Massive MIMO Adaptive Modulation and Coding Using Online Deep Learning Algorithm

The letter describes an online deep learning algorithm (ODL) for adaptive modulation and coding in massive MIMO. The algorithm is based on a fully connected neural network, which is initially trained on the output of the traditional algorithm and then incrementally retrained by the service feedback...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE communications letters Ročník 26; číslo 4; s. 818 - 822
Hlavní autoři: Bobrov, Evgeny, Kropotov, Dmitry, Lu, Hao, Zaev, Danila
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-7798, 1558-2558
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The letter describes an online deep learning algorithm (ODL) for adaptive modulation and coding in massive MIMO. The algorithm is based on a fully connected neural network, which is initially trained on the output of the traditional algorithm and then incrementally retrained by the service feedback of its output. We show the advantage of our solution over the state-of-the-art Q-learning approach. We provide system-level simulation results to support this conclusion in various scenarios with different channel characteristics and different user speeds. Compared with traditional OLLA, the algorithm shows a 10% to 20% improvement in user throughput in the full-buffer case.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2021.3132947