Routing With Intelligent Spectrum Assignment in Full-Duplex Cognitive Networks Under Varying Channel Conditions
Recent developments of self-interference suppression techniques have enabled practical implementations of full-duplex (FD) cognitive-radio (CR) communication systems. Such systems can significantly enhance spectrum utilization by allowing a CR user to simultaneously transmit and receive over the sam...
Uloženo v:
| Vydáno v: | IEEE communications letters Ročník 24; číslo 4; s. 872 - 876 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1089-7798, 1558-2558 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Recent developments of self-interference suppression techniques have enabled practical implementations of full-duplex (FD) cognitive-radio (CR) communication systems. Such systems can significantly enhance spectrum utilization by allowing a CR user to simultaneously transmit and receive over the same frequency channel. However, the CR FD-capabilities challenge the effectiveness of existing CR-based routing protocols as joint FD-aware channel-assignment and routing are essential to enhance network performance. In this letter, we propose a joint FD-aware channel-assignment and route selection protocol in FD-based CR networks (CRNs) under time-varying channel conditions and transmission rates. Specifically, for a given set of paths between a CR source-destination pair, our protocol computes the channel-assignment over each path that maximizes the end-to-end network throughput subject to interference constraints. This assignment problem is shown to be an NP-hard binary linear programming (BLP) that can be sub-optimally solved in polynomial-time using the sequential-fixing procedure. Then, our protocol determines the path with the highest end-to-end network throughput. Simulation results reveal that our proposed routing protocol significantly improves the end-to-end throughput compared to previous FD-aware routing protocols. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1089-7798 1558-2558 |
| DOI: | 10.1109/LCOMM.2020.2968445 |