The Nearest-Instance-Centroid-Estimation Kernel Recursive Least Squares Algorithms

The nearest-instance-centroid-estimation kernel least mean-square (NICE-KLMS) algorithm has been proposed to balance the time and space requirements in kernel adaptive filters. However, the minimum mean square error (MMSE) criterion used in NICE-KLMS leads to performance degradation in some nonlinea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Jg. 67; H. 7; S. 1344 - 1348
Hauptverfasser: Zhang, Haonan, Wang, Lin, Zhang, Tao, Wang, Shiyuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1549-7747, 1558-3791
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The nearest-instance-centroid-estimation kernel least mean-square (NICE-KLMS) algorithm has been proposed to balance the time and space requirements in kernel adaptive filters. However, the minimum mean square error (MMSE) criterion used in NICE-KLMS leads to performance degradation in some nonlinear problems. In this brief, the NICE is developed under the least-squares errors in the kernel space, generating a novel NICE kernel recursive least squares (NICE-KRLS) algorithm for performance improvement of NICE-KLMS. The weight update form for the solution to the least-squares errors existing in NICE-KRLS is therefore obtained recursively. To obtain a sparsification network, the vector quantization is combined into NICE-KRLS for online applications. Simulations on chaotic time-series prediction validate the superiorities of the proposed NICE-KRLS and its sparsification version.
AbstractList The nearest-instance-centroid-estimation kernel least mean-square (NICE-KLMS) algorithm has been proposed to balance the time and space requirements in kernel adaptive filters. However, the minimum mean square error (MMSE) criterion used in NICE-KLMS leads to performance degradation in some nonlinear problems. In this brief, the NICE is developed under the least-squares errors in the kernel space, generating a novel NICE kernel recursive least squares (NICE-KRLS) algorithm for performance improvement of NICE-KLMS. The weight update form for the solution to the least-squares errors existing in NICE-KRLS is therefore obtained recursively. To obtain a sparsification network, the vector quantization is combined into NICE-KRLS for online applications. Simulations on chaotic time-series prediction validate the superiorities of the proposed NICE-KRLS and its sparsification version.
Author Zhang, Haonan
Wang, Shiyuan
Wang, Lin
Zhang, Tao
Author_xml – sequence: 1
  givenname: Haonan
  surname: Zhang
  fullname: Zhang, Haonan
  email: zhanghaonan1@email.swu.edu.cn
  organization: College of Electronic and Information Engineering, Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Southwest University, Chongqing, China
– sequence: 2
  givenname: Lin
  surname: Wang
  fullname: Wang, Lin
  email: irenewang@swu.edu.cn
  organization: College of Electronic and Information Engineering, Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Southwest University, Chongqing, China
– sequence: 3
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
  email: zhangtao1996@email.swu.edu.cn
  organization: College of Electronic and Information Engineering, Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Southwest University, Chongqing, China
– sequence: 4
  givenname: Shiyuan
  orcidid: 0000-0002-5028-5839
  surname: Wang
  fullname: Wang, Shiyuan
  email: wsy@swu.edu.cn
  organization: College of Electronic and Information Engineering, Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Southwest University, Chongqing, China
BookMark eNp9kLFOwzAQhi1UJErhBWCJxJxiO3Zij1VUIKICqS2z5bgX6ipNWttF4u1J2oqBgeluuO_-u-8aDZq2AYTuCB4TguXjMl8UxZhiIsdUJolg8gINCeciTjJJBn3PZJxlLLtC195vMKYSJ3SI5ss1RG-gHfgQF40PujEQ59AE19pVPPXBbnWwbRO9gmugjuZgDs7bL4hmoH2IFvtDD0eT-rN1Nqy3_gZdVrr2cHuuI_TxNF3mL_Hs_bnIJ7PYUMlDrAkWgnLQtCrLkgLwUkqRcsYY1pxBKQ3OONOMpRUDVmLgK0G4xsCMSUSajNDDae_OtftDd7_atAfXdJGKMiIYkRkm3RQ9TRnXeu-gUjvXveS-FcGqd6eO7lTvTp3ddZD4AxkbjhqC07b-H70_oRYAfrNEJilJRfIDUaV-9A
CODEN ICSPE5
CitedBy_id crossref_primary_10_1109_TAES_2025_3559516
Cites_doi 10.1109/TNNLS.2011.2178446
10.1109/TNET.2012.2187923
10.1002/9780470608593
10.1109/TNNLS.2013.2258936
10.1109/TNN.2003.810597
10.1109/TSP.2004.830985
10.1109/TSP.2017.2752695
10.1109/TSP.2007.907881
10.1109/81.933330
10.1162/neco.1991.3.2.213
10.1109/TCSII.2017.2778302
10.1016/j.dsp.2015.09.015
10.1109/TCSII.2016.2603193
10.1155/2008/784292
10.1109/TCSII.2013.2281712
10.1109/TCSI.2018.2819655
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCSII.2019.2933849
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3791
EndPage 1348
ExternalDocumentID 10_1109_TCSII_2019_2933849
8792168
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: XDJK2019B011
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 61671389
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5VS
6IK
6J9
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PZZ
RIA
RIE
RNS
RXW
TAE
TAF
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-a108825ea2fbbb2ee5b998654440a54eb9c0754a446f4e4b0e5d815a0e4cc3863
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000543961700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-7747
IngestDate Mon Jun 30 02:28:23 EDT 2025
Sat Nov 29 02:23:08 EST 2025
Tue Nov 18 20:45:16 EST 2025
Wed Aug 27 02:50:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-a108825ea2fbbb2ee5b998654440a54eb9c0754a446f4e4b0e5d815a0e4cc3863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5028-5839
PQID 2418419701
PQPubID 85412
PageCount 5
ParticipantIDs crossref_primary_10_1109_TCSII_2019_2933849
proquest_journals_2418419701
crossref_citationtrail_10_1109_TCSII_2019_2933849
ieee_primary_8792168
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems. II, Express briefs
PublicationTitleAbbrev TCSII
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref10
ref2
ref17
ref16
ref8
ref7
ref9
ref4
mitchell (ref1) 1997
ref3
ref6
ref5
liu (ref11) 2009; 20
References_xml – ident: ref12
  doi: 10.1109/TNNLS.2011.2178446
– volume: 20
  start-page: 1950
  year: 2009
  ident: ref11
  article-title: An information theoretic approach of designing sparse kernel adaptive filters
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNET.2012.2187923
– ident: ref4
  doi: 10.1002/9780470608593
– ident: ref15
  doi: 10.1109/TNNLS.2013.2258936
– ident: ref9
  doi: 10.1109/TNN.2003.810597
– ident: ref8
  doi: 10.1109/TSP.2004.830985
– ident: ref17
  doi: 10.1109/TSP.2017.2752695
– ident: ref5
  doi: 10.1109/TSP.2007.907881
– year: 1997
  ident: ref1
  publication-title: Machine Learning
– ident: ref3
  doi: 10.1109/81.933330
– ident: ref10
  doi: 10.1162/neco.1991.3.2.213
– ident: ref13
  doi: 10.1109/TCSII.2017.2778302
– ident: ref14
  doi: 10.1016/j.dsp.2015.09.015
– ident: ref16
  doi: 10.1109/TCSII.2016.2603193
– ident: ref6
  doi: 10.1155/2008/784292
– ident: ref7
  doi: 10.1109/TCSII.2013.2281712
– ident: ref2
  doi: 10.1109/TCSI.2018.2819655
SSID ssj0029032
Score 2.2868712
Snippet The nearest-instance-centroid-estimation kernel least mean-square (NICE-KLMS) algorithm has been proposed to balance the time and space requirements in kernel...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1344
SubjectTerms Adaptive filters
Algorithms
Centroids
Circuits and systems
Clustering algorithms
Computer simulation
Dictionaries
Kernel
kernel recursive least squares algorithm
Kernels
Least squares
Mean square error methods
minimum mean square error
Nearest-instance-centroid-estimation
nonlinear problems
Performance degradation
Prediction algorithms
quantization
Signal processing algorithms
Vector quantization
Title The Nearest-Instance-Centroid-Estimation Kernel Recursive Least Squares Algorithms
URI https://ieeexplore.ieee.org/document/8792168
https://www.proquest.com/docview/2418419701
Volume 67
WOSCitedRecordID wos000543961700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-3791
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029032
  issn: 1549-7747
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB0B6gEO0BZQUyjaQ2-tYT_steeIEIgIFFVAJW4r2zsLkdIEkg2_vx5nEyEVVeK2B1tazXh23nhn3gP4jh5tw1SIpJ0SsjQo0BsvdB2wbFPmNdo6ik3owcDc3-OvNfi5moUhoth8Rsf8GP_l1xM_56uyE6Mxz0qzDuta68Ws1qq4wjSKkTHjWECMUi8HZFI8uTu77fe5iwuPQ3IrDPNmvkpCUVXln09xzC8XO-97s4-w3eHI5HTh-E-wRuPPsPWKXXAXbsIRSAbMUTtrRT_CQE8iXudOhrU4D8G9mFtMrmg6plFyw3fv3M6eXLOiT3L7POfNyenoYTIdto9_Znvw--L87uxSdBIKwueoWmEzhtCKbN4453Ii5UJ9VSopZWqVJIc-YAZpQ1HYSJIuJVWbTNmUpPeFKYt92BhPxvQFEoeObFHWxHrVyhZoFZakVQjwQjrV9CBb2rTyHb84y1yMqlhnpFhFP1Tsh6rzQw9-rPY8Ldg1_rt6ly2_WtkZvQeHS9dVXQDOqgBMjMxQp9nXt3cdwGbOpXPsvD2EjXY6p2_wwb-0w9n0KJ6tv5mLy9o
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB1RqNT2AG1pRfjqHri1hv2wdz1HhEBEhAhBKnFb2d7ZNlKatMmG31-Ps4mQQEjc9uCRVjP2-s3szHsAR-jQ1EyFSIVVQuYaBTrtRFF5LFvnaYWmCmITRb-v7-_xZg1-rGZhiCg0n9ExP4Z_-dXEzblUdqILTJNcv4ENJWWaLKa1VukVxkGOjDnHPGaUxXJEJsaTwdldt8t9XHjsr7dMM3Pmo2so6Ko8-RiHG-Zi63Xv9hE2WyQZnS5C_wnWaPwZPjziF9yGW78Joj6z1M4a0Q1A0JEIBd3JsBLn_ngvJhejK5qOaRTdcvWdG9qjHmv6RHf_5mwcnY5-TabD5vef2Rf4eXE-OLsUrYiCcCmqRpiEQbQik9bW2pRIWZ9h5d6BMjZKkkXnUYM0Pi2sJUkbk6p0okxM0rlM59lXWB9PxrQDkUVLJssrYsVqZTI0CnMqlD_imbSq7kCy9GnpWoZxFroYlSHTiLEMcSg5DmUbhw58X9n8XfBrvLh6mz2_Wtk6vQP7y9CV7RGclR6aaJlgESe7z1t9g3eXg-te2ev2r_bgfcqJdOjD3Yf1ZjqnA3jrHprhbHoY9tl_XnjPIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Nearest-Instance-Centroid-Estimation+Kernel+Recursive+Least+Squares+Algorithms&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+II%2C+Express+briefs&rft.au=Zhang%2C+Haonan&rft.au=Wang%2C+Lin&rft.au=Zhang%2C+Tao&rft.au=Wang%2C+Shiyuan&rft.date=2020-07-01&rft.pub=IEEE&rft.issn=1549-7747&rft.volume=67&rft.issue=7&rft.spage=1344&rft.epage=1348&rft_id=info:doi/10.1109%2FTCSII.2019.2933849&rft.externalDocID=8792168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-7747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-7747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-7747&client=summon