Green Energy Forecast-Based Bi-Objective Scheduling of Tasks Across Distributed Clouds
Current large-scale green cloud data centers (GCDCs) tend to consume a huge amount of energy and generate enormous carbon emissions. Existing studies have tried to solve this problem by either realizing prediction of green energy, or optimizing task scheduling. In contrast, this work seamlessly comb...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on sustainable computing Jg. 7; H. 3; S. 619 - 630 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2377-3782, 2377-3790 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Current large-scale green cloud data centers (GCDCs) tend to consume a huge amount of energy and generate enormous carbon emissions. Existing studies have tried to solve this problem by either realizing prediction of green energy, or optimizing task scheduling. In contrast, this work seamlessly combines green energy prediction and task scheduling to jointly optimize revenue and energy cost of GCDCs. Specifically, this work designs a prediction method, named Savitzky-Golay and Long Short-Term Memory network (SG-LSTM), to realize noise filtering and forecast green energy. Based on such prediction, a bi-objective optimization method, named Decomposition-based Multi-objective evolutionary algorithm with Gaussian mutation and Crowding distance (DMGC), is developed to optimize the revenue and energy cost of GCDCs. Its performance is demonstrated over real-life datasets including Google cluster traces, wind speeds, solar irradiance and prices of electricity. Experimental results show that SG-LSTM outperforms its two peers, back propagation neural network and gated recurrent unit, in terms of root mean square errors and mean absolute errors. In addition, DMGC surpasses its such peers as NSGA-II, SPEA2, and MOEA/D in terms of revenue, energy cost and average execution time. Particularly, DMGC's revenue is 18%, 20% and 13.1% higher, energy cost is 16%, 19.8% and 15.2% lower, and average execution time is 60.02%, 38.47% and 24.17% lower than those of NSGA-II, SPEA2, and MOEA/D, respectively. |
|---|---|
| AbstractList | Current large-scale green cloud data centers (GCDCs) tend to consume a huge amount of energy and generate enormous carbon emissions. Existing studies have tried to solve this problem by either realizing prediction of green energy, or optimizing task scheduling. In contrast, this work seamlessly combines green energy prediction and task scheduling to jointly optimize revenue and energy cost of GCDCs. Specifically, this work designs a prediction method, named Savitzky-Golay and Long Short-Term Memory network (SG-LSTM), to realize noise filtering and forecast green energy. Based on such prediction, a bi-objective optimization method, named Decomposition-based Multi-objective evolutionary algorithm with Gaussian mutation and Crowding distance (DMGC), is developed to optimize the revenue and energy cost of GCDCs. Its performance is demonstrated over real-life datasets including Google cluster traces, wind speeds, solar irradiance and prices of electricity. Experimental results show that SG-LSTM outperforms its two peers, back propagation neural network and gated recurrent unit, in terms of root mean square errors and mean absolute errors. In addition, DMGC surpasses its such peers as NSGA-II, SPEA2, and MOEA/D in terms of revenue, energy cost and average execution time. Particularly, DMGC's revenue is 18%, 20% and 13.1% higher, energy cost is 16%, 19.8% and 15.2% lower, and average execution time is 60.02%, 38.47% and 24.17% lower than those of NSGA-II, SPEA2, and MOEA/D, respectively. |
| Author | Zhou, MengChu Yuan, Haitao Bi, Jing Zhang, Jia |
| Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0002-4610-0141 surname: Bi fullname: Bi, Jing email: bijing@bjut.edu.cn organization: School of Software Engineering in Faculty of Information Technology, Beijing University of Technology, Beijing, China – sequence: 2 givenname: Haitao orcidid: 0000-0001-8475-419X surname: Yuan fullname: Yuan, Haitao email: yuan@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China – sequence: 3 givenname: Jia orcidid: 0000-0003-2148-0923 surname: Zhang fullname: Zhang, Jia email: jiazhang@smu.edu organization: Department of Computer Science, School of Engineering, Southern Methodist University, Dallas, TX, USA – sequence: 4 givenname: MengChu orcidid: 0000-0002-5408-8752 surname: Zhou fullname: Zhou, MengChu email: zhou@njit.edu organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA |
| BookMark | eNp9kE1PwkAQhjcGExH5A3pp4rm4H223e4QKaELCAfDabLdTXKxd3N2a8O8tYDh48DSTyfvMTJ5b1GtMAwjdEzwiBIun9WqzykYUUzJihEapYFeoTxnnIeMC9y59Sm_Q0LkdxphwHgtK-uhtbgGaYNqA3R6CmbGgpPPhRDoog4kOl8UOlNffEKzUO5RtrZttYKpgLd2HC8bKGueCZ-281UXrOyarTVu6O3RdydrB8LcO0GY2XWcv4WI5f83Gi1BREftQKpWQREWcijIhrBtGMXBVAo6iSHBRiTKWuJAQkYJImUgGieBURarkZcoEG6DH8969NV8tOJ_vTGub7mROOaE4ZizGXSo9p07vWqhypb302jTeSl3nBOdHkflJZH4Umf-K7FD6B91b_Snt4X_o4QxpALgAIsGExin7AfnXgGw |
| CODEN | ITSCBE |
| CitedBy_id | crossref_primary_10_1109_JIOT_2023_3334912 crossref_primary_10_1109_JIOT_2025_3584183 crossref_primary_10_1016_j_eswa_2025_126830 crossref_primary_10_1016_j_eswa_2024_123896 crossref_primary_10_1109_JIOT_2024_3383512 crossref_primary_10_1016_j_future_2024_04_004 crossref_primary_10_1109_TSUSC_2023_3307551 crossref_primary_10_1109_TSMC_2023_3343925 crossref_primary_10_1016_j_engappai_2023_105977 crossref_primary_10_1109_JIOT_2024_3360294 crossref_primary_10_1109_TSUSC_2023_3281583 crossref_primary_10_1109_TCC_2024_3410377 crossref_primary_10_1109_TITS_2025_3558469 crossref_primary_10_1109_JIOT_2024_3369722 crossref_primary_10_1109_JIOT_2024_3525301 crossref_primary_10_1109_TSUSC_2024_3390003 crossref_primary_10_1016_j_eswa_2024_125068 |
| Cites_doi | 10.1109/ACCESS.2019.2954699 10.1017/S0962492913000032 10.1109/TPEL.2013.2273461 10.1109/TPDS.2013.227 10.1021/ac60214a047 10.1109/TSC.2018.2878561 10.1038/323533a0 10.1016/j.ins.2014.08.068 10.1109/PESGM.2014.6939309 10.1109/TMAG.2012.2196266 10.1109/ICNSC48988.2020.9238050 10.1109/42.57773 10.1016/j.ejor.2015.12.018 10.1109/TCC.2017.2659728 10.1109/TII.2017.2693365 10.1109/TASE.2015.2503325 10.1109/TCYB.2016.2574766 10.1109/TASE.2018.2857206 10.1016/j.energy.2018.09.032 10.1109/TGCN.2018.2878348 10.1109/TGCN.2018.2890034 10.1109/TASE.2016.2526781 10.1109/TPDS.2018.2889851 10.1109/REPE.2018.8657666 10.1134/S1810232815010087 10.1109/TIE.2007.907672 10.1109/TPDS.2014.2358556 10.1109/TASE.2017.2693688 10.1109/JSYST.2016.2596299 10.1162/neco.1997.9.8.1735 10.1109/TSG.2013.2237929 10.1016/j.jclepro.2019.04.331 10.1109/TII.2020.3004436 10.1109/ACCESS.2017.2766165 10.1109/ACCESS.2019.2942012 10.3354/cr030079 10.1155/2016/5635673 10.1109/TPDS.2016.2526682 10.1109/JAS.2017.7510640 10.1109/ACCESS.2019.2902846 10.1109/TPDS.2017.2773504 10.1109/TASE.2019.2892480 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TSUSC.2021.3124893 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2377-3790 |
| EndPage | 630 |
| ExternalDocumentID | 10_1109_TSUSC_2021_3124893 9601258 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62173013; 62073005; 61802015 funderid: 10.13039/501100001809 – fundername: Major Science and Technology Program for Water Pollution Control and Treatment of China grantid: 2018ZX07111005 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c295t-acc616c4729d613c2945e7cde0444979f9d5a0bae41b1aa6a3e6972c4cd7d8393 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000852215300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2377-3782 |
| IngestDate | Sun Jun 29 15:54:16 EDT 2025 Tue Nov 18 20:38:47 EST 2025 Sat Nov 29 04:09:20 EST 2025 Wed Aug 27 02:14:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-acc616c4729d613c2945e7cde0444979f9d5a0bae41b1aa6a3e6972c4cd7d8393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8475-419X 0000-0003-2148-0923 0000-0002-4610-0141 0000-0002-5408-8752 |
| PQID | 2712053350 |
| PQPubID | 4437206 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSUSC_2021_3124893 crossref_primary_10_1109_TSUSC_2021_3124893 proquest_journals_2712053350 ieee_primary_9601258 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on sustainable computing |
| PublicationTitleAbbrev | TSUSC |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 Yuan (ref36) ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 Jiang (ref11) 2018; 8 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref32 doi: 10.1109/ACCESS.2019.2954699 – ident: ref38 doi: 10.1017/S0962492913000032 – ident: ref41 doi: 10.1109/TPEL.2013.2273461 – ident: ref16 doi: 10.1109/TPDS.2013.227 – ident: ref39 doi: 10.1021/ac60214a047 – ident: ref35 doi: 10.1109/TSC.2018.2878561 – ident: ref8 doi: 10.1038/323533a0 – ident: ref44 doi: 10.1016/j.ins.2014.08.068 – ident: ref10 doi: 10.1109/PESGM.2014.6939309 – ident: ref34 doi: 10.1109/TMAG.2012.2196266 – ident: ref18 doi: 10.1109/ICNSC48988.2020.9238050 – ident: ref40 doi: 10.1109/42.57773 – ident: ref37 doi: 10.1016/j.ejor.2015.12.018 – ident: ref1 doi: 10.1109/TCC.2017.2659728 – ident: ref27 doi: 10.1109/TII.2017.2693365 – start-page: 1206 volume-title: Proc. IEEE Int. Conf. Syst., Man Cybern. ident: ref36 article-title: Improved LSTM-based prediction method for highly variable workload and resources in clouds – ident: ref2 doi: 10.1109/TASE.2015.2503325 – ident: ref3 doi: 10.1109/TCYB.2016.2574766 – ident: ref33 doi: 10.1109/TASE.2018.2857206 – volume: 8 start-page: 112 year: 2018 ident: ref11 article-title: Ultra-short-term multistep prediction of wind power based on representative unit method publication-title: Grid Technol. – ident: ref28 doi: 10.1016/j.energy.2018.09.032 – ident: ref25 doi: 10.1109/TGCN.2018.2878348 – ident: ref23 doi: 10.1109/TGCN.2018.2890034 – ident: ref6 doi: 10.1109/TASE.2016.2526781 – ident: ref20 doi: 10.1109/TPDS.2018.2889851 – ident: ref13 doi: 10.1109/REPE.2018.8657666 – ident: ref43 doi: 10.1134/S1810232815010087 – ident: ref9 doi: 10.1109/TIE.2007.907672 – ident: ref21 doi: 10.1109/TPDS.2014.2358556 – ident: ref22 doi: 10.1109/TASE.2017.2693688 – ident: ref26 doi: 10.1109/JSYST.2016.2596299 – ident: ref12 doi: 10.1162/neco.1997.9.8.1735 – ident: ref15 doi: 10.1109/TSG.2013.2237929 – ident: ref29 doi: 10.1016/j.jclepro.2019.04.331 – ident: ref14 doi: 10.1109/TII.2020.3004436 – ident: ref24 doi: 10.1109/ACCESS.2017.2766165 – ident: ref31 doi: 10.1109/ACCESS.2019.2942012 – ident: ref42 doi: 10.3354/cr030079 – ident: ref7 doi: 10.1155/2016/5635673 – ident: ref19 doi: 10.1109/TPDS.2016.2526682 – ident: ref30 doi: 10.1109/JAS.2017.7510640 – ident: ref17 doi: 10.1109/ACCESS.2019.2902846 – ident: ref4 doi: 10.1109/TPDS.2017.2773504 – ident: ref5 doi: 10.1109/TASE.2019.2892480 |
| SSID | ssj0001775921 |
| Score | 2.3351457 |
| Snippet | Current large-scale green cloud data centers (GCDCs) tend to consume a huge amount of energy and generate enormous carbon emissions. Existing studies have... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 619 |
| SubjectTerms | Back propagation networks Clean energy Cloud computing Costs Data centers Energy Energy costs Errors Evolutionary algorithms Green clouds Green products intelligent optimization Irradiance machine learning multi-objective optimization algorithms Mutation Neural networks Optimization recurrent neural network Renewable energy Revenue Savitzky-Golay filter Scheduling Task analysis Task scheduling Time series analysis |
| Title | Green Energy Forecast-Based Bi-Objective Scheduling of Tasks Across Distributed Clouds |
| URI | https://ieeexplore.ieee.org/document/9601258 https://www.proquest.com/docview/2712053350 |
| Volume | 7 |
| WOSCitedRecordID | wos000852215300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2377-3790 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001775921 issn: 2377-3782 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG2AePDiR9CIounBm1a2ZdvSIyDEE5oAhtum2-kalIBhwd9vWxaM0Zh422w6SfPa7ZvpzsxD6FoYEIbzJnH0ACS2EBFllSW6qShQbYXWaRCbkINBazJRTyV0u6uFsdaG5DN75x_Dv3xYmLW_Kms4b9vxcauMylKKTa3W132KlFwxuq2LiVRjNBwPuy4CZNQFpsw3WfnGPUFM5ccJHGilf_i_CR2hg8J9xO3Neh-jkp1X0XNInsG9UMaHvdim0fmKdBxBAe5MyWP6ujnW8NAtEfjc8xe8yPBI5285bofJ4nvfQdeLXzmb7myxhvwEjfu9UfeBFHoJxDDFV0QbI6gwsfOXwbG0exlzKw1Y3xNOSZUp4DpKtY1pSrUWummFkszEBiQ4R6l5iirzxdyeIdxSkDlfIOYt4Vw6TRUAY4YCsxEzPIMaolskE1M0E_eaFrMkBBWRSgL6iUc_KdCvoZudzfumlcafo6se793IAuoaqm8XLCm-tjxhkjJfU8yj89-tLtA-82ULIc22jiqr5dpeoj3zsZrmy6uwkT4BWRHHHg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0gmujFj6ARRe3Bm1a2ZbtLj4AYjIgmgPG2KZ1i_AgYFvz9tmXBGI2Jt82mkzTTbt-b7rwZgNNIY6SFqFALD0hDgwGVRhqqKpIhUyZSauCbTcSdTvXxUd7n4HyphTHG-OQzc-Ee_b98HOuZuyorW7Zt8bi6AqsitHHPXK31daMSx0JytlDGBLLc6_a7DRsDcmZDU-7KrHxDH99O5ccZ7IHlaut_U9qGzYxAktp8xXcgZ0YFePDpM6TphXzEtdvUKp3SuoUoJPVnejd4mR9spGsXCV32-RMZD0lPpa8pqfnJkktXQ9e1v7I2jbfxDNNd6F81e40WzTomUM2lmFKldcQiHVrGjBan7ctQmFijcVXhZCyHEoUKBsqEbMCUilTFRDLmOtQYo6VKlT3Ij8Yjsw-kKnFo2UAoqpEldYpJRM41Q24CrsUQi8AWnkx0Vk7cdbV4S3xYEcjEez9x3k8y7xfhbGnzPi-m8efogvP3cmTm6iKUFguWZN9bmvCYcacqFsHB71YnsN7q3baT9nXn5hA2uBMx-KTbEuSnk5k5gjX9MX1OJ8d-U30C3tjKZQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Green+Energy+Forecast-Based+Bi-Objective+Scheduling+of+Tasks+Across+Distributed+Clouds&rft.jtitle=IEEE+transactions+on+sustainable+computing&rft.au=Bi%2C+Jing&rft.au=Yuan%2C+Haitao&rft.au=Zhang%2C+Jia&rft.au=Zhou%2C+MengChu&rft.date=2022-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3790&rft.volume=7&rft.issue=3&rft.spage=619&rft_id=info:doi/10.1109%2FTSUSC.2021.3124893&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3782&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3782&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3782&client=summon |