The Nearest-Instance-Centroid-Estimation Kernel Recursive Least Squares Algorithms
The nearest-instance-centroid-estimation kernel least mean-square (NICE-KLMS) algorithm has been proposed to balance the time and space requirements in kernel adaptive filters. However, the minimum mean square error (MMSE) criterion used in NICE-KLMS leads to performance degradation in some nonlinea...
Uložené v:
| Vydané v: | IEEE transactions on circuits and systems. II, Express briefs Ročník 67; číslo 7; s. 1344 - 1348 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1549-7747, 1558-3791 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The nearest-instance-centroid-estimation kernel least mean-square (NICE-KLMS) algorithm has been proposed to balance the time and space requirements in kernel adaptive filters. However, the minimum mean square error (MMSE) criterion used in NICE-KLMS leads to performance degradation in some nonlinear problems. In this brief, the NICE is developed under the least-squares errors in the kernel space, generating a novel NICE kernel recursive least squares (NICE-KRLS) algorithm for performance improvement of NICE-KLMS. The weight update form for the solution to the least-squares errors existing in NICE-KRLS is therefore obtained recursively. To obtain a sparsification network, the vector quantization is combined into NICE-KRLS for online applications. Simulations on chaotic time-series prediction validate the superiorities of the proposed NICE-KRLS and its sparsification version. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1549-7747 1558-3791 |
| DOI: | 10.1109/TCSII.2019.2933849 |