The Nearest-Instance-Centroid-Estimation Kernel Recursive Least Squares Algorithms
The nearest-instance-centroid-estimation kernel least mean-square (NICE-KLMS) algorithm has been proposed to balance the time and space requirements in kernel adaptive filters. However, the minimum mean square error (MMSE) criterion used in NICE-KLMS leads to performance degradation in some nonlinea...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Jg. 67; H. 7; S. 1344 - 1348 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1549-7747, 1558-3791 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The nearest-instance-centroid-estimation kernel least mean-square (NICE-KLMS) algorithm has been proposed to balance the time and space requirements in kernel adaptive filters. However, the minimum mean square error (MMSE) criterion used in NICE-KLMS leads to performance degradation in some nonlinear problems. In this brief, the NICE is developed under the least-squares errors in the kernel space, generating a novel NICE kernel recursive least squares (NICE-KRLS) algorithm for performance improvement of NICE-KLMS. The weight update form for the solution to the least-squares errors existing in NICE-KRLS is therefore obtained recursively. To obtain a sparsification network, the vector quantization is combined into NICE-KRLS for online applications. Simulations on chaotic time-series prediction validate the superiorities of the proposed NICE-KRLS and its sparsification version. |
|---|---|
| AbstractList | The nearest-instance-centroid-estimation kernel least mean-square (NICE-KLMS) algorithm has been proposed to balance the time and space requirements in kernel adaptive filters. However, the minimum mean square error (MMSE) criterion used in NICE-KLMS leads to performance degradation in some nonlinear problems. In this brief, the NICE is developed under the least-squares errors in the kernel space, generating a novel NICE kernel recursive least squares (NICE-KRLS) algorithm for performance improvement of NICE-KLMS. The weight update form for the solution to the least-squares errors existing in NICE-KRLS is therefore obtained recursively. To obtain a sparsification network, the vector quantization is combined into NICE-KRLS for online applications. Simulations on chaotic time-series prediction validate the superiorities of the proposed NICE-KRLS and its sparsification version. |
| Author | Zhang, Haonan Wang, Shiyuan Wang, Lin Zhang, Tao |
| Author_xml | – sequence: 1 givenname: Haonan surname: Zhang fullname: Zhang, Haonan email: zhanghaonan1@email.swu.edu.cn organization: College of Electronic and Information Engineering, Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Southwest University, Chongqing, China – sequence: 2 givenname: Lin surname: Wang fullname: Wang, Lin email: irenewang@swu.edu.cn organization: College of Electronic and Information Engineering, Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Southwest University, Chongqing, China – sequence: 3 givenname: Tao surname: Zhang fullname: Zhang, Tao email: zhangtao1996@email.swu.edu.cn organization: College of Electronic and Information Engineering, Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Southwest University, Chongqing, China – sequence: 4 givenname: Shiyuan orcidid: 0000-0002-5028-5839 surname: Wang fullname: Wang, Shiyuan email: wsy@swu.edu.cn organization: College of Electronic and Information Engineering, Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Southwest University, Chongqing, China |
| BookMark | eNp9kLFOwzAQhi1UJErhBWCJxJxiO3Zij1VUIKICqS2z5bgX6ipNWttF4u1J2oqBgeluuO_-u-8aDZq2AYTuCB4TguXjMl8UxZhiIsdUJolg8gINCeciTjJJBn3PZJxlLLtC195vMKYSJ3SI5ss1RG-gHfgQF40PujEQ59AE19pVPPXBbnWwbRO9gmugjuZgDs7bL4hmoH2IFvtDD0eT-rN1Nqy3_gZdVrr2cHuuI_TxNF3mL_Hs_bnIJ7PYUMlDrAkWgnLQtCrLkgLwUkqRcsYY1pxBKQ3OONOMpRUDVmLgK0G4xsCMSUSajNDDae_OtftDd7_atAfXdJGKMiIYkRkm3RQ9TRnXeu-gUjvXveS-FcGqd6eO7lTvTp3ddZD4AxkbjhqC07b-H70_oRYAfrNEJilJRfIDUaV-9A |
| CODEN | ICSPE5 |
| CitedBy_id | crossref_primary_10_1109_TAES_2025_3559516 |
| Cites_doi | 10.1109/TNNLS.2011.2178446 10.1109/TNET.2012.2187923 10.1002/9780470608593 10.1109/TNNLS.2013.2258936 10.1109/TNN.2003.810597 10.1109/TSP.2004.830985 10.1109/TSP.2017.2752695 10.1109/TSP.2007.907881 10.1109/81.933330 10.1162/neco.1991.3.2.213 10.1109/TCSII.2017.2778302 10.1016/j.dsp.2015.09.015 10.1109/TCSII.2016.2603193 10.1155/2008/784292 10.1109/TCSII.2013.2281712 10.1109/TCSI.2018.2819655 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TCSII.2019.2933849 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3791 |
| EndPage | 1348 |
| ExternalDocumentID | 10_1109_TCSII_2019_2933849 8792168 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: XDJK2019B011 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 61671389 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 29I 4.4 5VS 6IK 6J9 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PZZ RIA RIE RNS RXW TAE TAF VJK AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c295t-a108825ea2fbbb2ee5b998654440a54eb9c0754a446f4e4b0e5d815a0e4cc3863 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000543961700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1549-7747 |
| IngestDate | Mon Jun 30 02:28:23 EDT 2025 Sat Nov 29 02:23:08 EST 2025 Tue Nov 18 20:45:16 EST 2025 Wed Aug 27 02:50:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-a108825ea2fbbb2ee5b998654440a54eb9c0754a446f4e4b0e5d815a0e4cc3863 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5028-5839 |
| PQID | 2418419701 |
| PQPubID | 85412 |
| PageCount | 5 |
| ParticipantIDs | crossref_primary_10_1109_TCSII_2019_2933849 proquest_journals_2418419701 crossref_citationtrail_10_1109_TCSII_2019_2933849 ieee_primary_8792168 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on circuits and systems. II, Express briefs |
| PublicationTitleAbbrev | TCSII |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref10 ref2 ref17 ref16 ref8 ref7 ref9 ref4 mitchell (ref1) 1997 ref3 ref6 ref5 liu (ref11) 2009; 20 |
| References_xml | – ident: ref12 doi: 10.1109/TNNLS.2011.2178446 – volume: 20 start-page: 1950 year: 2009 ident: ref11 article-title: An information theoretic approach of designing sparse kernel adaptive filters publication-title: IEEE Trans Neural Netw doi: 10.1109/TNET.2012.2187923 – ident: ref4 doi: 10.1002/9780470608593 – ident: ref15 doi: 10.1109/TNNLS.2013.2258936 – ident: ref9 doi: 10.1109/TNN.2003.810597 – ident: ref8 doi: 10.1109/TSP.2004.830985 – ident: ref17 doi: 10.1109/TSP.2017.2752695 – ident: ref5 doi: 10.1109/TSP.2007.907881 – year: 1997 ident: ref1 publication-title: Machine Learning – ident: ref3 doi: 10.1109/81.933330 – ident: ref10 doi: 10.1162/neco.1991.3.2.213 – ident: ref13 doi: 10.1109/TCSII.2017.2778302 – ident: ref14 doi: 10.1016/j.dsp.2015.09.015 – ident: ref16 doi: 10.1109/TCSII.2016.2603193 – ident: ref6 doi: 10.1155/2008/784292 – ident: ref7 doi: 10.1109/TCSII.2013.2281712 – ident: ref2 doi: 10.1109/TCSI.2018.2819655 |
| SSID | ssj0029032 |
| Score | 2.2868712 |
| Snippet | The nearest-instance-centroid-estimation kernel least mean-square (NICE-KLMS) algorithm has been proposed to balance the time and space requirements in kernel... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1344 |
| SubjectTerms | Adaptive filters Algorithms Centroids Circuits and systems Clustering algorithms Computer simulation Dictionaries Kernel kernel recursive least squares algorithm Kernels Least squares Mean square error methods minimum mean square error Nearest-instance-centroid-estimation nonlinear problems Performance degradation Prediction algorithms quantization Signal processing algorithms Vector quantization |
| Title | The Nearest-Instance-Centroid-Estimation Kernel Recursive Least Squares Algorithms |
| URI | https://ieeexplore.ieee.org/document/8792168 https://www.proquest.com/docview/2418419701 |
| Volume | 67 |
| WOSCitedRecordID | wos000543961700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-3791 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0029032 issn: 1549-7747 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB0B6gEO0BZQUyjaQ2-tYT_steeIEIgIFFVAJW4r2zsLkdIEkg2_vx5nEyEVVeK2B1tazXh23nhn3gP4jh5tw1SIpJ0SsjQo0BsvdB2wbFPmNdo6ik3owcDc3-OvNfi5moUhoth8Rsf8GP_l1xM_56uyE6Mxz0qzDuta68Ws1qq4wjSKkTHjWECMUi8HZFI8uTu77fe5iwuPQ3IrDPNmvkpCUVXln09xzC8XO-97s4-w3eHI5HTh-E-wRuPPsPWKXXAXbsIRSAbMUTtrRT_CQE8iXudOhrU4D8G9mFtMrmg6plFyw3fv3M6eXLOiT3L7POfNyenoYTIdto9_Znvw--L87uxSdBIKwueoWmEzhtCKbN4453Ii5UJ9VSopZWqVJIc-YAZpQ1HYSJIuJVWbTNmUpPeFKYt92BhPxvQFEoeObFHWxHrVyhZoFZakVQjwQjrV9CBb2rTyHb84y1yMqlhnpFhFP1Tsh6rzQw9-rPY8Ldg1_rt6ly2_WtkZvQeHS9dVXQDOqgBMjMxQp9nXt3cdwGbOpXPsvD2EjXY6p2_wwb-0w9n0KJ6tv5mLy9o |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB1RqNT2AG1pRfjqHri1hv2wdz1HhEBEhAhBKnFb2d7ZNlKatMmG31-Ps4mQQEjc9uCRVjP2-s3szHsAR-jQ1EyFSIVVQuYaBTrtRFF5LFvnaYWmCmITRb-v7-_xZg1-rGZhiCg0n9ExP4Z_-dXEzblUdqILTJNcv4ENJWWaLKa1VukVxkGOjDnHPGaUxXJEJsaTwdldt8t9XHjsr7dMM3Pmo2so6Ko8-RiHG-Zi63Xv9hE2WyQZnS5C_wnWaPwZPjziF9yGW78Joj6z1M4a0Q1A0JEIBd3JsBLn_ngvJhejK5qOaRTdcvWdG9qjHmv6RHf_5mwcnY5-TabD5vef2Rf4eXE-OLsUrYiCcCmqRpiEQbQik9bW2pRIWZ9h5d6BMjZKkkXnUYM0Pi2sJUkbk6p0okxM0rlM59lXWB9PxrQDkUVLJssrYsVqZTI0CnMqlD_imbSq7kCy9GnpWoZxFroYlSHTiLEMcSg5DmUbhw58X9n8XfBrvLh6mz2_Wtk6vQP7y9CV7RGclR6aaJlgESe7z1t9g3eXg-te2ev2r_bgfcqJdOjD3Yf1ZjqnA3jrHprhbHoY9tl_XnjPIQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Nearest-Instance-Centroid-Estimation+Kernel+Recursive+Least+Squares+Algorithms&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+II%2C+Express+briefs&rft.au=Zhang%2C+Haonan&rft.au=Wang%2C+Lin&rft.au=Zhang%2C+Tao&rft.au=Wang%2C+Shiyuan&rft.date=2020-07-01&rft.pub=IEEE&rft.issn=1549-7747&rft.volume=67&rft.issue=7&rft.spage=1344&rft.epage=1348&rft_id=info:doi/10.1109%2FTCSII.2019.2933849&rft.externalDocID=8792168 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-7747&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-7747&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-7747&client=summon |