A Low Complexity Signal Detection Scheme Based on Improved Newton Iteration for Massive MIMO Systems

Massive multiple-input multiple-output (MIMO) systems need to handle a large number of matrix inversion operations during the signal detection process. Several methods have been proposed to avoid exact matrix inversion in massive MIMO systems, which can be roughly divided into approximation methods...

Full description

Saved in:
Bibliographic Details
Published in:IEEE communications letters Vol. 23; no. 4; pp. 748 - 751
Main Authors: Jin, Fangli, Liu, Qiufeng, Liu, Hao, Wu, Peng
Format: Journal Article
Language:English
Published: New York IEEE 01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1089-7798, 1558-2558
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Massive multiple-input multiple-output (MIMO) systems need to handle a large number of matrix inversion operations during the signal detection process. Several methods have been proposed to avoid exact matrix inversion in massive MIMO systems, which can be roughly divided into approximation methods and iterative methods. In this letter, we first introduce the relationship between the two types of signal detection methods. Then, an improved Newton iteration method is proposed on the basis of the relationship. And by converting the matrix-matrix product into the matrix-vector product, the computational complexity is substantially reduced. Finally, numerical simulations further verify that the proposed Newton method outperforms Neumann series expansion and the existing Newton method, and can approach the performance of minimum mean square error (MMSE) method within a few iterations, regardless of whether the base station can obtain perfect channel state information or not.
AbstractList Massive multiple-input multiple-output (MIMO) systems need to handle a large number of matrix inversion operations during the signal detection process. Several methods have been proposed to avoid exact matrix inversion in massive MIMO systems, which can be roughly divided into approximation methods and iterative methods. In this letter, we first introduce the relationship between the two types of signal detection methods. Then, an improved Newton iteration method is proposed on the basis of the relationship. And by converting the matrix-matrix product into the matrix-vector product, the computational complexity is substantially reduced. Finally, numerical simulations further verify that the proposed Newton method outperforms Neumann series expansion and the existing Newton method, and can approach the performance of minimum mean square error (MMSE) method within a few iterations, regardless of whether the base station can obtain perfect channel state information or not.
Author Liu, Hao
Liu, Qiufeng
Wu, Peng
Jin, Fangli
Author_xml – sequence: 1
  givenname: Fangli
  orcidid: 0000-0002-7634-5756
  surname: Jin
  fullname: Jin, Fangli
  email: jinfangli0122@163.com
  organization: University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Qiufeng
  orcidid: 0000-0001-5861-1371
  surname: Liu
  fullname: Liu, Qiufeng
  organization: University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Hao
  orcidid: 0000-0002-8783-1098
  surname: Liu
  fullname: Liu, Hao
  organization: University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Peng
  surname: Wu
  fullname: Wu, Peng
  organization: University of Electronic Science and Technology of China, Chengdu, China
BookMark eNp9kMtuwjAQRa2KSgXaH2g3lroOtU0c7CVNX0hJWcA-Msm4DcqD2gbK39cB1EUX3dh3RveOZs4A9Zq2AYRuKRlRSuRDEs_TdMQIlSMm5GQixQXqU85FwPzT85oIGXT9KzSwdk0IEYzTPiqmOGn3OG7rTQXfpTvgRfnRqAo_gYPclW2DF_kn1IAflYUC-3pWb0y78_od9q6rHRh1dOrW4FRZW-4Ap7N0jhcH66C21-hSq8rCzfkfouXL8zJ-C5L56yyeJkHOJHeBiqTmRIsQhOYs1BFXUq2ARkVRrEhEKQ0pWQkNIdM8pJTngngFUa6khzAeovvTWL_f1xasy9bt1vhjbMYYJYSRiBPvEidXblprDegsL91xf2dUWWWUZB3S7Ig065BmZ6Q-yv5EN6aslTn8H7o7hUoA-A2IaCwEm4x_ACFNhAE
CODEN ICLEF6
CitedBy_id crossref_primary_10_1109_JSYST_2020_3019289
crossref_primary_10_26636_jtit_2023_169023
crossref_primary_10_1049_cmu2_12331
crossref_primary_10_1049_el_2020_0208
crossref_primary_10_1109_LCOMM_2020_3014792
crossref_primary_10_1109_TVT_2022_3185967
crossref_primary_10_1109_TSP_2022_3180552
crossref_primary_10_1109_ACCESS_2020_3045984
crossref_primary_10_1109_TCOMM_2023_3267551
crossref_primary_10_1109_LWC_2020_3004846
crossref_primary_10_3390_telecom5020014
crossref_primary_10_1109_TSP_2023_3336199
crossref_primary_10_1109_TVT_2024_3381559
crossref_primary_10_3390_a17100463
crossref_primary_10_3390_sym12020306
crossref_primary_10_1109_TIM_2025_3560747
crossref_primary_10_3390_e22040388
crossref_primary_10_1007_s10776_020_00493_5
crossref_primary_10_3390_electronics9020344
crossref_primary_10_1007_s11277_022_09742_7
crossref_primary_10_1109_TCOMM_2023_3278732
crossref_primary_10_1109_ACCESS_2025_3550272
crossref_primary_10_1109_LSP_2025_3575710
crossref_primary_10_3390_electronics8090980
crossref_primary_10_32604_cmc_2021_016108
crossref_primary_10_4218_etrij_2022_0052
crossref_primary_10_1007_s11265_019_01509_x
crossref_primary_10_1109_TVT_2021_3104473
crossref_primary_10_1002_ett_4947
crossref_primary_10_1109_TVT_2023_3277499
crossref_primary_10_1002_dac_5113
crossref_primary_10_1109_LCOMM_2019_2935436
crossref_primary_10_1016_j_aeue_2021_153848
crossref_primary_10_1109_TWC_2020_3012785
crossref_primary_10_1049_cmu2_12419
crossref_primary_10_23919_JSEE_2024_000061
crossref_primary_10_1109_ACCESS_2020_3017625
Cites_doi 10.1109/MSP.2011.2178495
10.1561/0100000001
10.1109/TWC.2018.2878720
10.1109/TWC.2016.2585481
10.1109/WCSP.2017.8171111
10.1109/LWC.2015.2504366
10.1109/LCOMM.2015.2504506
10.1109/ICC.2015.7248580
10.1109/ICC.2016.7510801
10.1007/978-3-319-05089-8
10.1109/LCOMM.2015.2514281
10.1109/TVT.2014.2370106
10.1137/1.9780898718003
10.1109/JSTSP.2014.2313021
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/LCOMM.2019.2897798
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2558
EndPage 751
ExternalDocumentID 10_1109_LCOMM_2019_2897798
8638827
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-a69f50f84e8f524f65a9abe16dddb06111410b8fe42f54115c802f5e6ca91093
IEDL.DBID RIE
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464755900049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-7798
IngestDate Sun Nov 30 05:30:09 EST 2025
Tue Nov 18 21:18:44 EST 2025
Sat Nov 29 06:26:44 EST 2025
Wed Aug 27 02:44:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-a69f50f84e8f524f65a9abe16dddb06111410b8fe42f54115c802f5e6ca91093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8783-1098
0000-0001-5861-1371
0000-0002-7634-5756
PQID 2210020650
PQPubID 85419
PageCount 4
ParticipantIDs crossref_citationtrail_10_1109_LCOMM_2019_2897798
crossref_primary_10_1109_LCOMM_2019_2897798
ieee_primary_8638827
proquest_journals_2210020650
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE communications letters
PublicationTitleAbbrev COML
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref14
ref11
ref10
ref2
ref1
ref8
ref7
ref9
ref4
ref3
ref6
ref5
pan (ref15) 1991; 12
björck (ref12) 2015; 59
References_xml – ident: ref2
  doi: 10.1109/MSP.2011.2178495
– ident: ref14
  doi: 10.1561/0100000001
– volume: 12
  start-page: 1109
  year: 1991
  ident: ref15
  publication-title: An Improved Newton Iteration for the Generalized Inverse of a Matrix With Applications
– ident: ref9
  doi: 10.1109/TWC.2018.2878720
– ident: ref8
  doi: 10.1109/TWC.2016.2585481
– ident: ref6
  doi: 10.1109/WCSP.2017.8171111
– ident: ref11
  doi: 10.1109/LWC.2015.2504366
– ident: ref4
  doi: 10.1109/LCOMM.2015.2504506
– ident: ref7
  doi: 10.1109/ICC.2015.7248580
– ident: ref10
  doi: 10.1109/ICC.2016.7510801
– volume: 59
  year: 2015
  ident: ref12
  publication-title: Numerical Methods in Matrix Computations
  doi: 10.1007/978-3-319-05089-8
– ident: ref3
  doi: 10.1109/LCOMM.2015.2514281
– ident: ref5
  doi: 10.1109/TVT.2014.2370106
– ident: ref13
  doi: 10.1137/1.9780898718003
– ident: ref1
  doi: 10.1109/JSTSP.2014.2313021
SSID ssj0008251
Score 2.4722433
Snippet Massive multiple-input multiple-output (MIMO) systems need to handle a large number of matrix inversion operations during the signal detection process. Several...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 748
SubjectTerms Approximation
Complexity
Complexity theory
Computer simulation
Convergence
Estimation
Iterative methods
Jacobian matrices
Massive MIMO
Mathematical analysis
Matrix algebra
matrix inversion
Matrix methods
Methods
MIMO (control systems)
MIMO communication
Neumann series
Newton iteration
Newton method
Newton methods
Series expansion
Signal detection
Signal processing
Title A Low Complexity Signal Detection Scheme Based on Improved Newton Iteration for Massive MIMO Systems
URI https://ieeexplore.ieee.org/document/8638827
https://www.proquest.com/docview/2210020650
Volume 23
WOSCitedRecordID wos000464755900049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 1558-2558
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008251
  issn: 1089-7798
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB508aAH3-L6IgdvWm2zbZoc1xcKVgU9eCtpHiLormhV_PfOpN1FUQRvCU1K6ZfMfE1nvgHYVlWu0exXEe_1eJQKjnbQ6Tyq0sT41MZe8CoUm8gvLuTtrbqagN1xLoxzLgSfuT1qhn_5dmhe6ahsX-JikTyfhMk8F02u1tjqUgpmE0yvkDEqOUqQidX--eFlUVAUl9rDzwu6-M0JhaoqP0xx8C8nc_97snmYbXkk6zfAL8CEGyzCzBd1wSWwfXY-fGe040n1sv5g1_d3NOnI1SEAa8CuEbJHxw7QlVmG_eaIAdto-2rqB81lGonclhVItNE4suKsuGSt1Pky3Jwc3xyeRm1RhchwldWRFspnsZepkz7jqReZVrpyibDWVujcEwr8rKR3KfdZinzRyBhbThitSHpqBTqD4cCtAtPeWPRsumeQQtrES6F9rKXs6ZxrweMuJKOXXJpWcJzqXjyU4cMjVmUApiRgyhaYLuyM5zw1cht_jl4iKMYjWxS6sDHCsmx35EvJOYnNEiFd-33WOkzTvZuonA3o1M-vbhOmzFt9__K8FRbbJ-ze0OU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RQCocoBQQy6s-cGsDiddJ7CNPgdgsldgDt8jxAyHBLoIA4t8z42RXIKpK3GzFVqJ89swXZ-YbgB1V5RrNfhXxbpdHIuNoB53Oo0okxgsb-4xXodhE3u_Lqyv1dwr-THJhnHMh-MztUjP8y7cj80RHZXsSF4vk-TeYSYXgcZOtNbG7lITZhNMr5IxKjlNkYrXXO7woCorjUrv4gUEXP7ihUFflkzEOHuZk8WvP9gMWWibJ9hvol2DKDX_C_Dt9wWWw-6w3emG050n3sn5llzfXNOnI1SEEa8guEbQ7xw7QmVmG_eaQAdto_WrqB9VlGonslhVItdE8suKsuGCt2PkKDE6OB4enUVtWITJcpXWkM-XT2EvhpE-58Fmqla5ckllrK3TvCYV-VtI7wX0qkDEaGWPLZUYrEp9ahenhaOjWgGlvLPo23TVIIm3iZaZ9rKXs6pzrjMcdSMYvuTSt5DhVvrgtw6dHrMoATEnAlC0wHfg9mXPfCG78d_QyQTEZ2aLQgc0xlmW7Jx9Lzklulijp-r9n_YLvp4OiV_bO-ucbMEf3aWJ0NmG6fnhyWzBrnuubx4ftsPDeAPOS1Cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Low+Complexity+Signal+Detection+Scheme+Based+on+Improved+Newton+Iteration+for+Massive+MIMO+Systems&rft.jtitle=IEEE+communications+letters&rft.au=Jin%2C+Fangli&rft.au=Liu%2C+Qiufeng&rft.au=Liu%2C+Hao&rft.au=Wu%2C+Peng&rft.date=2019-04-01&rft.pub=IEEE&rft.issn=1089-7798&rft.volume=23&rft.issue=4&rft.spage=748&rft.epage=751&rft_id=info:doi/10.1109%2FLCOMM.2019.2897798&rft.externalDocID=8638827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon