Low-Delay Analog Joint Source-Channel Coding with Deep Learning
We consider the design of low-delay joint source-channel coding (JSCC) schemes for the transmission of discrete-time analog sources over noisy channels based on deep neural networks. The design problem is addressed as optimization of an autoencoder model, and several scenarios are discussed. For poi...
Uložené v:
| Vydané v: | IEEE transactions on communications Ročník 71; číslo 1; s. 1 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0090-6778, 1558-0857 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We consider the design of low-delay joint source-channel coding (JSCC) schemes for the transmission of discrete-time analog sources over noisy channels based on deep neural networks. The design problem is addressed as optimization of an autoencoder model, and several scenarios are discussed. For point-to-point communication of independent and identically distributed (i.i.d) Gaussian sources and Gauss-Markov sources over additive-white Gaussian noise (AWGN) channels, the encoder and decoder are constructed using recurrent neural networks (RNNs). With minimum prior knowledge used for design, the performance of these RNNs-based models is optimized using fine tuning techniques during training. Sinusoidal representation networks (SIRENs)-based models are proposed and optimized for three JSCC problems namely, transmitting multivariate Gaussian sources over AWGN channels, transmitting i.i.d Gaussian sources with side information at the decoder, and for communicating correlated sources over orthogonal Gaussian channels. We show that these deep learning-based JSCC schemes perform comparably or better than state-of-the-art (SOTA) traditional schemes. The proposed scheme can extend flexibly to different pairs of source and channel dimensions. Moreover, the spontaneously learned encoder mappings exhibit structured patterns that are interpretable. |
|---|---|
| AbstractList | We consider the design of low-delay joint source-channel coding (JSCC) schemes for the transmission of discrete-time analog sources over noisy channels based on deep neural networks. The design problem is addressed as optimization of an autoencoder model, and several scenarios are discussed. For point-to-point communication of independent and identically distributed (i.i.d) Gaussian sources and Gauss-Markov sources over additive-white Gaussian noise (AWGN) channels, the encoder and decoder are constructed using recurrent neural networks (RNNs). With minimum prior knowledge used for design, the performance of these RNNs-based models is optimized using fine tuning techniques during training. Sinusoidal representation networks (SIRENs)-based models are proposed and optimized for three JSCC problems namely, transmitting multivariate Gaussian sources over AWGN channels, transmitting i.i.d Gaussian sources with side information at the decoder, and for communicating correlated sources over orthogonal Gaussian channels. We show that these deep learning-based JSCC schemes perform comparably or better than state-of-the-art (SOTA) traditional schemes. The proposed scheme can extend flexibly to different pairs of source and channel dimensions. Moreover, the spontaneously learned encoder mappings exhibit structured patterns that are interpretable. |
| Author | Narayanan, Krishna Xuan, Ziwei |
| Author_xml | – sequence: 1 givenname: Ziwei orcidid: 0000-0002-0279-5260 surname: Xuan fullname: Xuan, Ziwei organization: Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA – sequence: 2 givenname: Krishna orcidid: 0000-0001-8742-5332 surname: Narayanan fullname: Narayanan, Krishna organization: Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA |
| BookMark | eNp9kEtPAjEUhRuDiYj-Ad1M4nrw9jWdrgwZfGYIC3HdlE6BkrHFzhDCv3cQ4sKFq5vcnO_k5LtEPR-8RegGwxBjkPezYjqZDAkQMqSEkFywM9THnOcp5Fz0UB9AQpoJkV-gy6ZZAwADSvvooQy7dGxrvU9GXtdhmbwF59vkPWyjsWmx0t7bOilC5fwy2bl2lYyt3SSl1dF3ryt0vtB1Y69Pd4A-nh5nxUtaTp9fi1GZGiJ5m2qB9QI4XRjGsACbZ1rPmcXaYE4kJVSYucZMMmZkVdGME21NxnTVzQScETpAd8feTQxfW9u0at0t7BY3ioiMY8EFPqTyY8rE0DTRLpRxrW5d8G3UrlYY1EGX-tGlDrrUSVeHkj_oJrpPHff_Q7dHyFlrfwEpOYMM6DehkHYf |
| CODEN | IECMBT |
| CitedBy_id | crossref_primary_10_1109_TCOMM_2024_3407204 crossref_primary_10_1109_TIT_2023_3302318 crossref_primary_10_1111_coin_70021 crossref_primary_10_1109_TIT_2023_3297962 crossref_primary_10_1111_coin_70045 crossref_primary_10_1109_LCOMM_2025_3556673 crossref_primary_10_1109_TCOMM_2024_3406381 crossref_primary_10_4108_eetsis_8678 crossref_primary_10_1186_s13634_024_01132_4 crossref_primary_10_1007_s11276_024_03830_1 crossref_primary_10_1109_TWC_2024_3422794 |
| Cites_doi | 10.1109/TIT.2006.878212 10.1109/DCC.2010.92 10.1109/TCOMM.2009.04.070165 10.1109/CISS.2014.6814102 10.1109/TCOMM.2014.011914.130382 10.1109/ISWCS.2009.5285266 10.1109/ALLERTON.2019.8919888 10.1162/neco.1997.9.8.1735 10.1016/S0019-9958(78)90034-7 10.1109/TCOMM.2011.081711.090298 10.1109/26.701312 10.1109/CISS.2012.6310715 10.1109/JSAIT.2020.2987203 10.1007/978-3-7091-2928-9_1 10.1109/SPCOM50965.2020.9179539 10.1109/TIT.2002.1003821 10.1109/IEDM.2018.8614612 10.1109/TCOMM.2015.2494004 10.1109/TCCN.2019.2919300 10.1109/JSAC.2021.3078489 10.23919/EUSIPCO54536.2021.9616186 10.1109/TCOMM.2009.0901.070075 10.1109/SPAWC48557.2020.9154331 10.1109/TIT.1965.1053821 10.1109/ICASSP.2016.7472380 10.1109/DCC.2018.00023 10.1109/TIT.2014.2361532 10.1109/ICASSP.2018.8461983 10.1109/CISS.2015.7086847 10.1109/ICC42927.2021.9500692 10.1525/9780520355408 10.1109/JSAIT.2020.2988577 10.1109/TIT.1956.1056823 10.3390/e15062129 10.1002/0471200611 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TCOMM.2022.3222874 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0857 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TCOMM_2022_3222874 9954060 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: CCF-1718886 funderid: 10.13039/100000001 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 ZCA ZCG AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c295t-a71af053fc44170e86aab4e1ac15293237cba14944c9dd3652aec64ad04001623 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000967033700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0090-6778 |
| IngestDate | Mon Jun 30 10:21:23 EDT 2025 Sat Nov 29 04:08:25 EST 2025 Tue Nov 18 22:44:19 EST 2025 Wed Aug 27 02:29:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-a71af053fc44170e86aab4e1ac15293237cba14944c9dd3652aec64ad04001623 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0279-5260 0000-0001-8742-5332 |
| PQID | 2765175712 |
| PQPubID | 85472 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_9954060 crossref_citationtrail_10_1109_TCOMM_2022_3222874 crossref_primary_10_1109_TCOMM_2022_3222874 proquest_journals_2765175712 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on communications |
| PublicationTitleAbbrev | TCOMM |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 Ramstad (ref3) 2002; 98 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 Loshchilov (ref41) 2016 ref10 ref32 Shazeer (ref38) 2017 ref1 ref17 ref39 Chung (ref2) 2000 Alustiza (ref16) ref19 Sitzmann (ref43) 2020 ref18 Smith (ref40) 2017 Loshchilov (ref42) 2017 Liu (ref7) 2016 ref24 ref23 ref26 ref25 ref20 ref22 ref44 ref21 ref28 ref27 ref29 ref8 ref9 ref4 ref6 Plötz (ref45); 31 ref5 |
| References_xml | – ident: ref9 doi: 10.1109/TIT.2006.878212 – volume: 98 start-page: 114 issue: 1 year: 2002 ident: ref3 article-title: Shannon mappings for robust communication publication-title: Telektronikk – ident: ref19 doi: 10.1109/DCC.2010.92 – ident: ref10 doi: 10.1109/TCOMM.2009.04.070165 – ident: ref14 doi: 10.1109/CISS.2014.6814102 – ident: ref12 doi: 10.1109/TCOMM.2014.011914.130382 – ident: ref17 doi: 10.1109/ISWCS.2009.5285266 – volume-title: Reliable and Efficient Transmission of Signals: Coding Design, Beamforming Optimization and Multi-Point Cooperation year: 2016 ident: ref7 – ident: ref26 doi: 10.1109/ALLERTON.2019.8919888 – ident: ref37 doi: 10.1162/neco.1997.9.8.1735 – ident: ref36 doi: 10.1016/S0019-9958(78)90034-7 – ident: ref5 doi: 10.1109/TCOMM.2011.081711.090298 – ident: ref6 doi: 10.1109/26.701312 – ident: ref18 doi: 10.1109/CISS.2012.6310715 – ident: ref22 doi: 10.1109/JSAIT.2020.2987203 – ident: ref34 doi: 10.1007/978-3-7091-2928-9_1 – ident: ref29 doi: 10.1109/SPCOM50965.2020.9179539 – year: 2017 ident: ref38 article-title: Outrageously large neural networks: The sparsely-gated mixture-of-experts layer publication-title: arXiv:1701.06538 – year: 2017 ident: ref40 article-title: Don’t decay the learning rate, increase the batch size publication-title: arXiv:1711.00489 – ident: ref44 doi: 10.1109/TIT.2002.1003821 – ident: ref23 doi: 10.1109/IEDM.2018.8614612 – year: 2017 ident: ref42 article-title: Decoupled weight decay regularization publication-title: arXiv:1711.05101 – start-page: 1603 volume-title: Proc. 20th Eur. Signal Process. Conf. ident: ref16 article-title: Bandwidth-reduction analog mappings for AWGN channels with side information – volume-title: On the construction of some capacity-approaching coding schemes year: 2000 ident: ref2 – year: 2020 ident: ref43 article-title: Implicit neural representations with periodic activation functions publication-title: arXiv:2006.09661 – ident: ref20 doi: 10.1109/TCOMM.2015.2494004 – ident: ref21 doi: 10.1109/TCCN.2019.2919300 – ident: ref28 doi: 10.1109/JSAC.2021.3078489 – ident: ref31 doi: 10.23919/EUSIPCO54536.2021.9616186 – ident: ref4 doi: 10.1109/TCOMM.2009.0901.070075 – volume: 31 start-page: 1087 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref45 article-title: Neural nearest neighbors networks – ident: ref27 doi: 10.1109/SPAWC48557.2020.9154331 – year: 2016 ident: ref41 article-title: SGDR: Stochastic gradient descent with warm restarts publication-title: arXiv:1608.03983 – ident: ref1 doi: 10.1109/TIT.1965.1053821 – ident: ref11 doi: 10.1109/ICASSP.2016.7472380 – ident: ref24 doi: 10.1109/DCC.2018.00023 – ident: ref8 doi: 10.1109/TIT.2014.2361532 – ident: ref25 doi: 10.1109/ICASSP.2018.8461983 – ident: ref15 doi: 10.1109/CISS.2015.7086847 – ident: ref30 doi: 10.1109/ICC42927.2021.9500692 – ident: ref35 doi: 10.1525/9780520355408 – ident: ref39 doi: 10.1109/JSAIT.2020.2988577 – ident: ref33 doi: 10.1109/TIT.1956.1056823 – ident: ref13 doi: 10.3390/e15062129 – ident: ref32 doi: 10.1002/0471200611 |
| SSID | ssj0004033 |
| Score | 2.5037754 |
| Snippet | We consider the design of low-delay joint source-channel coding (JSCC) schemes for the transmission of discrete-time analog sources over noisy channels based... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Artificial neural networks AWGN channels Channels Coders Coding Communication Decoding Deep learning Design optimization Distortion distributed source-channel coding Joint source-channel coding Machine learning Neural networks Noise measurement Random noise Receivers Recurrent neural networks RNNs SIRENs Training Transmission |
| Title | Low-Delay Analog Joint Source-Channel Coding with Deep Learning |
| URI | https://ieeexplore.ieee.org/document/9954060 https://www.proquest.com/docview/2765175712 |
| Volume | 71 |
| WOSCitedRecordID | wos000967033700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0857 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004033 issn: 0090-6778 databaseCode: RIE dateStart: 19720101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7m8EEf_DXF6ZQ8-Kbd2jRrmieRTRHZpuCEvZUkTcdgtGPrFP97k7SbiiL41ocLhEsvd99d7juAi5AJfTFiqWGJRjpEEs_hkiVOiBOhDTNOOLWNwj06GISjEXuqwNW6F0YpZR-fqab5tLX8OJNLkyprGe4yN9AAfYPSoOjV-uyBdP2ScdI8Z6fhqkHGZa1h57Hf11AQ46apK4SUfHNCdqrKj6vY-pe73f_tbA92yjgS3RQHvw8VlR7A9hd2wRpc97I3p6um_B0Z6pFsjB6ySZqjZ5uvd0xfQaqmqJMZ94VMQhZ1lZqhknJ1fAgvd7fDzr1TzktwJGbt3OHU44k2qkSauWKuCgPOBVEel9pJ6zjNp1JwjYgIkSyO_aCNuZIB4bExZE_HQUdQTbNUHQPyKRNUi1IRa7wYmtoa4Vy6jLeF8pmog7dSYCRLMnEz02IaWVDhssgqPTJKj0ql1-FyvWZWUGn8KV0zal5LlhquQ2N1TlFpbYsI06CtwyDq4ZPfV53ClhkTX6ROGlDN50t1BpvyNZ8s5uf2R_oAR6PCkw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6KCurBVxXrMwdvunXf2ZxEquJjWwUr9LZks9lSKLtit4r_3kyaVkURvO1hAmGyk5lvJvMNwFHEUnUxukLBEoV0fOE7FhcstyI3T5VhZjmnulE4pp1O1OuxhxqczHphpJT68Zls4qeu5WelGGOq7BS5y-xQAfR5nJxlurU-uyBtz3BO4oN2Gk1bZGx22m3dt9sKDLpuEysLEfW_uSE9V-XHZaw9zNXq__a2BismkiTnk6Nfh5osNmD5C79gHc7i8s26kEP-TpB8pOyT23JQVORRZ-wt7Cwo5JC0SnRgBFOy5ELKZ2JIV_ub8HR12W1dW2ZigiVcFlQWpw7PlVnlAieL2TIKOU996XCh3LSK1DwqUq4wke8LlmVeGLhcitDnGZqyoyKhLZgrykJuA_EoS6kSpWmmEGOE1TWfc2EzHqTSY2kDnKkCE2HoxHGqxTDRsMJmiVZ6gkpPjNIbcDxb8zwh0_hTuo5qnkkaDTdgb3pOibG3UeLSMFCBEHXcnd9XHcLidbcdJ_FN524XlnBo_CSRsgdz1ctY7sOCeK0Go5cD_VN9AJrBxdw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Delay+Analog+Joint+Source-Channel+Coding+With+Deep+Learning&rft.jtitle=IEEE+transactions+on+communications&rft.au=Xuan%2C+Ziwei&rft.au=Narayanan%2C+Krishna&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=71&rft.issue=1&rft.spage=40&rft_id=info:doi/10.1109%2FTCOMM.2022.3222874&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |