRS.2022.3145854 – volume: 6 start-page: 3 year: 1994 ident: ref25 article-title: Autoencoders, minimum description length and Helmholtz free ener publication-title: Proc Adv Neural Inf Process Syst – ident: ref45 doi: 10.3390/rs11171983 – ident: ref1 doi: 10.1109/TMM.2020.2966887 – ident: ref18 doi: 10.1109/TGRS.2014.2333539 – ident: ref44 doi: 10.1109/TGRS.2021.3057701 – ident: ref20 doi: 10.1109/TGRS.2022.3171551 – ident: ref21 doi: 10.1109/TGRS.2014.2345739 – year: 2013 ident: ref35 article-title: Auto-encoding variational Bayes publication-title: arXiv 1312 6114 – volume: 54 start-page: 4544 year: 2016 ident: ref9 article-title: Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2016.2543748 – ident: ref7 doi: 10.1109/TGRS.2021.3121671 – ident: ref43 doi: 10.1109/MSP.2017.2693418 – ident: ref46 doi: 10.1109/TCSVT.2017.2746684 – ident: ref10 doi: 10.3390/rs11010029 – ident: ref12 doi: 10.1109/LGRS.2008.2001282 – ident: ref37 doi: 10.1109/TNNLS.2020.2978386 – year: 2014 ident: ref51 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref49 doi: 10.1016/j.neunet.2018.07.016 – ident: ref32 doi: 10.1016/j.neucom.2021.04.096 – volume: 11 start-page: 3371 year: 2010 ident: ref34 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – ident: ref52 doi: 10.1109/TGRS.2018.2828029 – ident: ref13 doi: 10.1109/TGRS.2011.2165957 – ident: ref31 doi: 10.1109/TGRS.2019.2944419 – ident: ref4 doi: 10.1109/TCSVT.2020.2975936 – start-page: 2014 year: 2016 ident: ref41 article-title: Learning convolutional neural networks for graphs publication-title: Proc Int Conf Mach Learn – ident: ref22 doi: 10.1109/TGRS.2018.2876123 – ident: ref8 doi: 10.1007/s11042-020-10474-8 – ident: ref30 doi: 10.1016/j.neunet.2019.01.007 – ident: ref50 doi: 10.1038/323533a0 – ident: ref28 doi: 10.1109/TIP.2016.2605010 – ident: ref14 doi: 10.1109/LGRS.2005.846011 – ident: ref47 doi: 10.1109/CVPR.2011.5995323 – ident: ref2 doi: 10.1109/CVPR52688.2022.01910 – ident: ref36 doi: 10.1109/LGRS.2018.2869563 – volume: 12 start-page: 2438 year: 2015 ident: ref26 article-title: Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2015.2482520 – ident: ref5 doi: 10.1109/TCSVT.2019.2946723 – ident: ref40 doi: 10.1109/TSP.2018.2879624 – ident: ref24 doi: 10.1109/TCSVT.2020.2975566 – ident: ref29 doi: 10.3390/rs11202454 – ident: ref6 doi: 10.1109/JSTARS.2020.3018229 – ident: ref53 doi: 10.1109/MGRS.2021.3051979 – year: 1996 ident: ref15 article-title: The em algorithm for mixtures of factor analyzers – ident: ref19 doi: 10.1109/LGRS.2019.2944970 – start-page: 1263 year: 2017 ident: ref42 article-title: Neural message passing for quantum chemistry publication-title: Proc 34th Int Conf Mach Learn – ident: ref11 doi: 10.1109/TGRS.2020.2999957 – volume: 290 start-page: 2323 year: 2000 ident: ref16 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 |
| SSID | ssj0014847 |
| Score | 2.6252813 |
| Snippet | Autoencoder (AE) is an unsupervised neural network framework for efficient and effective feature extraction. Most AE-based methods do not consider spatial... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 8500 |
| SubjectTerms | autoencoder Band spectra Banded structure Clustering Coders Convolution Data mining Decoding dimensionality reduction Encoders-Decoders Feature extraction graph convolution Graph neural networks Graphical representations Hyperspectral imagery Hyperspectral imaging Pixels Principal component analysis Similarity Source code Spatial data Spectral bands Task analysis |
| Title | Spectral-Spatial Feature Extraction With Dual Graph Autoencoder for Hyperspectral Image Clustering |
| URI | https://ieeexplore.ieee.org/document/9851414 https://www.proquest.com/docview/2747611385 |
| Volume | 32 |
| WOSCitedRecordID | wos000936985600033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2205 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014847 issn: 1051-8215 databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zeNCD3-J0Sg7etHNt1uTlOObHvAzB-XErSZrhYG7SteKfb17ajYEieCs0SUt-Sd57Sd7vR8g5HymBJCxBHBoRdKRNAw3IewsKUs24kZH2YhNiMIDXV_lQI5fLXBhrrb98Zlv46M_y05kpcKvsSjr3wKtWrwkhylyt5YlBB7yYmHMXwgCcHVskyLTl1bD3-Dx0oWAUtXDAcby2tWKEvKrKj6XY25fb7f_92Q7ZqvxI2i2B3yU1O90jmyvsgvtEo7Y8bmQEqDvsxhlFf6_ILL35yrMyoYG-jPM3el24l3dIXU27RT5DbsvUZtT5s7Tv4tQyHdM1RO_f3fJDe5MC6RXcRw7I0-3NsNcPKkmFwEQyzgMdcWevhWLKGaU4hBGDUQjGMqM5l7FpK2BgFI-VkdqmRqQgeRqFijNnTaVih6Q-nU3tEaFsZH1vGuDQsS5wA8EUEpJpprlm0CDhoo8TU_GNo-zFJPFxR1smHpcEcUkqXBrkYlnno2Tb-LP0PiKxLFmB0CDNBZRJNSHnCQbfPAwZxMe_1zohG9h2eVOlSep5VthTsm4-8_E8O_Nj7RuamNF2 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5VbBLsYYxfoqOAH3jbAnWcOOdH1AFFQIW0MniLbMcVSNBOIZn258_npBUSExJvkWLHkT_bd2f7vg_gQE50RiQsUcptFiXKFZFB4r1FjYUR0qrYBLGJbDTCuzt13YHvi1wY51y4fOYO6TGc5RczW9NW2ZHy7kFQrf6QJknMm2ytxZlBgkFOzDsMPEJvyeYpMn11NB78_DX2wWAcH9KQk3Rx64UZCroqrxbjYGFOV9_3b1_gc-tJsuMG-jXouOk6fHrBL7gBhtTlaSsjIuVhP9IYeXx16djJ36psUhrY7UN1z37U_uUZkVez47qaEbtl4UrmPVo29JFqk5DpP8TOn_wCxAaPNREs-EY24eb0ZDwYRq2oQmRjlVaRiaW32JkW2pullONE4ISjdcIaKVVq-xoFWi1TbZVxhc0KVLKIuZbC21OlxRYsTWdTtw1MTFzoTYsSE-dDN8yEJkoyI4w0ArvA532c25ZxnIQvHvMQefRVHnDJCZe8xaUL3xZ1fjd8G2-W3iAkFiVbELrQm0OZt1PyOafwW3IuMP36_1r7sDwcX13ml-ejix1YoXaaeys9WKrK2u3CR_unengu98K4-weoO9S9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral%E2%80%93Spatial+Feature+Extraction+With+Dual+Graph+Autoencoder+for+Hyperspectral+Image+Clustering&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Zhang%2C+Yongshan&rft.au=Wang%2C+Yang&rft.au=Chen%2C+Xiaohong&rft.au=Jiang%2C+Xinwei&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=12&rft.spage=8500&rft_id=info:doi/10.1109%2FTCSVT.2022.3196679&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |