Spectral-Spatial Feature Extraction With Dual Graph Autoencoder for Hyperspectral Image Clustering

Autoencoder (AE) is an unsupervised neural network framework for efficient and effective feature extraction. Most AE-based methods do not consider spatial information and band correlations for hyperspectral image (HSI) analysis. In addition, graph-based AE methods often learn discriminative represen...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on circuits and systems for video technology Ročník 32; číslo 12; s. 8500 - 8511
Hlavní autori: Zhang, Yongshan, Wang, Yang, Chen, Xiaohong, Jiang, Xinwei, Zhou, Yicong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1051-8215, 1558-2205
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Autoencoder (AE) is an unsupervised neural network framework for efficient and effective feature extraction. Most AE-based methods do not consider spatial information and band correlations for hyperspectral image (HSI) analysis. In addition, graph-based AE methods often learn discriminative representations with the assumption that connected samples share the same label and they cannot directly embed the geometric structure into feature extraction. To address these issues, in this paper, we propose a dual graph autoencoder (DGAE) to learn discriminative representations for HSIs. Utilizing the relationships of pair-wise pixels within homogenous regions and pair-wise spectral bands, DGAE first constructs the superpixel-based similarity graph with spatial information and band-based similarity graph to characterize the geometric structures of HSIs. With the developed dual graph convolution, more discriminative feature representations are learnt from the hidden layer via the encoder-decoder structure of DGAE. The main advantage of DGAE is that it fully exploits both the geometric structures of pixels with spatial information and spectral bands to promote nonlinear feature extraction of HSIs. Experiments on HSI datasets show the superiority of the proposed DGAE over the state-of-the-art methods. The source code of DGAE is available at https://github.com/ZhangYongshan/DGAE .
AbstractList Autoencoder (AE) is an unsupervised neural network framework for efficient and effective feature extraction. Most AE-based methods do not consider spatial information and band correlations for hyperspectral image (HSI) analysis. In addition, graph-based AE methods often learn discriminative representations with the assumption that connected samples share the same label and they cannot directly embed the geometric structure into feature extraction. To address these issues, in this paper, we propose a dual graph autoencoder (DGAE) to learn discriminative representations for HSIs. Utilizing the relationships of pair-wise pixels within homogenous regions and pair-wise spectral bands, DGAE first constructs the superpixel-based similarity graph with spatial information and band-based similarity graph to characterize the geometric structures of HSIs. With the developed dual graph convolution, more discriminative feature representations are learnt from the hidden layer via the encoder-decoder structure of DGAE. The main advantage of DGAE is that it fully exploits both the geometric structures of pixels with spatial information and spectral bands to promote nonlinear feature extraction of HSIs. Experiments on HSI datasets show the superiority of the proposed DGAE over the state-of-the-art methods. The source code of DGAE is available at https://github.com/ZhangYongshan/DGAE .
Author Wang, Yang
Jiang, Xinwei
Zhou, Yicong
Zhang, Yongshan
Chen, Xiaohong
Author_xml – sequence: 1
  givenname: Yongshan
  orcidid: 0000-0001-5817-1732
  surname: Zhang
  fullname: Zhang, Yongshan
  email: yszhang.cug@gmail.com
  organization: School of Computer Science and the Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan, China
– sequence: 2
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
  organization: School of Computer Science and the Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan, China
– sequence: 3
  givenname: Xiaohong
  surname: Chen
  fullname: Chen, Xiaohong
  organization: School of Computer Science and the Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan, China
– sequence: 4
  givenname: Xinwei
  orcidid: 0000-0001-6783-2176
  surname: Jiang
  fullname: Jiang, Xinwei
  email: ysjxw@hotmail.com
  organization: School of Computer Science and the Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan, China
– sequence: 5
  givenname: Yicong
  orcidid: 0000-0002-4487-6384
  surname: Zhou
  fullname: Zhou, Yicong
  email: yicongzhou@um.edu.mo
  organization: Department of Computer and Information Science, University of Macau, Taipa, Macau, China
BookMark eNp9kD1PwzAQhi1UJErhD8BiiTnFZ8eOPVahFCQkhhYYI9e5QKo0CY4j0X9PSisGBqY73b3PfbznZFQ3NRJyBWwKwMztKl2-rqaccT4VYJRKzAkZg5Q64pzJ0ZAzCZHmIM_IeddtGINYx8mYrJctuuBtFS1bG0pb0Xu0ofdI519D2YWyqelbGT7oXT80F962H3TWhwZr1-ToadF4-rBr0XfHQfRxa9-RplXfBfRl_X5BTgtbdXh5jBPycj9fpQ_R0_PiMZ09RY4bGaI1V5JDYoWNE5CgC6EL0A6FWytlpGNWC-2sktaZNeYuybVROQerhEM0VkzIzWFu65vPHruQbZre18PKjCdxogCEloNKH1TON13nschcGez-zeH4ssqAZXtHsx9Hs72j2dHRAeV_0NaXW-t3_0PXB6hExF_AaAkxxOIbTeiFZg
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TSG_2022_3231592
crossref_primary_10_1109_TGRS_2024_3464648
crossref_primary_10_1109_TCSVT_2025_3538926
crossref_primary_10_1109_TCSVT_2024_3399764
crossref_primary_10_1016_j_sigpro_2023_109158
crossref_primary_10_1109_LGRS_2023_3298681
crossref_primary_10_1016_j_knosys_2024_112087
crossref_primary_10_1016_j_imavis_2024_105235
crossref_primary_10_1109_TGRS_2025_3547145
crossref_primary_10_1109_TCSVT_2024_3386578
crossref_primary_10_1109_TCSVT_2024_3435383
crossref_primary_10_1007_s11227_024_06436_8
crossref_primary_10_1109_TCSVT_2025_3535930
crossref_primary_10_1109_TGRS_2024_3515111
crossref_primary_10_1109_TMM_2024_3394975
crossref_primary_10_1109_TCSVT_2023_3266801
crossref_primary_10_1109_ACCESS_2025_3595997
crossref_primary_10_1109_TCSVT_2023_3274545
crossref_primary_10_1109_TGRS_2024_3375922
crossref_primary_10_1109_TCSVT_2024_3418610
crossref_primary_10_1109_TIA_2025_3542730
crossref_primary_10_1109_TCSVT_2025_3549365
crossref_primary_10_1080_01431161_2024_2305180
crossref_primary_10_1109_TGRS_2022_3225663
crossref_primary_10_1109_TVT_2024_3382890
crossref_primary_10_1038_s41598_025_01758_w
crossref_primary_10_1109_TCSVT_2025_3533301
crossref_primary_10_1007_s10462_025_11169_y
crossref_primary_10_1109_TKDE_2025_3580139
crossref_primary_10_1109_TCSVT_2024_3399821
crossref_primary_10_1109_TGRS_2024_3414128
crossref_primary_10_1109_TCSVT_2025_3526960
crossref_primary_10_1109_TGRS_2025_3556276
crossref_primary_10_1109_TGRS_2023_3277467
crossref_primary_10_1109_TGRS_2025_3545460
crossref_primary_10_1016_j_neucom_2024_128202
crossref_primary_10_1109_TGRS_2025_3548654
crossref_primary_10_1051_jeos_2025029
crossref_primary_10_1109_TCSVT_2024_3439369
crossref_primary_10_1109_TGRS_2025_3540096
crossref_primary_10_1109_TCSVT_2023_3268178
crossref_primary_10_1007_s11042_023_16854_0
crossref_primary_10_1109_JSTARS_2024_3502504
crossref_primary_10_1109_TCSVT_2024_3508844
crossref_primary_10_1109_TCSVT_2025_3543569
crossref_primary_10_3390_rs15051206
crossref_primary_10_1016_j_jag_2025_104501
crossref_primary_10_1109_TCSVT_2023_3330193
crossref_primary_10_1109_TGRS_2025_3555967
crossref_primary_10_1109_TCSVT_2024_3486186
crossref_primary_10_1109_TNNLS_2023_3298383
crossref_primary_10_1109_JSTARS_2024_3374813
crossref_primary_10_1016_j_cag_2024_104100
crossref_primary_10_1109_TCSVT_2022_3224003
crossref_primary_10_1016_j_knosys_2025_113782
Cites_doi 10.1016/j.asoc.2018.08.049
10.1109/MGRS.2016.2540798
10.1109/TKDE.2020.2981333
10.1109/TPAMI.2012.120
10.1126/science.1127647
10.1109/MGRS.2022.3145854
10.3390/rs11171983
10.1109/TMM.2020.2966887
10.1109/TGRS.2014.2333539
10.1109/TGRS.2021.3057701
10.1109/TGRS.2022.3171551
10.1109/TGRS.2014.2345739
10.1109/TGRS.2016.2543748
10.1109/TGRS.2021.3121671
10.1109/MSP.2017.2693418
10.1109/TCSVT.2017.2746684
10.3390/rs11010029
10.1109/LGRS.2008.2001282
10.1109/TNNLS.2020.2978386
10.1016/j.neunet.2018.07.016
10.1016/j.neucom.2021.04.096
10.1109/TGRS.2018.2828029
10.1109/TGRS.2011.2165957
10.1109/TGRS.2019.2944419
10.1109/TCSVT.2020.2975936
10.1109/TGRS.2018.2876123
10.1007/s11042-020-10474-8
10.1016/j.neunet.2019.01.007
10.1038/323533a0
10.1109/TIP.2016.2605010
10.1109/LGRS.2005.846011
10.1109/CVPR.2011.5995323
10.1109/CVPR52688.2022.01910
10.1109/LGRS.2018.2869563
10.1109/LGRS.2015.2482520
10.1109/TCSVT.2019.2946723
10.1109/TSP.2018.2879624
10.1109/TCSVT.2020.2975566
10.3390/rs11202454
10.1109/JSTARS.2020.3018229
10.1109/MGRS.2021.3051979
10.1109/LGRS.2019.2944970
10.1109/TGRS.2020.2999957
10.1126/science.290.5500.2323
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2022.3196679
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 8511
ExternalDocumentID 10_1109_TCSVT_2022_3196679
9851414
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62106241; 61773355; 62073300
  funderid: 10.13039/501100001809
– fundername: Open Research Project of the Hubei Key Laboratory of Intelligent Geo-Information Processing
  grantid: KLIGIP-2021B02
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-b265217a3a471518f38f18ce3cb6695c0a838ca65ac9bedc7d896d21a63cee9a3
IEDL.DBID RIE
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000936985600033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8215
IngestDate Sun Nov 30 05:23:13 EST 2025
Sat Nov 29 01:44:19 EST 2025
Tue Nov 18 21:38:29 EST 2025
Wed Aug 27 02:15:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-b265217a3a471518f38f18ce3cb6695c0a838ca65ac9bedc7d896d21a63cee9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6783-2176
0000-0002-4487-6384
0000-0001-5817-1732
PQID 2747611385
PQPubID 85433
PageCount 12
ParticipantIDs proquest_journals_2747611385
crossref_citationtrail_10_1109_TCSVT_2022_3196679
ieee_primary_9851414
crossref_primary_10_1109_TCSVT_2022_3196679
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref53
ref52
niepert (ref41) 2016
ref11
ref10
ref19
gilmer (ref42) 2017
ref18
hinton (ref25) 1994; 6
vincent (ref34) 2010; 11
ref50
hinton (ref33) 2006; 313
ref46
ref45
ref48
ref47
ref44
ref43
roweis (ref16) 2000; 290
tao (ref26) 2015; 12
ref49
ref8
ref7
ref4
ref3
ref6
ref5
ref40
kipf (ref39) 2017
shao (ref9) 2016; 54
ref37
ghahramani (ref15) 1996
ref36
ref31
ref30
ref32
ref2
ref1
ref38
ref24
ref23
ref20
kingma (ref35) 2013
ref22
he (ref17) 2004; 16
ref21
ref28
ref27
ref29
kingma (ref51) 2014
References_xml – start-page: 1
  year: 2017
  ident: ref39
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: Proc Int Conf Learn Represent
– ident: ref27
  doi: 10.1016/j.asoc.2018.08.049
– ident: ref23
  doi: 10.1109/MGRS.2016.2540798
– ident: ref38
  doi: 10.1109/TKDE.2020.2981333
– ident: ref48
  doi: 10.1109/TPAMI.2012.120
– volume: 16
  start-page: 153
  year: 2004
  ident: ref17
  article-title: Locality preserving projections
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 313
  start-page: 504
  year: 2006
  ident: ref33
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: ref3
  doi: 10.1109/MGRS.2022.3145854
– volume: 6
  start-page: 3
  year: 1994
  ident: ref25
  article-title: Autoencoders, minimum description length and Helmholtz free ener
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref45
  doi: 10.3390/rs11171983
– ident: ref1
  doi: 10.1109/TMM.2020.2966887
– ident: ref18
  doi: 10.1109/TGRS.2014.2333539
– ident: ref44
  doi: 10.1109/TGRS.2021.3057701
– ident: ref20
  doi: 10.1109/TGRS.2022.3171551
– ident: ref21
  doi: 10.1109/TGRS.2014.2345739
– year: 2013
  ident: ref35
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv 1312 6114
– volume: 54
  start-page: 4544
  year: 2016
  ident: ref9
  article-title: Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2016.2543748
– ident: ref7
  doi: 10.1109/TGRS.2021.3121671
– ident: ref43
  doi: 10.1109/MSP.2017.2693418
– ident: ref46
  doi: 10.1109/TCSVT.2017.2746684
– ident: ref10
  doi: 10.3390/rs11010029
– ident: ref12
  doi: 10.1109/LGRS.2008.2001282
– ident: ref37
  doi: 10.1109/TNNLS.2020.2978386
– year: 2014
  ident: ref51
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref49
  doi: 10.1016/j.neunet.2018.07.016
– ident: ref32
  doi: 10.1016/j.neucom.2021.04.096
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref34
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref52
  doi: 10.1109/TGRS.2018.2828029
– ident: ref13
  doi: 10.1109/TGRS.2011.2165957
– ident: ref31
  doi: 10.1109/TGRS.2019.2944419
– ident: ref4
  doi: 10.1109/TCSVT.2020.2975936
– start-page: 2014
  year: 2016
  ident: ref41
  article-title: Learning convolutional neural networks for graphs
  publication-title: Proc Int Conf Mach Learn
– ident: ref22
  doi: 10.1109/TGRS.2018.2876123
– ident: ref8
  doi: 10.1007/s11042-020-10474-8
– ident: ref30
  doi: 10.1016/j.neunet.2019.01.007
– ident: ref50
  doi: 10.1038/323533a0
– ident: ref28
  doi: 10.1109/TIP.2016.2605010
– ident: ref14
  doi: 10.1109/LGRS.2005.846011
– ident: ref47
  doi: 10.1109/CVPR.2011.5995323
– ident: ref2
  doi: 10.1109/CVPR52688.2022.01910
– ident: ref36
  doi: 10.1109/LGRS.2018.2869563
– volume: 12
  start-page: 2438
  year: 2015
  ident: ref26
  article-title: Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2015.2482520
– ident: ref5
  doi: 10.1109/TCSVT.2019.2946723
– ident: ref40
  doi: 10.1109/TSP.2018.2879624
– ident: ref24
  doi: 10.1109/TCSVT.2020.2975566
– ident: ref29
  doi: 10.3390/rs11202454
– ident: ref6
  doi: 10.1109/JSTARS.2020.3018229
– ident: ref53
  doi: 10.1109/MGRS.2021.3051979
– year: 1996
  ident: ref15
  article-title: The em algorithm for mixtures of factor analyzers
– ident: ref19
  doi: 10.1109/LGRS.2019.2944970
– start-page: 1263
  year: 2017
  ident: ref42
  article-title: Neural message passing for quantum chemistry
  publication-title: Proc 34th Int Conf Mach Learn
– ident: ref11
  doi: 10.1109/TGRS.2020.2999957
– volume: 290
  start-page: 2323
  year: 2000
  ident: ref16
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
SSID ssj0014847
Score 2.6252813
Snippet Autoencoder (AE) is an unsupervised neural network framework for efficient and effective feature extraction. Most AE-based methods do not consider spatial...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8500
SubjectTerms autoencoder
Band spectra
Banded structure
Clustering
Coders
Convolution
Data mining
Decoding
dimensionality reduction
Encoders-Decoders
Feature extraction
graph convolution
Graph neural networks
Graphical representations
Hyperspectral imagery
Hyperspectral imaging
Pixels
Principal component analysis
Similarity
Source code
Spatial data
Spectral bands
Task analysis
Title Spectral-Spatial Feature Extraction With Dual Graph Autoencoder for Hyperspectral Image Clustering
URI https://ieeexplore.ieee.org/document/9851414
https://www.proquest.com/docview/2747611385
Volume 32
WOSCitedRecordID wos000936985600033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zeNCD3-J0Sg7etHNt1uTlOObHvAzB-XErSZrhYG7SteKfb17ajYEieCs0SUt-Sd57Sd7vR8g5HymBJCxBHBoRdKRNAw3IewsKUs24kZH2YhNiMIDXV_lQI5fLXBhrrb98Zlv46M_y05kpcKvsSjr3wKtWrwkhylyt5YlBB7yYmHMXwgCcHVskyLTl1bD3-Dx0oWAUtXDAcby2tWKEvKrKj6XY25fb7f_92Q7ZqvxI2i2B3yU1O90jmyvsgvtEo7Y8bmQEqDvsxhlFf6_ILL35yrMyoYG-jPM3el24l3dIXU27RT5DbsvUZtT5s7Tv4tQyHdM1RO_f3fJDe5MC6RXcRw7I0-3NsNcPKkmFwEQyzgMdcWevhWLKGaU4hBGDUQjGMqM5l7FpK2BgFI-VkdqmRqQgeRqFijNnTaVih6Q-nU3tEaFsZH1vGuDQsS5wA8EUEpJpprlm0CDhoo8TU_GNo-zFJPFxR1smHpcEcUkqXBrkYlnno2Tb-LP0PiKxLFmB0CDNBZRJNSHnCQbfPAwZxMe_1zohG9h2eVOlSep5VthTsm4-8_E8O_Nj7RuamNF2
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5VbBLsYYxfoqOAH3jbAnWcOOdH1AFFQIW0MniLbMcVSNBOIZn258_npBUSExJvkWLHkT_bd2f7vg_gQE50RiQsUcptFiXKFZFB4r1FjYUR0qrYBLGJbDTCuzt13YHvi1wY51y4fOYO6TGc5RczW9NW2ZHy7kFQrf6QJknMm2ytxZlBgkFOzDsMPEJvyeYpMn11NB78_DX2wWAcH9KQk3Rx64UZCroqrxbjYGFOV9_3b1_gc-tJsuMG-jXouOk6fHrBL7gBhtTlaSsjIuVhP9IYeXx16djJ36psUhrY7UN1z37U_uUZkVez47qaEbtl4UrmPVo29JFqk5DpP8TOn_wCxAaPNREs-EY24eb0ZDwYRq2oQmRjlVaRiaW32JkW2pullONE4ISjdcIaKVVq-xoFWi1TbZVxhc0KVLKIuZbC21OlxRYsTWdTtw1MTFzoTYsSE-dDN8yEJkoyI4w0ArvA532c25ZxnIQvHvMQefRVHnDJCZe8xaUL3xZ1fjd8G2-W3iAkFiVbELrQm0OZt1PyOafwW3IuMP36_1r7sDwcX13ml-ejix1YoXaaeys9WKrK2u3CR_unengu98K4-weoO9S9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral%E2%80%93Spatial+Feature+Extraction+With+Dual+Graph+Autoencoder+for+Hyperspectral+Image+Clustering&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Zhang%2C+Yongshan&rft.au=Wang%2C+Yang&rft.au=Chen%2C+Xiaohong&rft.au=Jiang%2C+Xinwei&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=12&rft.spage=8500&rft_id=info:doi/10.1109%2FTCSVT.2022.3196679&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon