Green Energy Forecast-Based Bi-Objective Scheduling of Tasks Across Distributed Clouds

Current large-scale green cloud data centers (GCDCs) tend to consume a huge amount of energy and generate enormous carbon emissions. Existing studies have tried to solve this problem by either realizing prediction of green energy, or optimizing task scheduling. In contrast, this work seamlessly comb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on sustainable computing Jg. 7; H. 3; S. 619 - 630
Hauptverfasser: Bi, Jing, Yuan, Haitao, Zhang, Jia, Zhou, MengChu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2377-3782, 2377-3790
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Current large-scale green cloud data centers (GCDCs) tend to consume a huge amount of energy and generate enormous carbon emissions. Existing studies have tried to solve this problem by either realizing prediction of green energy, or optimizing task scheduling. In contrast, this work seamlessly combines green energy prediction and task scheduling to jointly optimize revenue and energy cost of GCDCs. Specifically, this work designs a prediction method, named Savitzky-Golay and Long Short-Term Memory network (SG-LSTM), to realize noise filtering and forecast green energy. Based on such prediction, a bi-objective optimization method, named Decomposition-based Multi-objective evolutionary algorithm with Gaussian mutation and Crowding distance (DMGC), is developed to optimize the revenue and energy cost of GCDCs. Its performance is demonstrated over real-life datasets including Google cluster traces, wind speeds, solar irradiance and prices of electricity. Experimental results show that SG-LSTM outperforms its two peers, back propagation neural network and gated recurrent unit, in terms of root mean square errors and mean absolute errors. In addition, DMGC surpasses its such peers as NSGA-II, SPEA2, and MOEA/D in terms of revenue, energy cost and average execution time. Particularly, DMGC's revenue is 18%, 20% and 13.1% higher, energy cost is 16%, 19.8% and 15.2% lower, and average execution time is 60.02%, 38.47% and 24.17% lower than those of NSGA-II, SPEA2, and MOEA/D, respectively.
AbstractList Current large-scale green cloud data centers (GCDCs) tend to consume a huge amount of energy and generate enormous carbon emissions. Existing studies have tried to solve this problem by either realizing prediction of green energy, or optimizing task scheduling. In contrast, this work seamlessly combines green energy prediction and task scheduling to jointly optimize revenue and energy cost of GCDCs. Specifically, this work designs a prediction method, named Savitzky-Golay and Long Short-Term Memory network (SG-LSTM), to realize noise filtering and forecast green energy. Based on such prediction, a bi-objective optimization method, named Decomposition-based Multi-objective evolutionary algorithm with Gaussian mutation and Crowding distance (DMGC), is developed to optimize the revenue and energy cost of GCDCs. Its performance is demonstrated over real-life datasets including Google cluster traces, wind speeds, solar irradiance and prices of electricity. Experimental results show that SG-LSTM outperforms its two peers, back propagation neural network and gated recurrent unit, in terms of root mean square errors and mean absolute errors. In addition, DMGC surpasses its such peers as NSGA-II, SPEA2, and MOEA/D in terms of revenue, energy cost and average execution time. Particularly, DMGC's revenue is 18%, 20% and 13.1% higher, energy cost is 16%, 19.8% and 15.2% lower, and average execution time is 60.02%, 38.47% and 24.17% lower than those of NSGA-II, SPEA2, and MOEA/D, respectively.
Author Zhou, MengChu
Yuan, Haitao
Bi, Jing
Zhang, Jia
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0002-4610-0141
  surname: Bi
  fullname: Bi, Jing
  email: bijing@bjut.edu.cn
  organization: School of Software Engineering in Faculty of Information Technology, Beijing University of Technology, Beijing, China
– sequence: 2
  givenname: Haitao
  orcidid: 0000-0001-8475-419X
  surname: Yuan
  fullname: Yuan, Haitao
  email: yuan@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Jia
  orcidid: 0000-0003-2148-0923
  surname: Zhang
  fullname: Zhang, Jia
  email: jiazhang@smu.edu
  organization: Department of Computer Science, School of Engineering, Southern Methodist University, Dallas, TX, USA
– sequence: 4
  givenname: MengChu
  orcidid: 0000-0002-5408-8752
  surname: Zhou
  fullname: Zhou, MengChu
  email: zhou@njit.edu
  organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
BookMark eNp9kE1PwkAQhjcGExH5A3pp4rm4H223e4QKaELCAfDabLdTXKxd3N2a8O8tYDh48DSTyfvMTJ5b1GtMAwjdEzwiBIun9WqzykYUUzJihEapYFeoTxnnIeMC9y59Sm_Q0LkdxphwHgtK-uhtbgGaYNqA3R6CmbGgpPPhRDoog4kOl8UOlNffEKzUO5RtrZttYKpgLd2HC8bKGueCZ-281UXrOyarTVu6O3RdydrB8LcO0GY2XWcv4WI5f83Gi1BREftQKpWQREWcijIhrBtGMXBVAo6iSHBRiTKWuJAQkYJImUgGieBURarkZcoEG6DH8969NV8tOJ_vTGub7mROOaE4ZizGXSo9p07vWqhypb302jTeSl3nBOdHkflJZH4Umf-K7FD6B91b_Snt4X_o4QxpALgAIsGExin7AfnXgGw
CODEN ITSCBE
CitedBy_id crossref_primary_10_1109_JIOT_2023_3334912
crossref_primary_10_1109_JIOT_2025_3584183
crossref_primary_10_1016_j_eswa_2025_126830
crossref_primary_10_1016_j_eswa_2024_123896
crossref_primary_10_1109_JIOT_2024_3383512
crossref_primary_10_1016_j_future_2024_04_004
crossref_primary_10_1109_TSUSC_2023_3307551
crossref_primary_10_1109_TSMC_2023_3343925
crossref_primary_10_1016_j_engappai_2023_105977
crossref_primary_10_1109_JIOT_2024_3360294
crossref_primary_10_1109_TSUSC_2023_3281583
crossref_primary_10_1109_TCC_2024_3410377
crossref_primary_10_1109_TITS_2025_3558469
crossref_primary_10_1109_JIOT_2024_3369722
crossref_primary_10_1109_JIOT_2024_3525301
crossref_primary_10_1109_TSUSC_2024_3390003
crossref_primary_10_1016_j_eswa_2024_125068
Cites_doi 10.1109/ACCESS.2019.2954699
10.1017/S0962492913000032
10.1109/TPEL.2013.2273461
10.1109/TPDS.2013.227
10.1021/ac60214a047
10.1109/TSC.2018.2878561
10.1038/323533a0
10.1016/j.ins.2014.08.068
10.1109/PESGM.2014.6939309
10.1109/TMAG.2012.2196266
10.1109/ICNSC48988.2020.9238050
10.1109/42.57773
10.1016/j.ejor.2015.12.018
10.1109/TCC.2017.2659728
10.1109/TII.2017.2693365
10.1109/TASE.2015.2503325
10.1109/TCYB.2016.2574766
10.1109/TASE.2018.2857206
10.1016/j.energy.2018.09.032
10.1109/TGCN.2018.2878348
10.1109/TGCN.2018.2890034
10.1109/TASE.2016.2526781
10.1109/TPDS.2018.2889851
10.1109/REPE.2018.8657666
10.1134/S1810232815010087
10.1109/TIE.2007.907672
10.1109/TPDS.2014.2358556
10.1109/TASE.2017.2693688
10.1109/JSYST.2016.2596299
10.1162/neco.1997.9.8.1735
10.1109/TSG.2013.2237929
10.1016/j.jclepro.2019.04.331
10.1109/TII.2020.3004436
10.1109/ACCESS.2017.2766165
10.1109/ACCESS.2019.2942012
10.3354/cr030079
10.1155/2016/5635673
10.1109/TPDS.2016.2526682
10.1109/JAS.2017.7510640
10.1109/ACCESS.2019.2902846
10.1109/TPDS.2017.2773504
10.1109/TASE.2019.2892480
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSUSC.2021.3124893
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2377-3790
EndPage 630
ExternalDocumentID 10_1109_TSUSC_2021_3124893
9601258
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62173013; 62073005; 61802015
  funderid: 10.13039/501100001809
– fundername: Major Science and Technology Program for Water Pollution Control and Treatment of China
  grantid: 2018ZX07111005
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-acc616c4729d613c2945e7cde0444979f9d5a0bae41b1aa6a3e6972c4cd7d8393
IEDL.DBID RIE
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000852215300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3782
IngestDate Sun Jun 29 15:54:16 EDT 2025
Tue Nov 18 20:38:47 EST 2025
Sat Nov 29 04:09:20 EST 2025
Wed Aug 27 02:14:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-acc616c4729d613c2945e7cde0444979f9d5a0bae41b1aa6a3e6972c4cd7d8393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8475-419X
0000-0003-2148-0923
0000-0002-4610-0141
0000-0002-5408-8752
PQID 2712053350
PQPubID 4437206
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TSUSC_2021_3124893
crossref_primary_10_1109_TSUSC_2021_3124893
proquest_journals_2712053350
ieee_primary_9601258
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on sustainable computing
PublicationTitleAbbrev TSUSC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
Yuan (ref36)
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
Jiang (ref11) 2018; 8
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref32
  doi: 10.1109/ACCESS.2019.2954699
– ident: ref38
  doi: 10.1017/S0962492913000032
– ident: ref41
  doi: 10.1109/TPEL.2013.2273461
– ident: ref16
  doi: 10.1109/TPDS.2013.227
– ident: ref39
  doi: 10.1021/ac60214a047
– ident: ref35
  doi: 10.1109/TSC.2018.2878561
– ident: ref8
  doi: 10.1038/323533a0
– ident: ref44
  doi: 10.1016/j.ins.2014.08.068
– ident: ref10
  doi: 10.1109/PESGM.2014.6939309
– ident: ref34
  doi: 10.1109/TMAG.2012.2196266
– ident: ref18
  doi: 10.1109/ICNSC48988.2020.9238050
– ident: ref40
  doi: 10.1109/42.57773
– ident: ref37
  doi: 10.1016/j.ejor.2015.12.018
– ident: ref1
  doi: 10.1109/TCC.2017.2659728
– ident: ref27
  doi: 10.1109/TII.2017.2693365
– start-page: 1206
  volume-title: Proc. IEEE Int. Conf. Syst., Man Cybern.
  ident: ref36
  article-title: Improved LSTM-based prediction method for highly variable workload and resources in clouds
– ident: ref2
  doi: 10.1109/TASE.2015.2503325
– ident: ref3
  doi: 10.1109/TCYB.2016.2574766
– ident: ref33
  doi: 10.1109/TASE.2018.2857206
– volume: 8
  start-page: 112
  year: 2018
  ident: ref11
  article-title: Ultra-short-term multistep prediction of wind power based on representative unit method
  publication-title: Grid Technol.
– ident: ref28
  doi: 10.1016/j.energy.2018.09.032
– ident: ref25
  doi: 10.1109/TGCN.2018.2878348
– ident: ref23
  doi: 10.1109/TGCN.2018.2890034
– ident: ref6
  doi: 10.1109/TASE.2016.2526781
– ident: ref20
  doi: 10.1109/TPDS.2018.2889851
– ident: ref13
  doi: 10.1109/REPE.2018.8657666
– ident: ref43
  doi: 10.1134/S1810232815010087
– ident: ref9
  doi: 10.1109/TIE.2007.907672
– ident: ref21
  doi: 10.1109/TPDS.2014.2358556
– ident: ref22
  doi: 10.1109/TASE.2017.2693688
– ident: ref26
  doi: 10.1109/JSYST.2016.2596299
– ident: ref12
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref15
  doi: 10.1109/TSG.2013.2237929
– ident: ref29
  doi: 10.1016/j.jclepro.2019.04.331
– ident: ref14
  doi: 10.1109/TII.2020.3004436
– ident: ref24
  doi: 10.1109/ACCESS.2017.2766165
– ident: ref31
  doi: 10.1109/ACCESS.2019.2942012
– ident: ref42
  doi: 10.3354/cr030079
– ident: ref7
  doi: 10.1155/2016/5635673
– ident: ref19
  doi: 10.1109/TPDS.2016.2526682
– ident: ref30
  doi: 10.1109/JAS.2017.7510640
– ident: ref17
  doi: 10.1109/ACCESS.2019.2902846
– ident: ref4
  doi: 10.1109/TPDS.2017.2773504
– ident: ref5
  doi: 10.1109/TASE.2019.2892480
SSID ssj0001775921
Score 2.3351457
Snippet Current large-scale green cloud data centers (GCDCs) tend to consume a huge amount of energy and generate enormous carbon emissions. Existing studies have...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 619
SubjectTerms Back propagation networks
Clean energy
Cloud computing
Costs
Data centers
Energy
Energy costs
Errors
Evolutionary algorithms
Green clouds
Green products
intelligent optimization
Irradiance
machine learning
multi-objective optimization algorithms
Mutation
Neural networks
Optimization
recurrent neural network
Renewable energy
Revenue
Savitzky-Golay filter
Scheduling
Task analysis
Task scheduling
Time series analysis
Title Green Energy Forecast-Based Bi-Objective Scheduling of Tasks Across Distributed Clouds
URI https://ieeexplore.ieee.org/document/9601258
https://www.proquest.com/docview/2712053350
Volume 7
WOSCitedRecordID wos000852215300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2377-3790
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001775921
  issn: 2377-3782
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG2AePDiR9CIounBm1a2ZdvSIyDEE5oAhtum2-kalIBhwd9vWxaM0Zh422w6SfPa7ZvpzsxD6FoYEIbzJnH0ACS2EBFllSW6qShQbYXWaRCbkINBazJRTyV0u6uFsdaG5DN75x_Dv3xYmLW_Kms4b9vxcauMylKKTa3W132KlFwxuq2LiVRjNBwPuy4CZNQFpsw3WfnGPUFM5ccJHGilf_i_CR2hg8J9xO3Neh-jkp1X0XNInsG9UMaHvdim0fmKdBxBAe5MyWP6ujnW8NAtEfjc8xe8yPBI5285bofJ4nvfQdeLXzmb7myxhvwEjfu9UfeBFHoJxDDFV0QbI6gwsfOXwbG0exlzKw1Y3xNOSZUp4DpKtY1pSrUWummFkszEBiQ4R6l5iirzxdyeIdxSkDlfIOYt4Vw6TRUAY4YCsxEzPIMaolskE1M0E_eaFrMkBBWRSgL6iUc_KdCvoZudzfumlcafo6se793IAuoaqm8XLCm-tjxhkjJfU8yj89-tLtA-82ULIc22jiqr5dpeoj3zsZrmy6uwkT4BWRHHHg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0gmujFj6ARRe3Bm1a2ZbtLj4AYjIgmgPG2KZ1i_AgYFvz9tmXBGI2Jt82mkzTTbt-b7rwZgNNIY6SFqFALD0hDgwGVRhqqKpIhUyZSauCbTcSdTvXxUd7n4HyphTHG-OQzc-Ee_b98HOuZuyorW7Zt8bi6AqsitHHPXK31daMSx0JytlDGBLLc6_a7DRsDcmZDU-7KrHxDH99O5ccZ7IHlaut_U9qGzYxAktp8xXcgZ0YFePDpM6TphXzEtdvUKp3SuoUoJPVnejd4mR9spGsXCV32-RMZD0lPpa8pqfnJkktXQ9e1v7I2jbfxDNNd6F81e40WzTomUM2lmFKldcQiHVrGjBan7ctQmFijcVXhZCyHEoUKBsqEbMCUilTFRDLmOtQYo6VKlT3Ij8Yjsw-kKnFo2UAoqpEldYpJRM41Q24CrsUQi8AWnkx0Vk7cdbV4S3xYEcjEez9x3k8y7xfhbGnzPi-m8efogvP3cmTm6iKUFguWZN9bmvCYcacqFsHB71YnsN7q3baT9nXn5hA2uBMx-KTbEuSnk5k5gjX9MX1OJ8d-U30C3tjKZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Green+Energy+Forecast-Based+Bi-Objective+Scheduling+of+Tasks+Across+Distributed+Clouds&rft.jtitle=IEEE+transactions+on+sustainable+computing&rft.au=Bi%2C+Jing&rft.au=Yuan%2C+Haitao&rft.au=Zhang%2C+Jia&rft.au=Zhou%2C+MengChu&rft.date=2022-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3790&rft.volume=7&rft.issue=3&rft.spage=619&rft_id=info:doi/10.1109%2FTSUSC.2021.3124893&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3782&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3782&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3782&client=summon