Discovering Fuzzy Structural Patterns for Graph Analytics

Many real-world datasets can be represented as attributed graphs that contain vertices, each of which is associated with a set of attribute values. Discovering clusters, or communities, which are structural patterns in these graphs, are one of the most important tasks in graph analysis. To perform t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on fuzzy systems Ročník 26; číslo 5; s. 2785 - 2796
Hlavní autori: He, Tiantian, Chan, Keith C. C.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1063-6706, 1941-0034
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Many real-world datasets can be represented as attributed graphs that contain vertices, each of which is associated with a set of attribute values. Discovering clusters, or communities, which are structural patterns in these graphs, are one of the most important tasks in graph analysis. To perform the task, a number of algorithms have been proposed. Some of them detect clusters of particular topological properties, whereas some others discover them mainly based on attribute information. Also, most of the algorithms discover disjoint clusters only. As a result, they may not be able to detect more meaningful clusters hidden in the attributed graph. To do so more effectively, we propose an algorithm, called FSPGA, to discover fuzzy structural patterns for graph analytics. FSPGA performs the task of cluster discovery as a fuzzy-constrained optimization problem, which takes into consideration both the graph topology and attribute values. FSPGA has been tested with both synthetic and real-world graph datasets and is found to be efficient and effective at detecting clusters in attributed graphs. FSPGA is a promising fuzzy algorithm for structural pattern detection in attributed graphs.
AbstractList Many real-world datasets can be represented as attributed graphs that contain vertices, each of which is associated with a set of attribute values. Discovering clusters, or communities, which are structural patterns in these graphs, are one of the most important tasks in graph analysis. To perform the task, a number of algorithms have been proposed. Some of them detect clusters of particular topological properties, whereas some others discover them mainly based on attribute information. Also, most of the algorithms discover disjoint clusters only. As a result, they may not be able to detect more meaningful clusters hidden in the attributed graph. To do so more effectively, we propose an algorithm, called FSPGA, to discover fuzzy structural patterns for graph analytics. FSPGA performs the task of cluster discovery as a fuzzy-constrained optimization problem, which takes into consideration both the graph topology and attribute values. FSPGA has been tested with both synthetic and real-world graph datasets and is found to be efficient and effective at detecting clusters in attributed graphs. FSPGA is a promising fuzzy algorithm for structural pattern detection in attributed graphs.
Author Chan, Keith C. C.
He, Tiantian
Author_xml – sequence: 1
  givenname: Tiantian
  orcidid: 0000-0003-4839-681X
  surname: He
  fullname: He, Tiantian
  email: csthe@comp.polyu.edu.hk
  organization: Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
– sequence: 2
  givenname: Keith C. C.
  orcidid: 0000-0001-7962-6564
  surname: Chan
  fullname: Chan, Keith C. C.
  email: cskcchan@comp.polyu.edu.hk
  organization: Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
BookMark eNp9kE1PwkAQhjcGEwH9A3pp4rm4n93dI0FBExJNhAuXzbKdakltcXdrAr_eIsSDB08zh_d5Z_IMUK9uakDomuARIVjfLabL1WpEMVEjKjXRgpyhPtGcpBgz3ut2nLE0kzi7QIMQNhgTLojqI31fBtd8gS_rt2Ta7ve75DX61sXW2yp5sTGCr0NSND6Zebt9T8a1rXaxdOESnRe2CnB1mkO0nD4sJo_p_Hn2NBnPU0e1iKmyai3zbK01ywVwyQsQEjLKuQUpQTOlhMtp7lxhweVSrhUUlKrcYVFIbNkQ3R57t775bCFEs2la330RDCVEEsWYll2KHlPONyF4KMzWlx_W7wzB5qDI_CgyB0XmpKiD1B_IldHGsqmjt2X1P3pzREsA-L2lqGAac_YNWHZ3OQ
CODEN IEFSEV
CitedBy_id crossref_primary_10_1109_TCBB_2020_2973091
crossref_primary_10_1109_TNSE_2024_3420911
crossref_primary_10_1007_s00034_019_01088_z
crossref_primary_10_1016_j_engappai_2020_103710
crossref_primary_10_1016_j_eswa_2021_116291
crossref_primary_10_1093_bib_bbab036
crossref_primary_10_1109_TFUZZ_2022_3218371
crossref_primary_10_1109_JSYST_2020_3001932
crossref_primary_10_1186_s12859_020_03882_y
crossref_primary_10_1109_TSMC_2025_3572738
crossref_primary_10_1016_j_knosys_2021_107112
crossref_primary_10_1109_TCYB_2021_3051606
crossref_primary_10_1186_s12859_021_04553_2
crossref_primary_10_1109_ACCESS_2020_3020192
crossref_primary_10_1109_TCYB_2021_3123081
crossref_primary_10_1109_TFUZZ_2023_3259726
crossref_primary_10_1109_TCYB_2022_3155646
crossref_primary_10_1109_TCYB_2019_2926431
crossref_primary_10_1109_TFUZZ_2021_3117442
crossref_primary_10_1109_TFUZZ_2024_3422414
crossref_primary_10_1186_s12859_023_05534_3
crossref_primary_10_1109_TKDE_2020_3033324
crossref_primary_10_1109_TNSE_2024_3524077
Cites_doi 10.1109/34.85677
10.1016/j.physrep.2009.11.002
10.1109/34.391407
10.1109/91.236552
10.1145/2629616
10.1073/pnas.0605965104
10.1007/s11222-007-9033-z
10.1109/TFUZZ.2015.2403878
10.1109/TFUZZ.2013.2240689
10.1093/nar/30.1.303
10.1109/TFUZZ.2015.2460732
10.14778/1687627.1687709
10.1109/21.310535
10.1038/75556
10.1073/pnas.0601602103
10.1109/TFUZZ.2015.2407901
10.1109/TFUZZ.2004.840099
10.1109/TFUZZ.2010.2052258
10.1145/2133806.2133826
10.1038/nature04670
10.1016/j.patcog.2014.06.021
10.1126/science.1136800
10.1016/0098-3004(84)90020-7
10.1093/nar/gkj109
10.1103/PhysRevE.70.066111
10.1109/TFUZZ.2012.2230181
10.1109/34.868688
10.1093/nar/gkn1005
10.1038/nature03607
10.1038/nature09182
10.1073/pnas.122653799
10.1088/1742-5468/2008/10/P10008
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2018.2791951
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) Online
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 2796
ExternalDocumentID 10_1109_TFUZZ_2018_2791951
8253904
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c295t-8a8b7d6b993d5e474fe57e6244ae77e93885cd2dccfaecd77b8ef228dc05f70a3
IEDL.DBID RIE
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446675400024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Mon Jun 30 04:05:31 EDT 2025
Sat Nov 29 03:12:36 EST 2025
Tue Nov 18 21:32:53 EST 2025
Wed Aug 27 02:54:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-8a8b7d6b993d5e474fe57e6244ae77e93885cd2dccfaecd77b8ef228dc05f70a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4839-681X
0000-0001-7962-6564
PQID 2117183397
PQPubID 85428
PageCount 12
ParticipantIDs crossref_primary_10_1109_TFUZZ_2018_2791951
ieee_primary_8253904
proquest_journals_2117183397
crossref_citationtrail_10_1109_TFUZZ_2018_2791951
PublicationCentury 2000
PublicationDate 2018-Oct.
2018-10-00
20181001
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-Oct.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref11
ref10
ref18
qi (ref46) 0
yang (ref29) 0
sun (ref28) 0
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
yang (ref22) 0
frank (ref16) 2012; 13
ref35
ref34
ref37
ref36
ref31
ref33
ref32
gunnermann (ref20) 0
ref1
ref39
chan (ref27) 0
ref38
he (ref24) 0
nallapati (ref26) 0
leskovec (ref2) 0
ref25
ref21
mcauley (ref23) 2014; 8
yang (ref14) 0
mackay (ref15) 2003
tian (ref17) 0
airoldi (ref13) 2008; 9
zhou (ref19) 0
balasubramanyan (ref30) 0
References_xml – volume: 8
  year: 2014
  ident: ref23
  article-title: Discovering social circles in ego networks
  publication-title: ACM Trans Knowl Discovery Data
– year: 2003
  ident: ref15
  publication-title: Information Theory Inference and Learning Algorithms
– ident: ref47
  doi: 10.1109/34.85677
– ident: ref1
  doi: 10.1016/j.physrep.2009.11.002
– ident: ref45
  doi: 10.1109/34.391407
– ident: ref33
  doi: 10.1109/91.236552
– start-page: 927
  year: 0
  ident: ref29
  article-title: Combining link and content for community detection: A discriminative approach
  publication-title: Proc 15th ACM Int Conf Kowl Disc Data Min
– ident: ref21
  doi: 10.1145/2629616
– start-page: 534
  year: 0
  ident: ref46
  article-title: Community detection with edge content in social media networks
  publication-title: Proc IEEE 28th Int Conf Data Eng
– start-page: 689
  year: 0
  ident: ref19
  article-title: Clustering large attributed graphs: An efficient incremental approach
  publication-title: Proc IEEE 10th Int Conf Data Mining
– ident: ref7
  doi: 10.1073/pnas.0605965104
– start-page: 493
  year: 0
  ident: ref28
  article-title: itopicmodel: Information network-integrated topic modeling
  publication-title: Proc IEEE Int Conf Data Mining
– start-page: 1151
  year: 0
  ident: ref22
  article-title: Community detection in networks with node attributes
  publication-title: Proc IEEE Int Conf Data Mining
– ident: ref11
  doi: 10.1007/s11222-007-9033-z
– ident: ref37
  doi: 10.1109/TFUZZ.2015.2403878
– start-page: 81
  year: 0
  ident: ref27
  article-title: Relational topic models for document networks
  publication-title: Proc 12th Int Conf Artif Intell Statist
– ident: ref36
  doi: 10.1109/TFUZZ.2013.2240689
– ident: ref41
  doi: 10.1093/nar/30.1.303
– ident: ref38
  doi: 10.1109/TFUZZ.2015.2460732
– start-page: 631
  year: 0
  ident: ref2
  article-title: Empirical comparison of algorithms for network community detection
  publication-title: Proc 19th Int Conf World Wide Web
– ident: ref18
  doi: 10.14778/1687627.1687709
– ident: ref44
  doi: 10.1109/21.310535
– ident: ref42
  doi: 10.1038/75556
– start-page: 567
  year: 0
  ident: ref17
  article-title: Efficient aggregation for graph summarization
  publication-title: Proc ACM Int Conf Manage Data
– start-page: 542
  year: 0
  ident: ref26
  article-title: Joint latent topic models for text and citations
  publication-title: Proc 14th ACM Int Conf Kowl Discovery Data Mining
– ident: ref4
  doi: 10.1073/pnas.0601602103
– ident: ref35
  doi: 10.1109/TFUZZ.2015.2407901
– volume: 13
  start-page: 459
  year: 2012
  ident: ref16
  article-title: Multi-assignment clustering for Boolean data
  publication-title: J Mach Learn Res
– start-page: 261
  year: 0
  ident: ref20
  article-title: Efficient mining of combined subspace and subgraph clusters in graphs with feature vectors
  publication-title: Proc Pacific-Asia Conf Adv Knowledge Discovery Data Mining
– ident: ref34
  doi: 10.1109/TFUZZ.2004.840099
– ident: ref49
  doi: 10.1109/TFUZZ.2010.2052258
– ident: ref25
  doi: 10.1145/2133806.2133826
– ident: ref40
  doi: 10.1038/nature04670
– ident: ref32
  doi: 10.1016/j.patcog.2014.06.021
– ident: ref9
  doi: 10.1126/science.1136800
– ident: ref31
  doi: 10.1016/0098-3004(84)90020-7
– ident: ref39
  doi: 10.1093/nar/gkj109
– ident: ref5
  doi: 10.1103/PhysRevE.70.066111
– start-page: 323
  year: 0
  ident: ref14
  article-title: Detecting cohesive and 2-mode communities in directed and undirected networks
  publication-title: Proceedings of the International Conference on Web Search and Data Mining ACM
– ident: ref48
  doi: 10.1109/TFUZZ.2012.2230181
– start-page: 1496
  year: 0
  ident: ref24
  article-title: Evolutionary community detection in social networks
  publication-title: Proc Congr Evol Comput
– ident: ref12
  doi: 10.1109/34.868688
– ident: ref43
  doi: 10.1093/nar/gkn1005
– start-page: 450
  year: 0
  ident: ref30
  article-title: Block-LDA: Jointly modeling entity-annotated text and entity-entity links
  publication-title: Proc SIAM Int Conf Data Mining
– ident: ref8
  doi: 10.1038/nature03607
– ident: ref10
  doi: 10.1038/nature09182
– ident: ref3
  doi: 10.1073/pnas.122653799
– ident: ref6
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 9
  start-page: 1981
  year: 2008
  ident: ref13
  article-title: Mixed membership stochastic blockmodels
  publication-title: J Mach Learn Res
SSID ssj0014518
Score 2.418609
Snippet Many real-world datasets can be represented as attributed graphs that contain vertices, each of which is associated with a set of attribute values. Discovering...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2785
SubjectTerms Algorithm design and analysis
Algorithms
Analytics
Attributed graph
biological network
Clustering algorithms
Clusters
community detection
complex network
Datasets
fuzzy clustering
fuzzy graph clustering
fuzzy structural pattern
graph analytics
Graphical representations
Graphs
Image edge detection
Optimization
relational fuzzy c-means (FCM) clustering
social network
Social network services
Topology
Title Discovering Fuzzy Structural Patterns for Graph Analytics
URI https://ieeexplore.ieee.org/document/8253904
https://www.proquest.com/docview/2117183397
Volume 26
WOSCitedRecordID wos000446675400024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5UPOjBVxWrVXLwplv3kewkR1GrBxFBK6WXJZvMgiCtWBX015tkt0VRBG8bSEKYL8nMbGa-AThAtJW75mSUC8MjTqWOdGqqKJFSlVzzjEIxmPsrvL6Wg4G6mYOjWS4MEYXgM-r6z_CWb8fm1f8qO3bejHPR-TzMI-Z1rtbsxYCLpE57y7MoxzifJsjE6viu1x8OfRSX7KaoEiWSb0ooVFX5cRUH_dJb_d_K1mClsSPZSQ38OszRaANWpzUaWHNkN2D5C-FgC9TZw8T4oE3XYr3Xj493dhsIZD35BrsJXJujCXOGLLvwTNYscJZ4JudN6PfO704vo6Z4QmRSJV4iqWWJNi-d_WEFceQVCaTcaXNNiKQyKYWxqTWm0mQsYimpSlNpTSwqjHW2BQuj8Yi2gZFGwS3ajGLjwLM69k4YeuYz5SbJ25BMpVmYhlncF7h4LIKHEasiIFB4BIoGgTYczsY81bwaf_ZueZnPejbibkNnClrRHL1J4Txap28zZ2ft_D5qF5b83HVEXgcWnJhpDxbN28vD5Hk_7KpPIPPKBg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHP6bidGoefNNqP5ImeRR1TpxDcIr4UtLkCoJMcU7Qv94k7YaiCL41kDTlfk3uLrn7HcAu56aw25wIUqZpQDFXgYp1EURCyJwqmqAvBnPb5b2euLuTVzXYn-TCIKIPPsMD9-jv8s2THrmjskPrzVgXnU7BNKM0DstsrcmdAWVRmfiWJkHKw3ScIhPKw3775v7exXGJg5jLSLLomxrydVV-bMZew7QX__dtS7BQWZLkqIR-GWo4aMDiuEoDqRZtA-a_UA6ugDx5GGoXtmlbpD36-Hgn155C1tFvkCvPtjkYEmvKkjPHZU08a4njcl6Fm_Zp_7gTVOUTAh1L9hoIJXJu0txaIIYh5bRAxjG1-lwh5ygTIZg2sdG6UKgN57nAIo6F0SEreKiSNagPnga4DgQVZ9Rwk2CoLXxGhc4N4477TNqXpE2IxtLMdMUt7kpcPGbexwhl5hHIHAJZhUAT9iZjnktmjT97rziZT3pW4m5CawxaVi2-YWZ9WqtxE2tpbfw-agdmO_3LbtY9711swpybp4zPa0Hdihy3YEa_vT4MX7b9H_YJzV_NTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovering+Fuzzy+Structural+Patterns+for+Graph+Analytics&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=He%2C+Tiantian&rft.au=Chan%2C+Keith+C.+C.&rft.date=2018-10-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=26&rft.issue=5&rft.spage=2785&rft.epage=2796&rft_id=info:doi/10.1109%2FTFUZZ.2018.2791951&rft.externalDocID=8253904
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon