Discovering Fuzzy Structural Patterns for Graph Analytics
Many real-world datasets can be represented as attributed graphs that contain vertices, each of which is associated with a set of attribute values. Discovering clusters, or communities, which are structural patterns in these graphs, are one of the most important tasks in graph analysis. To perform t...
Uložené v:
| Vydané v: | IEEE transactions on fuzzy systems Ročník 26; číslo 5; s. 2785 - 2796 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1063-6706, 1941-0034 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Many real-world datasets can be represented as attributed graphs that contain vertices, each of which is associated with a set of attribute values. Discovering clusters, or communities, which are structural patterns in these graphs, are one of the most important tasks in graph analysis. To perform the task, a number of algorithms have been proposed. Some of them detect clusters of particular topological properties, whereas some others discover them mainly based on attribute information. Also, most of the algorithms discover disjoint clusters only. As a result, they may not be able to detect more meaningful clusters hidden in the attributed graph. To do so more effectively, we propose an algorithm, called FSPGA, to discover fuzzy structural patterns for graph analytics. FSPGA performs the task of cluster discovery as a fuzzy-constrained optimization problem, which takes into consideration both the graph topology and attribute values. FSPGA has been tested with both synthetic and real-world graph datasets and is found to be efficient and effective at detecting clusters in attributed graphs. FSPGA is a promising fuzzy algorithm for structural pattern detection in attributed graphs. |
|---|---|
| AbstractList | Many real-world datasets can be represented as attributed graphs that contain vertices, each of which is associated with a set of attribute values. Discovering clusters, or communities, which are structural patterns in these graphs, are one of the most important tasks in graph analysis. To perform the task, a number of algorithms have been proposed. Some of them detect clusters of particular topological properties, whereas some others discover them mainly based on attribute information. Also, most of the algorithms discover disjoint clusters only. As a result, they may not be able to detect more meaningful clusters hidden in the attributed graph. To do so more effectively, we propose an algorithm, called FSPGA, to discover fuzzy structural patterns for graph analytics. FSPGA performs the task of cluster discovery as a fuzzy-constrained optimization problem, which takes into consideration both the graph topology and attribute values. FSPGA has been tested with both synthetic and real-world graph datasets and is found to be efficient and effective at detecting clusters in attributed graphs. FSPGA is a promising fuzzy algorithm for structural pattern detection in attributed graphs. |
| Author | Chan, Keith C. C. He, Tiantian |
| Author_xml | – sequence: 1 givenname: Tiantian orcidid: 0000-0003-4839-681X surname: He fullname: He, Tiantian email: csthe@comp.polyu.edu.hk organization: Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong – sequence: 2 givenname: Keith C. C. orcidid: 0000-0001-7962-6564 surname: Chan fullname: Chan, Keith C. C. email: cskcchan@comp.polyu.edu.hk organization: Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong |
| BookMark | eNp9kE1PwkAQhjcGEwH9A3pp4rm4n93dI0FBExJNhAuXzbKdakltcXdrAr_eIsSDB08zh_d5Z_IMUK9uakDomuARIVjfLabL1WpEMVEjKjXRgpyhPtGcpBgz3ut2nLE0kzi7QIMQNhgTLojqI31fBtd8gS_rt2Ta7ve75DX61sXW2yp5sTGCr0NSND6Zebt9T8a1rXaxdOESnRe2CnB1mkO0nD4sJo_p_Hn2NBnPU0e1iKmyai3zbK01ywVwyQsQEjLKuQUpQTOlhMtp7lxhweVSrhUUlKrcYVFIbNkQ3R57t775bCFEs2la330RDCVEEsWYll2KHlPONyF4KMzWlx_W7wzB5qDI_CgyB0XmpKiD1B_IldHGsqmjt2X1P3pzREsA-L2lqGAac_YNWHZ3OQ |
| CODEN | IEFSEV |
| CitedBy_id | crossref_primary_10_1109_TCBB_2020_2973091 crossref_primary_10_1109_TNSE_2024_3420911 crossref_primary_10_1007_s00034_019_01088_z crossref_primary_10_1016_j_engappai_2020_103710 crossref_primary_10_1016_j_eswa_2021_116291 crossref_primary_10_1093_bib_bbab036 crossref_primary_10_1109_TFUZZ_2022_3218371 crossref_primary_10_1109_JSYST_2020_3001932 crossref_primary_10_1186_s12859_020_03882_y crossref_primary_10_1109_TSMC_2025_3572738 crossref_primary_10_1016_j_knosys_2021_107112 crossref_primary_10_1109_TCYB_2021_3051606 crossref_primary_10_1186_s12859_021_04553_2 crossref_primary_10_1109_ACCESS_2020_3020192 crossref_primary_10_1109_TCYB_2021_3123081 crossref_primary_10_1109_TFUZZ_2023_3259726 crossref_primary_10_1109_TCYB_2022_3155646 crossref_primary_10_1109_TCYB_2019_2926431 crossref_primary_10_1109_TFUZZ_2021_3117442 crossref_primary_10_1109_TFUZZ_2024_3422414 crossref_primary_10_1186_s12859_023_05534_3 crossref_primary_10_1109_TKDE_2020_3033324 crossref_primary_10_1109_TNSE_2024_3524077 |
| Cites_doi | 10.1109/34.85677 10.1016/j.physrep.2009.11.002 10.1109/34.391407 10.1109/91.236552 10.1145/2629616 10.1073/pnas.0605965104 10.1007/s11222-007-9033-z 10.1109/TFUZZ.2015.2403878 10.1109/TFUZZ.2013.2240689 10.1093/nar/30.1.303 10.1109/TFUZZ.2015.2460732 10.14778/1687627.1687709 10.1109/21.310535 10.1038/75556 10.1073/pnas.0601602103 10.1109/TFUZZ.2015.2407901 10.1109/TFUZZ.2004.840099 10.1109/TFUZZ.2010.2052258 10.1145/2133806.2133826 10.1038/nature04670 10.1016/j.patcog.2014.06.021 10.1126/science.1136800 10.1016/0098-3004(84)90020-7 10.1093/nar/gkj109 10.1103/PhysRevE.70.066111 10.1109/TFUZZ.2012.2230181 10.1109/34.868688 10.1093/nar/gkn1005 10.1038/nature03607 10.1038/nature09182 10.1073/pnas.122653799 10.1088/1742-5468/2008/10/P10008 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TFUZZ.2018.2791951 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) Online IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0034 |
| EndPage | 2796 |
| ExternalDocumentID | 10_1109_TFUZZ_2018_2791951 8253904 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c295t-8a8b7d6b993d5e474fe57e6244ae77e93885cd2dccfaecd77b8ef228dc05f70a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446675400024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6706 |
| IngestDate | Mon Jun 30 04:05:31 EDT 2025 Sat Nov 29 03:12:36 EST 2025 Tue Nov 18 21:32:53 EST 2025 Wed Aug 27 02:54:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-8a8b7d6b993d5e474fe57e6244ae77e93885cd2dccfaecd77b8ef228dc05f70a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4839-681X 0000-0001-7962-6564 |
| PQID | 2117183397 |
| PQPubID | 85428 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TFUZZ_2018_2791951 ieee_primary_8253904 proquest_journals_2117183397 crossref_citationtrail_10_1109_TFUZZ_2018_2791951 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Oct. 2018-10-00 20181001 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-Oct. |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref11 ref10 ref18 qi (ref46) 0 yang (ref29) 0 sun (ref28) 0 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 yang (ref22) 0 frank (ref16) 2012; 13 ref35 ref34 ref37 ref36 ref31 ref33 ref32 gunnermann (ref20) 0 ref1 ref39 chan (ref27) 0 ref38 he (ref24) 0 nallapati (ref26) 0 leskovec (ref2) 0 ref25 ref21 mcauley (ref23) 2014; 8 yang (ref14) 0 mackay (ref15) 2003 tian (ref17) 0 airoldi (ref13) 2008; 9 zhou (ref19) 0 balasubramanyan (ref30) 0 |
| References_xml | – volume: 8 year: 2014 ident: ref23 article-title: Discovering social circles in ego networks publication-title: ACM Trans Knowl Discovery Data – year: 2003 ident: ref15 publication-title: Information Theory Inference and Learning Algorithms – ident: ref47 doi: 10.1109/34.85677 – ident: ref1 doi: 10.1016/j.physrep.2009.11.002 – ident: ref45 doi: 10.1109/34.391407 – ident: ref33 doi: 10.1109/91.236552 – start-page: 927 year: 0 ident: ref29 article-title: Combining link and content for community detection: A discriminative approach publication-title: Proc 15th ACM Int Conf Kowl Disc Data Min – ident: ref21 doi: 10.1145/2629616 – start-page: 534 year: 0 ident: ref46 article-title: Community detection with edge content in social media networks publication-title: Proc IEEE 28th Int Conf Data Eng – start-page: 689 year: 0 ident: ref19 article-title: Clustering large attributed graphs: An efficient incremental approach publication-title: Proc IEEE 10th Int Conf Data Mining – ident: ref7 doi: 10.1073/pnas.0605965104 – start-page: 493 year: 0 ident: ref28 article-title: itopicmodel: Information network-integrated topic modeling publication-title: Proc IEEE Int Conf Data Mining – start-page: 1151 year: 0 ident: ref22 article-title: Community detection in networks with node attributes publication-title: Proc IEEE Int Conf Data Mining – ident: ref11 doi: 10.1007/s11222-007-9033-z – ident: ref37 doi: 10.1109/TFUZZ.2015.2403878 – start-page: 81 year: 0 ident: ref27 article-title: Relational topic models for document networks publication-title: Proc 12th Int Conf Artif Intell Statist – ident: ref36 doi: 10.1109/TFUZZ.2013.2240689 – ident: ref41 doi: 10.1093/nar/30.1.303 – ident: ref38 doi: 10.1109/TFUZZ.2015.2460732 – start-page: 631 year: 0 ident: ref2 article-title: Empirical comparison of algorithms for network community detection publication-title: Proc 19th Int Conf World Wide Web – ident: ref18 doi: 10.14778/1687627.1687709 – ident: ref44 doi: 10.1109/21.310535 – ident: ref42 doi: 10.1038/75556 – start-page: 567 year: 0 ident: ref17 article-title: Efficient aggregation for graph summarization publication-title: Proc ACM Int Conf Manage Data – start-page: 542 year: 0 ident: ref26 article-title: Joint latent topic models for text and citations publication-title: Proc 14th ACM Int Conf Kowl Discovery Data Mining – ident: ref4 doi: 10.1073/pnas.0601602103 – ident: ref35 doi: 10.1109/TFUZZ.2015.2407901 – volume: 13 start-page: 459 year: 2012 ident: ref16 article-title: Multi-assignment clustering for Boolean data publication-title: J Mach Learn Res – start-page: 261 year: 0 ident: ref20 article-title: Efficient mining of combined subspace and subgraph clusters in graphs with feature vectors publication-title: Proc Pacific-Asia Conf Adv Knowledge Discovery Data Mining – ident: ref34 doi: 10.1109/TFUZZ.2004.840099 – ident: ref49 doi: 10.1109/TFUZZ.2010.2052258 – ident: ref25 doi: 10.1145/2133806.2133826 – ident: ref40 doi: 10.1038/nature04670 – ident: ref32 doi: 10.1016/j.patcog.2014.06.021 – ident: ref9 doi: 10.1126/science.1136800 – ident: ref31 doi: 10.1016/0098-3004(84)90020-7 – ident: ref39 doi: 10.1093/nar/gkj109 – ident: ref5 doi: 10.1103/PhysRevE.70.066111 – start-page: 323 year: 0 ident: ref14 article-title: Detecting cohesive and 2-mode communities in directed and undirected networks publication-title: Proceedings of the International Conference on Web Search and Data Mining ACM – ident: ref48 doi: 10.1109/TFUZZ.2012.2230181 – start-page: 1496 year: 0 ident: ref24 article-title: Evolutionary community detection in social networks publication-title: Proc Congr Evol Comput – ident: ref12 doi: 10.1109/34.868688 – ident: ref43 doi: 10.1093/nar/gkn1005 – start-page: 450 year: 0 ident: ref30 article-title: Block-LDA: Jointly modeling entity-annotated text and entity-entity links publication-title: Proc SIAM Int Conf Data Mining – ident: ref8 doi: 10.1038/nature03607 – ident: ref10 doi: 10.1038/nature09182 – ident: ref3 doi: 10.1073/pnas.122653799 – ident: ref6 doi: 10.1088/1742-5468/2008/10/P10008 – volume: 9 start-page: 1981 year: 2008 ident: ref13 article-title: Mixed membership stochastic blockmodels publication-title: J Mach Learn Res |
| SSID | ssj0014518 |
| Score | 2.418609 |
| Snippet | Many real-world datasets can be represented as attributed graphs that contain vertices, each of which is associated with a set of attribute values. Discovering... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2785 |
| SubjectTerms | Algorithm design and analysis Algorithms Analytics Attributed graph biological network Clustering algorithms Clusters community detection complex network Datasets fuzzy clustering fuzzy graph clustering fuzzy structural pattern graph analytics Graphical representations Graphs Image edge detection Optimization relational fuzzy c-means (FCM) clustering social network Social network services Topology |
| Title | Discovering Fuzzy Structural Patterns for Graph Analytics |
| URI | https://ieeexplore.ieee.org/document/8253904 https://www.proquest.com/docview/2117183397 |
| Volume | 26 |
| WOSCitedRecordID | wos000446675400024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5UPOjBVxWrVXLwplv3kewkR1GrBxFBK6WXJZvMgiCtWBX015tkt0VRBG8bSEKYL8nMbGa-AThAtJW75mSUC8MjTqWOdGqqKJFSlVzzjEIxmPsrvL6Wg4G6mYOjWS4MEYXgM-r6z_CWb8fm1f8qO3bejHPR-TzMI-Z1rtbsxYCLpE57y7MoxzifJsjE6viu1x8OfRSX7KaoEiWSb0ooVFX5cRUH_dJb_d_K1mClsSPZSQ38OszRaANWpzUaWHNkN2D5C-FgC9TZw8T4oE3XYr3Xj493dhsIZD35BrsJXJujCXOGLLvwTNYscJZ4JudN6PfO704vo6Z4QmRSJV4iqWWJNi-d_WEFceQVCaTcaXNNiKQyKYWxqTWm0mQsYimpSlNpTSwqjHW2BQuj8Yi2gZFGwS3ajGLjwLM69k4YeuYz5SbJ25BMpVmYhlncF7h4LIKHEasiIFB4BIoGgTYczsY81bwaf_ZueZnPejbibkNnClrRHL1J4Txap28zZ2ft_D5qF5b83HVEXgcWnJhpDxbN28vD5Hk_7KpPIPPKBg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHP6bidGoefNNqP5ImeRR1TpxDcIr4UtLkCoJMcU7Qv94k7YaiCL41kDTlfk3uLrn7HcAu56aw25wIUqZpQDFXgYp1EURCyJwqmqAvBnPb5b2euLuTVzXYn-TCIKIPPsMD9-jv8s2THrmjskPrzVgXnU7BNKM0DstsrcmdAWVRmfiWJkHKw3ScIhPKw3775v7exXGJg5jLSLLomxrydVV-bMZew7QX__dtS7BQWZLkqIR-GWo4aMDiuEoDqRZtA-a_UA6ugDx5GGoXtmlbpD36-Hgn155C1tFvkCvPtjkYEmvKkjPHZU08a4njcl6Fm_Zp_7gTVOUTAh1L9hoIJXJu0txaIIYh5bRAxjG1-lwh5ygTIZg2sdG6UKgN57nAIo6F0SEreKiSNagPnga4DgQVZ9Rwk2CoLXxGhc4N4477TNqXpE2IxtLMdMUt7kpcPGbexwhl5hHIHAJZhUAT9iZjnktmjT97rziZT3pW4m5CawxaVi2-YWZ9WqtxE2tpbfw-agdmO_3LbtY9711swpybp4zPa0Hdihy3YEa_vT4MX7b9H_YJzV_NTQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovering+Fuzzy+Structural+Patterns+for+Graph+Analytics&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=He%2C+Tiantian&rft.au=Chan%2C+Keith+C.+C.&rft.date=2018-10-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=26&rft.issue=5&rft.spage=2785&rft.epage=2796&rft_id=info:doi/10.1109%2FTFUZZ.2018.2791951&rft.externalDocID=8253904 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |