Training Fuzzy Neural Network via Multiobjective Optimization for Nonlinear Systems Identification

The design of a fuzzy neural network (FNN) has long been a challenging problem since most methods rely on approximation error to train an FNN, which may easily result in overfitting phenomenon to degrade the generalization performance. To improve the generalization performance, an FNN with a multiob...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on fuzzy systems Vol. 30; no. 9; pp. 3574 - 3588
Main Authors: Han, Honggui, Sun, Chenxuan, Wu, Xiaolong, Yang, Hongyan, Qiao, Junfei
Format: Journal Article
Language:English
Published: New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1063-6706, 1941-0034
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The design of a fuzzy neural network (FNN) has long been a challenging problem since most methods rely on approximation error to train an FNN, which may easily result in overfitting phenomenon to degrade the generalization performance. To improve the generalization performance, an FNN with a multiobjective optimization algorithm (MOO-FNN) is proposed in this article. First, the multilevel learning objectives are designed around the generalization performance to guide the training process of an FNN. Then, the method utilizes the approximation error, the structure complexity, and the output smoothness indicators instead of a single indicator to improve the evaluation accuracy of generalization performance. Second, an MOO algorithm with continuous-discrete variables is developed to optimize the FNN. Then, MOO is able to use a novel particle update method to adjust both the structure and parameters rather than adjusting them separately, thereby achieving suitable generalization performance of the FNN. Third, the convergence of MOO-FNN is analyzed in detail to guarantee its successful applications. Finally, the experimental studies of MOO-FNN have been performed on model identification of nonlinear systems to verify the effectiveness. The results illustrate that MOO-FNN has a significant improvement over some state-of-the-art algorithms.
AbstractList The design of a fuzzy neural network (FNN) has long been a challenging problem since most methods rely on approximation error to train an FNN, which may easily result in overfitting phenomenon to degrade the generalization performance. To improve the generalization performance, an FNN with a multiobjective optimization algorithm (MOO-FNN) is proposed in this article. First, the multilevel learning objectives are designed around the generalization performance to guide the training process of an FNN. Then, the method utilizes the approximation error, the structure complexity, and the output smoothness indicators instead of a single indicator to improve the evaluation accuracy of generalization performance. Second, an MOO algorithm with continuous–discrete variables is developed to optimize the FNN. Then, MOO is able to use a novel particle update method to adjust both the structure and parameters rather than adjusting them separately, thereby achieving suitable generalization performance of the FNN. Third, the convergence of MOO-FNN is analyzed in detail to guarantee its successful applications. Finally, the experimental studies of MOO-FNN have been performed on model identification of nonlinear systems to verify the effectiveness. The results illustrate that MOO-FNN has a significant improvement over some state-of-the-art algorithms.
Author Wu, Xiaolong
Yang, Hongyan
Qiao, Junfei
Han, Honggui
Sun, Chenxuan
Author_xml – sequence: 1
  givenname: Honggui
  orcidid: 0000-0001-5617-4075
  surname: Han
  fullname: Han, Honggui
  email: rechardhan@sina.com
  organization: Faculty of Information Technology, Beijing Key Laboratory of Computational Intelligence and Intelligent System and Engineering Research Center of Digital Community Ministry of Education, Beijing University of Technology, Beijing, China
– sequence: 2
  givenname: Chenxuan
  surname: Sun
  fullname: Sun, Chenxuan
  organization: Faculty of Information Technology and Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China
– sequence: 3
  givenname: Xiaolong
  orcidid: 0000-0002-7713-1995
  surname: Wu
  fullname: Wu, Xiaolong
  organization: Faculty of Information Technology and Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China
– sequence: 4
  givenname: Hongyan
  surname: Yang
  fullname: Yang, Hongyan
  organization: Faculty of Information Technology and Engineering Research Center of Digital Community, Beijing University of Technology, Beijing, China
– sequence: 5
  givenname: Junfei
  surname: Qiao
  fullname: Qiao, Junfei
  organization: Faculty of Information Technology and Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China
BookMark eNp9kEtPwzAQhC1UJKDwB-BiiXOKX3n4iBCFSqU90F56iZxkjVxSp9hOUfvrSR_iwIHTrFYzO9rvCvVsYwGhW0oGlBL5MBvOF4sBI4wOOKWSkuwMXVIpaEQIF71uJgmPkpQkF-jK-yUhVMQ0u0TFzCljjf3Aw3a32-IJtE7VnYTvxn3ijVH4ra2DaYollMFsAE_XwazMTnU7i3Xj8KSxtbGgHH7f-gArj0cV2GC0KQ-ma3SuVe3h5qR9NB8-z55eo_H0ZfT0OI5KJuMQSaFYVaiMZbziVaFVKiuWxqAqKBgRhSzjlAlOKyp5qkUKkOlCgsx4IrQWnPfR_fHu2jVfLfiQL5vW2a4yZynJEsGTOO5c7OgqXeO9A52vnVkpt80pyfcs8wPLfM8yP7HsQtmfUGnC4bnQ4av_j94dowYAfrtknCQpj_kPfxKGYA
CODEN IEFSEV
CitedBy_id crossref_primary_10_1109_TFUZZ_2024_3354919
crossref_primary_10_1007_s10489_022_04133_8
crossref_primary_10_1109_TCYB_2025_3557397
crossref_primary_10_1109_TFUZZ_2024_3511695
crossref_primary_10_3233_JIFS_221434
crossref_primary_10_1063_5_0227689
crossref_primary_10_3390_math11030614
crossref_primary_10_1002_cjce_25261
crossref_primary_10_1016_j_enconman_2024_119219
crossref_primary_10_1016_j_ins_2023_119819
crossref_primary_10_1109_TFUZZ_2025_3562333
crossref_primary_10_1109_TFUZZ_2024_3513394
crossref_primary_10_3390_su16177650
crossref_primary_10_1016_j_cie_2025_111280
crossref_primary_10_1109_TFUZZ_2024_3520238
crossref_primary_10_1016_j_jhydrol_2025_134131
crossref_primary_10_1109_TSMC_2023_3308922
crossref_primary_10_1061_JCEMD4_COENG_15129
crossref_primary_10_1016_j_apenergy_2024_124601
crossref_primary_10_1088_1361_6501_adf133
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1109_TFUZZ_2025_3577008
crossref_primary_10_1109_TFUZZ_2024_3368998
crossref_primary_10_1007_s10489_022_03799_4
Cites_doi 10.1109/TFUZZ.2020.2972207
10.1109/TNNLS.2015.2469673
10.1109/ACCESS.2019.2920945
10.1109/TFUZZ.2013.2272480
10.1109/TFUZZ.2012.2193587
10.1109/TNN.2011.2170095
10.1109/TFUZZ.2015.2426314
10.1109/TNNLS.2011.2178315
10.1162/EVCO_a_00104
10.1109/TFUZZ.2017.2774187
10.1109/TEVC.2013.2240688
10.1109/TFUZZ.2012.2236096
10.1109/TIE.2017.2777415
10.1109/TIE.2013.2288196
10.1109/TCYB.2016.2638861
10.1109/TNNLS.2013.2253617
10.1016/j.swevo.2017.10.003
10.1109/TFUZZ.2014.2337938
10.1109/TFUZZ.2020.2984201
10.1016/j.neucom.2015.04.044
10.1109/TFUZZ.2013.2292972
10.1016/j.fss.2010.06.002
10.1109/JSYST.2017.2717446
10.1109/TFUZZ.2016.2612267
10.1016/j.asoc.2016.01.047
10.1109/TFUZZ.2015.2459756
10.1109/TNNLS.2015.2431251
10.1109/TCYB.2014.2382679
10.1109/TNNLS.2013.2261574
10.1109/TFUZZ.2018.2862394
10.1109/TFUZZ.2016.2599855
10.1016/j.asoc.2018.03.020
10.1016/j.asoc.2011.01.037
10.1109/TNNLS.2013.2276053
10.1109/TFUZZ.2012.2200900
10.1109/TFUZZ.2017.2718497
10.1109/JAS.2018.7511168
10.1109/TCYB.2013.2259229
10.1109/TFUZZ.2018.2851258
10.1109/TNNLS.2015.2425962
10.1109/TCYB.2017.2764744
10.1109/TNNLS.2012.2230406
10.1109/TCYB.2015.2486779
10.1016/j.asoc.2015.06.046
10.1016/j.asoc.2010.03.005
10.1109/TNN.2010.2066285
10.1109/TNNLS.2012.2227794
10.1109/ACCESS.2019.2960472
10.1109/TNNLS.2014.2320280
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2021.3119108
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 3588
ExternalDocumentID 10_1109_TFUZZ_2021_3119108
9566735
Genre orig-research
GrantInformation_xml – fundername: Beijing Natural Science Foundation
  grantid: KZ202110005009
  funderid: 10.13039/501100004826
– fundername: National Key Research and Development Project
  grantid: 2018YFC1900800-5
– fundername: National Natural Science Foundation of China; National Science Foundation of China
  grantid: 61890930-5; 61903010; 62021003; 62125301
  funderid: 10.13039/501100001809
– fundername: Beijing Outstanding Young Scientist Program
  grantid: BJJWZYJH01201910005020
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-94a2dba8283d3dbfa79d275eadeb204b9c572431d1937f47ee8fb9e98364ff433
IEDL.DBID RIE
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000848264000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Sun Jun 29 16:45:19 EDT 2025
Tue Nov 18 22:38:12 EST 2025
Sat Nov 29 03:12:42 EST 2025
Wed Aug 27 02:14:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-94a2dba8283d3dbfa79d275eadeb204b9c572431d1937f47ee8fb9e98364ff433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5617-4075
0000-0002-7713-1995
PQID 2708643655
PQPubID 85428
PageCount 15
ParticipantIDs proquest_journals_2708643655
crossref_citationtrail_10_1109_TFUZZ_2021_3119108
ieee_primary_9566735
crossref_primary_10_1109_TFUZZ_2021_3119108
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref32
  doi: 10.1109/TFUZZ.2020.2972207
– ident: ref30
  doi: 10.1109/TNNLS.2015.2469673
– ident: ref44
  doi: 10.1109/ACCESS.2019.2920945
– ident: ref19
  doi: 10.1109/TFUZZ.2013.2272480
– ident: ref5
  doi: 10.1109/TFUZZ.2012.2193587
– ident: ref16
  doi: 10.1109/TNN.2011.2170095
– ident: ref29
  doi: 10.1109/TFUZZ.2015.2426314
– ident: ref10
  doi: 10.1109/TNNLS.2011.2178315
– ident: ref41
  doi: 10.1162/EVCO_a_00104
– ident: ref27
  doi: 10.1109/TFUZZ.2017.2774187
– ident: ref38
  doi: 10.1109/TEVC.2013.2240688
– ident: ref36
  doi: 10.1109/TFUZZ.2012.2236096
– ident: ref25
  doi: 10.1109/TIE.2017.2777415
– ident: ref50
  doi: 10.1109/TIE.2013.2288196
– ident: ref11
  doi: 10.1109/TCYB.2016.2638861
– ident: ref23
  doi: 10.1109/TNNLS.2013.2253617
– ident: ref21
  doi: 10.1016/j.swevo.2017.10.003
– ident: ref3
  doi: 10.1109/TFUZZ.2014.2337938
– ident: ref18
  doi: 10.1109/TFUZZ.2014.2337938
– ident: ref22
  doi: 10.1109/TFUZZ.2020.2984201
– ident: ref34
  doi: 10.1016/j.neucom.2015.04.044
– ident: ref1
  doi: 10.1109/TFUZZ.2013.2292972
– ident: ref17
  doi: 10.1016/j.fss.2010.06.002
– ident: ref13
  doi: 10.1109/JSYST.2017.2717446
– ident: ref6
  doi: 10.1109/TFUZZ.2016.2612267
– ident: ref26
  doi: 10.1016/j.asoc.2016.01.047
– ident: ref14
  doi: 10.1109/TFUZZ.2015.2459756
– ident: ref31
  doi: 10.1109/TNNLS.2015.2431251
– ident: ref7
  doi: 10.1109/TCYB.2014.2382679
– ident: ref2
  doi: 10.1109/TNNLS.2013.2261574
– ident: ref37
  doi: 10.1109/TFUZZ.2018.2862394
– ident: ref9
  doi: 10.1109/TFUZZ.2016.2599855
– ident: ref39
  doi: 10.1016/j.asoc.2018.03.020
– ident: ref48
  doi: 10.1016/j.asoc.2011.01.037
– ident: ref42
  doi: 10.1109/TNNLS.2013.2276053
– ident: ref12
  doi: 10.1109/TFUZZ.2012.2200900
– ident: ref4
  doi: 10.1109/TFUZZ.2017.2718497
– ident: ref49
  doi: 10.1109/JAS.2018.7511168
– ident: ref20
  doi: 10.1109/TCYB.2013.2259229
– ident: ref24
  doi: 10.1109/TFUZZ.2018.2851258
– ident: ref8
  doi: 10.1109/TNNLS.2015.2425962
– ident: ref43
  doi: 10.1109/TCYB.2017.2764744
– ident: ref46
  doi: 10.1109/TNNLS.2012.2230406
– ident: ref35
  doi: 10.1109/TCYB.2015.2486779
– ident: ref28
  doi: 10.1016/j.asoc.2015.06.046
– ident: ref33
  doi: 10.1016/j.asoc.2010.03.005
– ident: ref47
  doi: 10.1109/TNN.2010.2066285
– ident: ref15
  doi: 10.1109/TNNLS.2012.2227794
– ident: ref40
  doi: 10.1109/ACCESS.2019.2960472
– ident: ref45
  doi: 10.1109/TNNLS.2014.2320280
SSID ssj0014518
Score 2.5121663
Snippet The design of a fuzzy neural network (FNN) has long been a challenging problem since most methods rely on approximation error to train an FNN, which may easily...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3574
SubjectTerms Algorithms
Approximation
Approximation algorithms
Artificial neural networks
Complexity theory
Continuity (mathematics)
Convergence
Fuzzy control
Fuzzy logic
fuzzy neural network (FNN)
Fuzzy neural networks
generalization performance
Machine learning
multiobjective particle swarm optimization (PSO) algorithm
Multiple objective analysis
Neural networks
Nonlinear systems
Optimization
Smoothness
System effectiveness
Training
Title Training Fuzzy Neural Network via Multiobjective Optimization for Nonlinear Systems Identification
URI https://ieeexplore.ieee.org/document/9566735
https://www.proquest.com/docview/2708643655
Volume 30
WOSCitedRecordID wos000848264000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFL1ocaELq61itUoW7nR0Jskkk6WIxVV1UUHcDJk8QNFWtBX0682rpaAI7maReTAnj3uTe84BOOZUEUF0lalCyYwW0o05zfLMkkJqXwyFeRPMJvhwWN3fi9sVOF1wYYwxofjMnPnLcJavJ2rmt8rOXSzPOClXYZVzFrlaixMDWhaR9sZIxnjO5gSZXJyPBncPDy4VxIXLUF1-4q0klxah4KryYyoO68ug_b8v24LNFEeiiwj8NqyYcQfac48GlIZsBzaWBAe70IySIwQazL6-PpGX5nBPGcZacPTxKFFg5E6apzgRohs3pbwkriZyAS4aRm0N6d4Rxc5R5PratPm3A3eDq9HldZZcFjKFRTnNBJVYN9JlXkQT3VjJhca89IXUDc5pI1TJsQsztAv1uKXcmMo2woiKMGotJWQXWuPJ2OwByg0nzFKFZeWiLEultcZ4ARtbKddTSA-K-W-vVZIg904Yz3VIRXJRB6hqD1WdoOrByeKe1yjA8Wfrrgdn0TLh0oP-HN06jdH3GnOXzlHCynL_97sOYB17skOoKOtDa_o2M4ewpj6mj-9vR6H7fQOgWNnp
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwGP1wA_XgLo5rDt60TpukTXMUcVDU6mEE8VLSLKDojOiMoL_ebDMIiuCth3ShL8v3Jd97D2CfUUk4UWUiMykSmgk75lSRJoZkQrliKMwabzbBqqq8u-M3E3A45sJorX3xmT5yl_4sX_Xl0G2VtW0sXzCST8K0c87KA1trfGZA8ywQ3wqSFCwtRhSZlLe7ndv7e5sM4szmqDZDcWaS35Yh76vyYzL2K0xn8X_ftgQLMZJExwH6ZZjQvRVYHLk0oDhoV2D-m-TgKjTd6AmBOsPPzw_kxDnsU6pQDY7eHwTynNx-8ximQnRtJ5XnyNZENsRFVVDXEPYdQe4cBbavidt_a3DbOe2enCXRZyGRmOeDhFOBVSNs7kUUUY0RjCvMcldK3eCUNlzmDNtAQ9lgjxnKtC5NwzUvSUGNoYSsw1Sv39MbgFLNSGGoxKK0CBkqjNHaSdiYUtq-QlqQjX57LaMIufPCeKp9MpLy2kNVO6jqCFULDsb3vAQJjj9brzpwxi0jLi3YHqFbx1H6VmNmEzpKijzf_P2uPZg9615d1pfn1cUWzGFHffD1ZdswNXgd6h2Yke-Dh7fXXd8VvwAkAt00
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Training+Fuzzy+Neural+Network+via+Multiobjective+Optimization+for+Nonlinear+Systems+Identification&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Han%2C+Honggui&rft.au=Sun%2C+Chenxuan&rft.au=Wu%2C+Xiaolong&rft.au=Yang%2C+Hongyan&rft.date=2022-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=30&rft.issue=9&rft.spage=3574&rft_id=info:doi/10.1109%2FTFUZZ.2021.3119108&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon