Semi-Supervised Learning with Close-Form Label Propagation Using a Bipartite Graph
In this paper, we introduce an efficient and effective algorithm for Graph-based Semi-Supervised Learning (GSSL). Unlike other GSSL methods, our proposed algorithm achieves efficiency by constructing a bipartite graph, which connects a small number of representative points to a large volume of raw d...
Uloženo v:
| Vydáno v: | Symmetry (Basel) Ročník 16; číslo 10; s. 1312 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.10.2024
|
| Témata: | |
| ISSN: | 2073-8994, 2073-8994 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we introduce an efficient and effective algorithm for Graph-based Semi-Supervised Learning (GSSL). Unlike other GSSL methods, our proposed algorithm achieves efficiency by constructing a bipartite graph, which connects a small number of representative points to a large volume of raw data by capturing their underlying manifold structures. This bipartite graph, with a sparse and anti-diagonal affinity matrix which is symmetrical, serves as a low-rank approximation of the original graph. Consequently, our algorithm accelerates both the graph construction and label propagation steps. In particular, on the one hand, our algorithm computes the label propagation in closed-form, reducing its computational complexity from cubic to approximately linear with respect to the number of data points; on the other hand, our algorithm calculates the soft label matrix for unlabeled data using a closed-form solution, thereby gaining additional acceleration. Comprehensive experiments performed on six real-world datasets demonstrate the efficiency and effectiveness of our algorithm in comparison to five state-of-the-art algorithms. |
|---|---|
| AbstractList | In this paper, we introduce an efficient and effective algorithm for Graph-based Semi-Supervised Learning (GSSL). Unlike other GSSL methods, our proposed algorithm achieves efficiency by constructing a bipartite graph, which connects a small number of representative points to a large volume of raw data by capturing their underlying manifold structures. This bipartite graph, with a sparse and anti-diagonal affinity matrix which is symmetrical, serves as a low-rank approximation of the original graph. Consequently, our algorithm accelerates both the graph construction and label propagation steps. In particular, on the one hand, our algorithm computes the label propagation in closed-form, reducing its computational complexity from cubic to approximately linear with respect to the number of data points; on the other hand, our algorithm calculates the soft label matrix for unlabeled data using a closed-form solution, thereby gaining additional acceleration. Comprehensive experiments performed on six real-world datasets demonstrate the efficiency and effectiveness of our algorithm in comparison to five state-of-the-art algorithms. |
| Audience | Academic |
| Author | Peng, Zhongxing Zheng, Gengzhong Huang, Wei |
| Author_xml | – sequence: 1 givenname: Zhongxing surname: Peng fullname: Peng, Zhongxing – sequence: 2 givenname: Gengzhong surname: Zheng fullname: Zheng, Gengzhong – sequence: 3 givenname: Wei surname: Huang fullname: Huang, Wei |
| BookMark | eNpNUE1PwzAMjdCQGGMn_kAkjqgjH_1Ij2NiA6kSiLFzlabOlqltStKB9u_JNA6zD7bs92y9d4tGne0AoXtKZpzn5MkfW5pSQjllV2jMSMYjkefx6KK_QVPv9yREQpI4JWP0uYbWROtDD-7HeKhxAdJ1ptviXzPs8KKxHqKldS0uZAUN_nC2l1s5GNvhjT_hJH42vXSDGQCvnOx3d-hay8bD9L9O0Gb58rV4jYr31dtiXkSK5ckQiUzHTFQqSaniTHKmZJ7WPAatQGuhhayVSHJSE5FlYV2FTcWTikKe5CBSPkEP57u9s98H8EO5twfXhZdlsCBIFizjATU7o7aygdJ02g5OqpB1EK6Cg9qE-VzQOGZEMBEIj2eCctZ7B7rsnWmlO5aUlCejywuj-R8zJ3Gi |
| Cites_doi | 10.1016/j.cviu.2005.09.012 10.1109/5.726791 10.1109/JPROC.2012.2197809 10.1007/978-0-387-84858-7 10.1109/34.291440 10.1007/s00521-009-0305-8 10.47443/cm.2022.011 10.1145/1961189.1961199 10.1109/CVPRW.2009.5206594 10.1145/1102351.1102484 10.1109/TKDE.2020.2968523 10.1109/TNNLS.2022.3155478 10.1109/ICCV.2007.4408853 10.1007/978-3-319-10605-2_28 10.1007/s11222-007-9033-z 10.1145/1646396.1646452 10.1109/TPAMI.2009.154 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.3390/sym16101312 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Download PDF from ProQuest Central Technology collection ProQuest One ProQuest Central Korea Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2073-8994 |
| ExternalDocumentID | A814420828 10_3390_sym16101312 |
| GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c295t-87f428bc561c32a32ca96d34efceff8f8adc8590d0877a32b4efb35b1e959e863 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001341902200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-8994 |
| IngestDate | Fri Jul 25 12:12:07 EDT 2025 Tue Nov 04 18:13:50 EST 2025 Sat Nov 29 07:16:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-87f428bc561c32a32ca96d34efceff8f8adc8590d0877a32b4efb35b1e959e863 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3120738273?pq-origsite=%requestingapplication% |
| PQID | 3120738273 |
| PQPubID | 2032326 |
| ParticipantIDs | proquest_journals_3120738273 gale_infotracacademiconefile_A814420828 crossref_primary_10_3390_sym16101312 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Symmetry (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | He (ref_13) 2021; 33 Wang (ref_14) 2023; 35 Luxburg (ref_16) 2007; 17 ref_11 ref_10 Lecun (ref_27) 1998; 86 Rowshan (ref_15) 2022; 5 ref_19 ref_18 ref_17 Gevers (ref_29) 2010; 32 Fleet (ref_1) 2014; 8690 Hull (ref_24) 1994; 16 Zhou (ref_4) 2003; 16 Chang (ref_30) 2011; 2 ref_25 ref_23 ref_22 Song (ref_3) 2023; 34 ref_20 Liu (ref_12) 2012; 100 Nie (ref_5) 2010; 19 ref_2 ref_28 ref_26 Tsang (ref_8) 2006; 19 ref_9 Li (ref_21) 2007; 106 ref_7 ref_6 |
| References_xml | – ident: ref_7 – volume: 106 start-page: 59 year: 2007 ident: ref_21 article-title: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories publication-title: Comput. Vis. Imagin Underst. doi: 10.1016/j.cviu.2005.09.012 – volume: 86 start-page: 2278 year: 1998 ident: ref_27 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: ref_26 – ident: ref_11 – volume: 19 start-page: 1401 year: 2006 ident: ref_8 article-title: Large-scale sparsified manifold regularization publication-title: Adv. Neural Inf. Process. Syst. – volume: 100 start-page: 2624 year: 2012 ident: ref_12 article-title: Robust and Scalable Graph-Based Semisupervised Learning publication-title: Proc. IEEE doi: 10.1109/JPROC.2012.2197809 – ident: ref_17 doi: 10.1007/978-0-387-84858-7 – ident: ref_18 – ident: ref_23 – volume: 16 start-page: 550 year: 1994 ident: ref_24 article-title: A database for handwritten text recognition research publication-title: Pattern Anal. Mach. Intell. IEEE Trans. doi: 10.1109/34.291440 – volume: 19 start-page: 549 year: 2010 ident: ref_5 article-title: A General Graph-based Semi-supervised Learning with Novel Class Discovery publication-title: Neural Comput. Appl. doi: 10.1007/s00521-009-0305-8 – volume: 5 start-page: 36 year: 2022 ident: ref_15 article-title: The m-Bipartite Ramsey Number of the K2,2 Versus K6,6 publication-title: Contrib. Math. doi: 10.47443/cm.2022.011 – volume: 2 start-page: 27:1 year: 2011 ident: ref_30 article-title: LIBSVM: A Library for Support Vector Machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – ident: ref_28 doi: 10.1109/CVPRW.2009.5206594 – ident: ref_6 – ident: ref_9 doi: 10.1145/1102351.1102484 – volume: 33 start-page: 3245 year: 2021 ident: ref_13 article-title: Fast Semi-Supervised Learning With Optimal Bipartite Graph publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2020.2968523 – ident: ref_2 – volume: 34 start-page: 8174 year: 2023 ident: ref_3 article-title: Graph-Based Semi-Supervised Learning: A Comprehensive Review publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2022.3155478 – ident: ref_10 – ident: ref_22 doi: 10.1109/ICCV.2007.4408853 – volume: 8690 start-page: 425 year: 2014 ident: ref_1 article-title: Binary Codes Embedding for Fast Image Tagging with Incomplete Labels publication-title: Computer Vision—ECCV 2014 doi: 10.1007/978-3-319-10605-2_28 – volume: 16 start-page: 321 year: 2003 ident: ref_4 article-title: Learning with Local and Global Consistency publication-title: Adv. Neural Inf. Process. Syst. – volume: 35 start-page: 5257 year: 2023 ident: ref_14 article-title: Semi-Supervised Learning via Bipartite Graph Construction with Adaptive Neighbors publication-title: IEEE Trans. Knowl. Data Eng. – ident: ref_19 – volume: 17 start-page: 395 year: 2007 ident: ref_16 article-title: A Tutorial on Spectral Clustering publication-title: Stat. Comput. doi: 10.1007/s11222-007-9033-z – ident: ref_20 – ident: ref_25 doi: 10.1145/1646396.1646452 – volume: 32 start-page: 1582 year: 2010 ident: ref_29 article-title: Evaluating Color Descriptors for Object and Scene Recognition publication-title: Pattern Anal. Mach. Intell. IEEE Trans. doi: 10.1109/TPAMI.2009.154 |
| SSID | ssj0000505460 |
| Score | 2.3086302 |
| Snippet | In this paper, we introduce an efficient and effective algorithm for Graph-based Semi-Supervised Learning (GSSL). Unlike other GSSL methods, our proposed... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 1312 |
| SubjectTerms | Accuracy Algorithms Analysis Approximation Closed form solutions Construction Data points Datasets Effectiveness Efficiency Exact solutions Graph theory Labels Machine learning Propagation Semi-supervised learning User generated content |
| Title | Semi-Supervised Learning with Close-Form Label Propagation Using a Bipartite Graph |
| URI | https://www.proquest.com/docview/3120738273 |
| Volume | 16 |
| WOSCitedRecordID | wos001341902200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7x6IFLKbRVUwLaAxLtwSLZtZP1CQWUUKQQWUkr0ZO1zyhSXo0NEpf-9s44GwpSxaUXHzwHW_7m7dlvAE5jjHLeKVrfLjwWKBr9YCxFhMahGy4VVtqKxLXfHgzk3V2ahYZbEcYqNz6xctR2YahHfi6aHLVRYrS9WP6KaGsU_V0NKzS2YZdYEprV6N7oqcdCW9riVmN9LE9gdX9ePM4wxSGOGf4iEP3bHVcxprf_v2_3Dt6G7JJ11upwAFtufggHwX4L9iWQTH99D8ORm02i0f2SfEXhLAtEq2NGnVl2NV0ULuphQsv6Srspy1ZYXY8rGFk1ZsAUu5wsSfFKx66J9voD_Oh1v199i8J-hcjwNCnREXosPrTBFMoIrgQ3Km1ZETtvnPfSS2WNTNKGJdJAFGuUaJHopkuT1MmW-Ag788XcfQKWtjUmTw5jHbexVkp54TxvaG5N0rRG1eB087Hz5ZpGI8fygzDJn2FSgzMCIifjKlfKqHBGAB9CNFV5R2L9x4l1rwb1DRB5sLoi_4vC59fFR7DHMTlZD-XVYadc3btjeGMeykmxOoHdy-4gG55UykTX3128l93cZj__AInh1ck |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQXoDxESoE9FAEHq86une4eECqF0KohqkiRenP3MYsitUkau6D-KX4jM37wkBC3HjivFMuZb7_5Zj37DcBmRlkuouXx7SpSgeKIBzOtEtocLkWjgg61ietoezzWx8fmcAW-d3dhuK2y48SaqMPc8xn5lupLQqOmbPtmcZ7w1Cj-utqN0GhgcYCX36hkK1_vv6P4Ppdy-P5ody9ppwokXpq8ou0fSXI7T8LBK2mV9NYMgsoweoxRR22D17lJA1vl0bKjFady10eTG9QDRb97Da6TjJCmbhWc_DzT4alw2SBtrgEqZdKt8vKMJBV72sg_Et_f6b_OacM7_9u_cRdut-pZ7DRwX4MVnN2DtZafSvGyNdF-dR8-TfBsmkwuFsyFJQbRGsl-EXzyLHZP5yUmQxLsYmQdnorD5ZyotYapqNsohBVvpwveWBWKD2zr_QA-X8m7PYTV2XyGj0CYbUfiECmXy5A5a21UGGXqZPB5P3jbg80uuMWisQkpqLxiDBS_YaAHLzjwBZNHtbTetncg6CFsw1XsaKpvJbsK9mCjC3zRskpZ_Ir6-r-Xn8HNvaOPo2K0Pz54DLckCbGmAXEDVqvlBT6BG_5rNS2XT2sACzi5aoz8AHYjMAs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCEuQPkQgQJ7KAIOVpxdO909IFRaAlFDZFGQysnsJ4rUJiF2Qf1r_Dpm7DUfEuLWA-eVbK337Zs369k3ADsZRrngNbVvFwETFIM8mEmR4OYwqVfCSdeYuE53ZzN5fKyKDfje3YWhssqOExuidktLZ-QDMeSIRonRdhBiWURxMH6x-pJQByn609q102ghcujPv2H6Vj2fHOBaP-Z8_Or9_pskdhhILFd5jVQQUH4biyLCCq4Ft1qNnMh8sD4EGaR2VuYqdWSbh8MGR4zIzdCrXHk5EvjcS7CJkjzjPdgsJm-Ljz9PeKhHXDZK20uBQqh0UJ2fosAihxv-Rxj8ezBoItz4-v_8bW7Atair2V67EbZgwy9uwlZkroo9jfbaz27BuyN_Ok-OzlbEkpV3LFrMfmZ0Js32T5aVT8Yo5dlUG3_CivUSSbcBMGsKLJhmL-cr2nK1Z6_J8Ps2fLiQud2B3mK58HeBqV2DstFjlOcuM1rrIHzgqeHO5kNndR92uoUuV62BSImJF-Gh_A0PfXhCICiJVuq1tjrejsCXkEFXuScx8-XkN9iH7Q4EZeSbqvyFgHv_Hn4EVxAa5XQyO7wPVzkqtLYycRt69frMP4DL9ms9r9YPI5oZfLpokPwAH0A6QQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Supervised+Learning+with+Close-Form+Label+Propagation+Using+a+Bipartite+Graph&rft.jtitle=Symmetry+%28Basel%29&rft.au=Peng%2C+Zhongxing&rft.au=Zheng%2C+Gengzhong&rft.au=Huang%2C+Wei&rft.date=2024-10-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=16&rft.issue=10&rft.spage=1312&rft_id=info:doi/10.3390%2Fsym16101312&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym16101312 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |