Target-Value-Competition-Based Multi-Agent Deep Reinforcement Learning Algorithm for Distributed Nonconvex Economic Dispatch

With the increasing expansion of the power grid, economic dispatch problems have received considerable attention. A multi-agent coordinated deep reinforcement learning algorithm is proposed to deal with distributed nonconvex economic dispatch problems. In the algorithm, agents run independent reinfo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on power systems Ročník 38; číslo 1; s. 204 - 217
Hlavní autoři: Ding, Lifu, Lin, Zhiyun, Shi, Xiasheng, Yan, Gangfeng
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0885-8950, 1558-0679
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the increasing expansion of the power grid, economic dispatch problems have received considerable attention. A multi-agent coordinated deep reinforcement learning algorithm is proposed to deal with distributed nonconvex economic dispatch problems. In the algorithm, agents run independent reinforcement learning algorithms and update their local Q-functions with a newly defined joint reward. The double network structure is adopted to approximate the Q-function so that the offline trained model can be used online to provide recommended power outputs for time-varying demands in real-time. By introducing the reward network, the competition mechanism between the reward network and the target network is established to determine a progressively stable target value, which achieves coordination among agents and pledges the losses of the Q-networks to converge well. Theoretical analysis is given and case studies are conducted to prove the advantages compared with existing approaches.
AbstractList With the increasing expansion of the power grid, economic dispatch problems have received considerable attention. A multi-agent coordinated deep reinforcement learning algorithm is proposed to deal with distributed nonconvex economic dispatch problems. In the algorithm, agents run independent reinforcement learning algorithms and update their local Q-functions with a newly defined joint reward. The double network structure is adopted to approximate the Q-function so that the offline trained model can be used online to provide recommended power outputs for time-varying demands in real-time. By introducing the reward network, the competition mechanism between the reward network and the target network is established to determine a progressively stable target value, which achieves coordination among agents and pledges the losses of the Q-networks to converge well. Theoretical analysis is given and case studies are conducted to prove the advantages compared with existing approaches.
Author Lin, Zhiyun
Yan, Gangfeng
Shi, Xiasheng
Ding, Lifu
Author_xml – sequence: 1
  givenname: Lifu
  orcidid: 0000-0003-1860-9992
  surname: Ding
  fullname: Ding, Lifu
  email: dinglifu@zju.edu.cn
  organization: College of Electrical Engineering, Zhejiang University, Hangzhou, Zhejiang, China
– sequence: 2
  givenname: Zhiyun
  orcidid: 0000-0002-5523-4467
  surname: Lin
  fullname: Lin, Zhiyun
  email: linzy@sustech.edu.cn
  organization: Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
– sequence: 3
  givenname: Xiasheng
  orcidid: 0000-0001-9079-5705
  surname: Shi
  fullname: Shi, Xiasheng
  email: shixiasheng@zju.edu.cn
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
– sequence: 4
  givenname: Gangfeng
  orcidid: 0000-0002-3598-4949
  surname: Yan
  fullname: Yan, Gangfeng
  email: ygf@zju.edu.cn
  organization: College of Electrical Engineering, Zhejiang University, Hangzhou, Zhejiang, China
BookMark eNp9kU1LxDAQhoMouH78Ab0UPGdN0k3THNf1E9YPdNVjSeN0jbRJTVNR8MebuuLBg6eBeeeZgWe20Lp1FhDao2RMKZGHi5vH27sxI4yNU8plzvgaGlHOc0wyIdfRiOQ5x7nkZBNtdd0LISSLwQh9LpRfQsAPqu4Bz1zTQjDBOIuPVAdPyWVfB4OnS7AhOQZok1swtnJeQzO05qC8NXaZTOul8yY8N0kMk2PTBW_KPsQNV85qZ9_gPTmJ1TVGD3Grgn7eQRuVqjvY_anb6P70ZDE7x_Prs4vZdI41kzxgJcocSlURxVMhOaU5TGgGVArFKpCEVVwSrQmnnKpJmTKQGQitU0WqchIb2-hgtbf17rWHLhQvrvc2niyY4IKKTGaTOJWvprR3XeehKrQJanARvDJ1QUkxuC6-XReD6-LHdUTZH7T1plH-439ofwUZAPgFpEjjZ0T6Bfi4jyQ
CODEN ITPSEG
CitedBy_id crossref_primary_10_1109_TSG_2025_3549723
crossref_primary_10_1016_j_ijepes_2024_109867
crossref_primary_10_1007_s13369_025_10181_2
crossref_primary_10_1016_j_dche_2025_100257
crossref_primary_10_1109_ACCESS_2024_3514362
crossref_primary_10_1109_TPWRS_2024_3395248
crossref_primary_10_1016_j_ijepes_2024_109980
crossref_primary_10_1109_TPWRS_2024_3419894
crossref_primary_10_1016_j_apenergy_2024_123611
crossref_primary_10_1007_s11432_024_4223_2
crossref_primary_10_1016_j_energy_2025_137895
crossref_primary_10_1080_00207721_2024_2448770
crossref_primary_10_1109_TII_2025_3567398
crossref_primary_10_3390_en17081878
crossref_primary_10_1016_j_epsr_2024_110711
crossref_primary_10_1109_TAES_2025_3541162
crossref_primary_10_1049_gtd2_13001
crossref_primary_10_1109_ACCESS_2023_3337118
crossref_primary_10_1109_TII_2024_3465601
crossref_primary_10_3390_app15158605
crossref_primary_10_1016_j_enbuild_2024_114410
crossref_primary_10_1109_TPWRS_2022_3221439
crossref_primary_10_3390_en18071837
crossref_primary_10_1080_21642583_2025_2467077
crossref_primary_10_1109_TPWRS_2023_3288039
crossref_primary_10_1109_TAC_2024_3384341
crossref_primary_10_1109_TIA_2025_3529675
Cites_doi 10.1109/TCYB.2019.2921475
10.1049/ip-c.1993.0074
10.1109/TNNLS.2018.2801880
10.1109/TNN.1998.712192
10.1109/TII.2013.2287807
10.1109/SFCS.2003.1238221
10.1109/TSP.2017.2669896
10.1016/j.epsr.2007.11.007
10.1007/978-981-13-8285-7_4
10.1109/TII.2019.2933443
10.1109/TSG.2020.3011739
10.1109/59.260861
10.1109/TPWRS.2020.2999890
10.1109/TII.2019.2908450
10.21236/ada333248
10.1109/TSG.2014.2363096
10.1109/TSG.2018.2833108
10.1109/MPE.2009.934876
10.1016/j.arcontrol.2008.03.004
10.1109/TSG.2021.3052998
10.1109/TSG.2021.3060027
10.1016/j.eneco.2016.11.014
10.1109/TSG.2017.2756041
10.1109/TPWRS.2006.889132
10.1109/SURV.2011.101911.00087
10.1109/TPWRS.2005.857924
10.1109/TPWRS.2003.814889
10.1109/TPWRS.2018.2889989
10.1109/TPWRS.2021.3070161
10.3390/en13010123
10.1007/978-3-319-92040-5_19
10.1016/j.ins.2010.02.015
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TPWRS.2022.3159825
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0679
EndPage 217
ExternalDocumentID 10_1109_TPWRS_2022_3159825
9736677
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62173118
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c295t-a7b8ebaf0a53795118e416e197a2fe902f590cc05151a4b32e96e7cc3a0fb44b3
IEDL.DBID RIE
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000922154400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-8950
IngestDate Fri Jul 25 19:03:01 EDT 2025
Sat Nov 29 02:52:27 EST 2025
Tue Nov 18 22:32:09 EST 2025
Wed Aug 27 02:14:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-a7b8ebaf0a53795118e416e197a2fe902f590cc05151a4b32e96e7cc3a0fb44b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9079-5705
0000-0003-1860-9992
0000-0002-3598-4949
0000-0002-5523-4467
PQID 2757176964
PQPubID 85441
PageCount 14
ParticipantIDs crossref_primary_10_1109_TPWRS_2022_3159825
crossref_citationtrail_10_1109_TPWRS_2022_3159825
proquest_journals_2757176964
ieee_primary_9736677
PublicationCentury 2000
PublicationDate 2023-Jan.
2023-1-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref14
ref36
ref31
Melo (ref33) 2001
ref30
ref11
ref10
ref32
ref2
ref1
ref39
ref38
ref19
ref18
Romoff (ref29) 2018
Sunehag (ref15) 2018; 3
Lauer (ref23) 2000
Lowe (ref17) 2017; 30
ref24
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
Park (ref37) 1998; 6
Rashid (ref16) 2018
ref9
ref4
ref3
ref6
ref5
References_xml – start-page: 674
  volume-title: Proc. 2nd Conf. Robot Learn.
  year: 2018
  ident: ref29
  article-title: Reward estimation for variance reduction in deep reinforcement learning
– ident: ref25
  doi: 10.1109/TCYB.2019.2921475
– ident: ref3
  doi: 10.1049/ip-c.1993.0074
– ident: ref24
  doi: 10.1109/TNNLS.2018.2801880
– ident: ref34
  doi: 10.1109/TNN.1998.712192
– ident: ref11
  doi: 10.1109/TII.2013.2287807
– ident: ref30
  doi: 10.1109/SFCS.2003.1238221
– volume: 3
  start-page: 2085
  volume-title: Proc. 17th Int. Conf. Autonomous Agents Multiagent Syst.
  year: 2018
  ident: ref15
  article-title: Value-decomposition networks for cooperative multi-agent learning based on team reward
– ident: ref7
  doi: 10.1109/TSP.2017.2669896
– ident: ref38
  doi: 10.1016/j.epsr.2007.11.007
– volume: 30
  volume-title: Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref17
  article-title: Multi-agent actor-critic for mixed cooperative-competitive environments
– ident: ref31
  doi: 10.1007/978-981-13-8285-7_4
– ident: ref26
  doi: 10.1109/TII.2019.2933443
– ident: ref19
  doi: 10.1109/TSG.2020.3011739
– ident: ref4
  doi: 10.1109/59.260861
– ident: ref18
  doi: 10.1109/TPWRS.2020.2999890
– ident: ref10
  doi: 10.1109/TII.2019.2908450
– ident: ref14
  doi: 10.21236/ada333248
– ident: ref32
  doi: 10.1109/TSG.2014.2363096
– ident: ref9
  doi: 10.1109/TSG.2018.2833108
– ident: ref1
  doi: 10.1109/MPE.2009.934876
– ident: ref6
  doi: 10.1016/j.arcontrol.2008.03.004
– ident: ref20
  doi: 10.1109/TSG.2021.3052998
– ident: ref21
  doi: 10.1109/TSG.2021.3060027
– ident: ref28
  doi: 10.1016/j.eneco.2016.11.014
– ident: ref8
  doi: 10.1109/TSG.2017.2756041
– volume: 6
  start-page: 103
  issue: 2
  year: 1998
  ident: ref37
  article-title: New approach to economic load dispatch based on improved evolutionary programming
  publication-title: Int. J. Eng. Intell. Syst. Elect. Eng. Commun.
– ident: ref5
  doi: 10.1109/TPWRS.2006.889132
– ident: ref2
  doi: 10.1109/SURV.2011.101911.00087
– ident: ref35
  doi: 10.1109/TPWRS.2005.857924
– ident: ref36
  doi: 10.1109/TPWRS.2003.814889
– ident: ref12
  doi: 10.1109/TPWRS.2018.2889989
– start-page: 535
  volume-title: Proc. 17th Int. Conf. Mach. Learn.
  year: 2000
  ident: ref23
  article-title: An algorithm for distributed reinforcement learning in cooperative multi-agent systems
– ident: ref27
  doi: 10.1109/TPWRS.2021.3070161
– start-page: 4295
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2018
  ident: ref16
  article-title: QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning
– start-page: 1
  year: 2001
  ident: ref33
  article-title: Convergence of Q-learning: A simple proof
– ident: ref22
  doi: 10.3390/en13010123
– ident: ref13
  doi: 10.1007/978-3-319-92040-5_19
– ident: ref39
  doi: 10.1016/j.ins.2010.02.015
SSID ssj0006679
Score 2.5688422
Snippet With the increasing expansion of the power grid, economic dispatch problems have received considerable attention. A multi-agent coordinated deep reinforcement...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 204
SubjectTerms Algorithms
Approximation algorithms
Competition
Deep learning
Deep neural network
distributed economic dispatch
Estimation
Heuristic algorithms
Inference algorithms
Machine learning
multi-agent deep reinforcement learning
Multiagent systems
nonconvex optimization
Observability
Power dispatch
Reinforcement learning
Training
Title Target-Value-Competition-Based Multi-Agent Deep Reinforcement Learning Algorithm for Distributed Nonconvex Economic Dispatch
URI https://ieeexplore.ieee.org/document/9736677
https://www.proquest.com/docview/2757176964
Volume 38
WOSCitedRecordID wos000922154400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0679
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006679
  issn: 0885-8950
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B6qE9lAKtunxUPvTWujhObMfHBYo4rRBdWm6RPZkA0rK7WnYRB348tpNdFbWq1FsU21GUl4xnJjPvAXx2mGWkCuTos5itKjNeovI8d5KsLZw2ukliE2YwKK-u7PkafF31whBRKj6jb_Ew_cuvJ7iIqbJDa3KtjVmHdWN026u1srphwLYeo-KlVWLZICPs4fD818WPEApKGSLUSFinXmxCSVXlD1Oc9pfTzf-7s3fwtvMjWb8FfgvWaLwNb35jF9yBp2Gq8uY_3WhB_Dg5yKlAix-FratmqfeW92NvFTshmrILSjSqmDKGrGNevWb90fVkdju_uWNhkJ1Ept0okhWuMJiMU9X6I1v2N8fhabDuN-_h8vT78PiMd2ILHKVVc-6ML8m7RjiVGxvjDgq-GmXWONmQFbJRViBGSZjMFT4PUGoyiLkTjS_CiQ-wMZ6M6SMwiQYl5irL67IgzH1wY7SovfNNLaRXPciWT7_Cjok8CmKMqhSRCFslxKqIWNUh1oMvqzXTlofjn7N3IkarmR08Pdhfglx1n-p9JY0KIa22utj9-6o9eB015tu8yz5szGcLOoBX-DC_vZ99Sm_hMxMp3Fs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NDQn2sAEbomwDP_AGZo4Tx_Fj90tDjGoaBfYW2ZfLNqm0VddOPOyPn-2k1dDQJN6i2I6ifMn57nL3fQAfLCYJqQw5uiRkq4qEF6gcT60kYzKb67yOYhO61yvOz83pEnxa9MIQUSw-o8_hMP7Lr0Y4C6myXaPTPNf6CayoLJOi6dZa2F0_ZBqfUfHCKDFvkRFmt3_66-y7Dwal9DFqoKxTf21DUVflgTGOO8zR-v_d2wtYaz1J1m2gfwlLNHwFq_f4BTfgth_rvPlPO5gR348ucizR4nt-86pY7L7l3dBdxQ6IxuyMIpEqxpwha7lXL1h3cDGaXE0vfzM_yA4C126QyfJX6I2GsW79D5t3OIfhsbfvl5vw4-iwv3_MW7kFjtKoKbfaFeRsLaxKtQmRB3lvjRKjrazJCFkrIxCDKExiM5d6MHPSiKkVtcv8idewPBwN6Q0wiRolpipJqyIjTJ13ZHJROevqSkinOpDMn36JLRd5kMQYlDEmEaaMiJUBsbJFrAMfF2vGDRPHo7M3AkaLmS08Hdieg1y2H-t1KbXyQW1u8uztv1e9h2fH_W8n5cmX3tcteB4U55sszDYsTycz2oGneDO9up68i2_kHa1W36I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Target-Value-Competition-Based+Multi-Agent+Deep+Reinforcement+Learning+Algorithm+for+Distributed+Nonconvex+Economic+Dispatch&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Ding%2C+Lifu&rft.au=Lin%2C+Zhiyun&rft.au=Shi%2C+Xiasheng&rft.au=Gangfeng+Yan&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=38&rft.issue=1&rft.spage=204&rft_id=info:doi/10.1109%2FTPWRS.2022.3159825&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon