Semi-Supervised Learning with Close-Form Label Propagation Using a Bipartite Graph

In this paper, we introduce an efficient and effective algorithm for Graph-based Semi-Supervised Learning (GSSL). Unlike other GSSL methods, our proposed algorithm achieves efficiency by constructing a bipartite graph, which connects a small number of representative points to a large volume of raw d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Symmetry (Basel) Ročník 16; číslo 10; s. 1312
Hlavní autoři: Peng, Zhongxing, Zheng, Gengzhong, Huang, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.10.2024
Témata:
ISSN:2073-8994, 2073-8994
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we introduce an efficient and effective algorithm for Graph-based Semi-Supervised Learning (GSSL). Unlike other GSSL methods, our proposed algorithm achieves efficiency by constructing a bipartite graph, which connects a small number of representative points to a large volume of raw data by capturing their underlying manifold structures. This bipartite graph, with a sparse and anti-diagonal affinity matrix which is symmetrical, serves as a low-rank approximation of the original graph. Consequently, our algorithm accelerates both the graph construction and label propagation steps. In particular, on the one hand, our algorithm computes the label propagation in closed-form, reducing its computational complexity from cubic to approximately linear with respect to the number of data points; on the other hand, our algorithm calculates the soft label matrix for unlabeled data using a closed-form solution, thereby gaining additional acceleration. Comprehensive experiments performed on six real-world datasets demonstrate the efficiency and effectiveness of our algorithm in comparison to five state-of-the-art algorithms.
AbstractList In this paper, we introduce an efficient and effective algorithm for Graph-based Semi-Supervised Learning (GSSL). Unlike other GSSL methods, our proposed algorithm achieves efficiency by constructing a bipartite graph, which connects a small number of representative points to a large volume of raw data by capturing their underlying manifold structures. This bipartite graph, with a sparse and anti-diagonal affinity matrix which is symmetrical, serves as a low-rank approximation of the original graph. Consequently, our algorithm accelerates both the graph construction and label propagation steps. In particular, on the one hand, our algorithm computes the label propagation in closed-form, reducing its computational complexity from cubic to approximately linear with respect to the number of data points; on the other hand, our algorithm calculates the soft label matrix for unlabeled data using a closed-form solution, thereby gaining additional acceleration. Comprehensive experiments performed on six real-world datasets demonstrate the efficiency and effectiveness of our algorithm in comparison to five state-of-the-art algorithms.
Audience Academic
Author Peng, Zhongxing
Zheng, Gengzhong
Huang, Wei
Author_xml – sequence: 1
  givenname: Zhongxing
  surname: Peng
  fullname: Peng, Zhongxing
– sequence: 2
  givenname: Gengzhong
  surname: Zheng
  fullname: Zheng, Gengzhong
– sequence: 3
  givenname: Wei
  surname: Huang
  fullname: Huang, Wei
BookMark eNpNUE1PwzAMjdCQGGMn_kAkjqgjH_1Ij2NiA6kSiLFzlabOlqltStKB9u_JNA6zD7bs92y9d4tGne0AoXtKZpzn5MkfW5pSQjllV2jMSMYjkefx6KK_QVPv9yREQpI4JWP0uYbWROtDD-7HeKhxAdJ1ptviXzPs8KKxHqKldS0uZAUN_nC2l1s5GNvhjT_hJH42vXSDGQCvnOx3d-hay8bD9L9O0Gb58rV4jYr31dtiXkSK5ckQiUzHTFQqSaniTHKmZJ7WPAatQGuhhayVSHJSE5FlYV2FTcWTikKe5CBSPkEP57u9s98H8EO5twfXhZdlsCBIFizjATU7o7aygdJ02g5OqpB1EK6Cg9qE-VzQOGZEMBEIj2eCctZ7B7rsnWmlO5aUlCejywuj-R8zJ3Gi
Cites_doi 10.1016/j.cviu.2005.09.012
10.1109/5.726791
10.1109/JPROC.2012.2197809
10.1007/978-0-387-84858-7
10.1109/34.291440
10.1007/s00521-009-0305-8
10.47443/cm.2022.011
10.1145/1961189.1961199
10.1109/CVPRW.2009.5206594
10.1145/1102351.1102484
10.1109/TKDE.2020.2968523
10.1109/TNNLS.2022.3155478
10.1109/ICCV.2007.4408853
10.1007/978-3-319-10605-2_28
10.1007/s11222-007-9033-z
10.1145/1646396.1646452
10.1109/TPAMI.2009.154
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.3390/sym16101312
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Download PDF from ProQuest Central
Technology collection
ProQuest One
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2073-8994
ExternalDocumentID A814420828
10_3390_sym16101312
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c295t-87f428bc561c32a32ca96d34efceff8f8adc8590d0877a32b4efb35b1e959e863
IEDL.DBID M7S
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001341902200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-8994
IngestDate Fri Jul 25 12:12:07 EDT 2025
Tue Nov 04 18:13:50 EST 2025
Sat Nov 29 07:16:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-87f428bc561c32a32ca96d34efceff8f8adc8590d0877a32b4efb35b1e959e863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3120738273?pq-origsite=%requestingapplication%
PQID 3120738273
PQPubID 2032326
ParticipantIDs proquest_journals_3120738273
gale_infotracacademiconefile_A814420828
crossref_primary_10_3390_sym16101312
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References He (ref_13) 2021; 33
Wang (ref_14) 2023; 35
Luxburg (ref_16) 2007; 17
ref_11
ref_10
Lecun (ref_27) 1998; 86
Rowshan (ref_15) 2022; 5
ref_19
ref_18
ref_17
Gevers (ref_29) 2010; 32
Fleet (ref_1) 2014; 8690
Hull (ref_24) 1994; 16
Zhou (ref_4) 2003; 16
Chang (ref_30) 2011; 2
ref_25
ref_23
ref_22
Song (ref_3) 2023; 34
ref_20
Liu (ref_12) 2012; 100
Nie (ref_5) 2010; 19
ref_2
ref_28
ref_26
Tsang (ref_8) 2006; 19
ref_9
Li (ref_21) 2007; 106
ref_7
ref_6
References_xml – ident: ref_7
– volume: 106
  start-page: 59
  year: 2007
  ident: ref_21
  article-title: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
  publication-title: Comput. Vis. Imagin Underst.
  doi: 10.1016/j.cviu.2005.09.012
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_27
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: ref_26
– ident: ref_11
– volume: 19
  start-page: 1401
  year: 2006
  ident: ref_8
  article-title: Large-scale sparsified manifold regularization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 100
  start-page: 2624
  year: 2012
  ident: ref_12
  article-title: Robust and Scalable Graph-Based Semisupervised Learning
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2197809
– ident: ref_17
  doi: 10.1007/978-0-387-84858-7
– ident: ref_18
– ident: ref_23
– volume: 16
  start-page: 550
  year: 1994
  ident: ref_24
  article-title: A database for handwritten text recognition research
  publication-title: Pattern Anal. Mach. Intell. IEEE Trans.
  doi: 10.1109/34.291440
– volume: 19
  start-page: 549
  year: 2010
  ident: ref_5
  article-title: A General Graph-based Semi-supervised Learning with Novel Class Discovery
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-009-0305-8
– volume: 5
  start-page: 36
  year: 2022
  ident: ref_15
  article-title: The m-Bipartite Ramsey Number of the K2,2 Versus K6,6
  publication-title: Contrib. Math.
  doi: 10.47443/cm.2022.011
– volume: 2
  start-page: 27:1
  year: 2011
  ident: ref_30
  article-title: LIBSVM: A Library for Support Vector Machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– ident: ref_28
  doi: 10.1109/CVPRW.2009.5206594
– ident: ref_6
– ident: ref_9
  doi: 10.1145/1102351.1102484
– volume: 33
  start-page: 3245
  year: 2021
  ident: ref_13
  article-title: Fast Semi-Supervised Learning With Optimal Bipartite Graph
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2020.2968523
– ident: ref_2
– volume: 34
  start-page: 8174
  year: 2023
  ident: ref_3
  article-title: Graph-Based Semi-Supervised Learning: A Comprehensive Review
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2022.3155478
– ident: ref_10
– ident: ref_22
  doi: 10.1109/ICCV.2007.4408853
– volume: 8690
  start-page: 425
  year: 2014
  ident: ref_1
  article-title: Binary Codes Embedding for Fast Image Tagging with Incomplete Labels
  publication-title: Computer Vision—ECCV 2014
  doi: 10.1007/978-3-319-10605-2_28
– volume: 16
  start-page: 321
  year: 2003
  ident: ref_4
  article-title: Learning with Local and Global Consistency
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 35
  start-page: 5257
  year: 2023
  ident: ref_14
  article-title: Semi-Supervised Learning via Bipartite Graph Construction with Adaptive Neighbors
  publication-title: IEEE Trans. Knowl. Data Eng.
– ident: ref_19
– volume: 17
  start-page: 395
  year: 2007
  ident: ref_16
  article-title: A Tutorial on Spectral Clustering
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-007-9033-z
– ident: ref_20
– ident: ref_25
  doi: 10.1145/1646396.1646452
– volume: 32
  start-page: 1582
  year: 2010
  ident: ref_29
  article-title: Evaluating Color Descriptors for Object and Scene Recognition
  publication-title: Pattern Anal. Mach. Intell. IEEE Trans.
  doi: 10.1109/TPAMI.2009.154
SSID ssj0000505460
Score 2.3086302
Snippet In this paper, we introduce an efficient and effective algorithm for Graph-based Semi-Supervised Learning (GSSL). Unlike other GSSL methods, our proposed...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Index Database
StartPage 1312
SubjectTerms Accuracy
Algorithms
Analysis
Approximation
Closed form solutions
Construction
Data points
Datasets
Effectiveness
Efficiency
Exact solutions
Graph theory
Labels
Machine learning
Propagation
Semi-supervised learning
User generated content
Title Semi-Supervised Learning with Close-Form Label Propagation Using a Bipartite Graph
URI https://www.proquest.com/docview/3120738273
Volume 16
WOSCitedRecordID wos001341902200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7x6IFLKbRVUwLaAxLtwSLZtZP1CQWUUKQQWUkr0ZO1zyhSXo0NEpf-9s44GwpSxaUXHzwHW_7m7dlvAE5jjHLeKVrfLjwWKBr9YCxFhMahGy4VVtqKxLXfHgzk3V2ahYZbEcYqNz6xctR2YahHfi6aHLVRYrS9WP6KaGsU_V0NKzS2YZdYEprV6N7oqcdCW9riVmN9LE9gdX9ePM4wxSGOGf4iEP3bHVcxprf_v2_3Dt6G7JJ11upwAFtufggHwX4L9iWQTH99D8ORm02i0f2SfEXhLAtEq2NGnVl2NV0ULuphQsv6Srspy1ZYXY8rGFk1ZsAUu5wsSfFKx66J9voD_Oh1v199i8J-hcjwNCnREXosPrTBFMoIrgQ3Km1ZETtvnPfSS2WNTNKGJdJAFGuUaJHopkuT1MmW-Ag788XcfQKWtjUmTw5jHbexVkp54TxvaG5N0rRG1eB087Hz5ZpGI8fygzDJn2FSgzMCIifjKlfKqHBGAB9CNFV5R2L9x4l1rwb1DRB5sLoi_4vC59fFR7DHMTlZD-XVYadc3btjeGMeykmxOoHdy-4gG55UykTX3128l93cZj__AInh1ck
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQXoDxESoE9FAEHq86une4eECqF0KohqkiRenP3MYsitUkau6D-KX4jM37wkBC3HjivFMuZb7_5Zj37DcBmRlkuouXx7SpSgeKIBzOtEtocLkWjgg61ietoezzWx8fmcAW-d3dhuK2y48SaqMPc8xn5lupLQqOmbPtmcZ7w1Cj-utqN0GhgcYCX36hkK1_vv6P4Ppdy-P5ody9ppwokXpq8ou0fSXI7T8LBK2mV9NYMgsoweoxRR22D17lJA1vl0bKjFady10eTG9QDRb97Da6TjJCmbhWc_DzT4alw2SBtrgEqZdKt8vKMJBV72sg_Et_f6b_OacM7_9u_cRdut-pZ7DRwX4MVnN2DtZafSvGyNdF-dR8-TfBsmkwuFsyFJQbRGsl-EXzyLHZP5yUmQxLsYmQdnorD5ZyotYapqNsohBVvpwveWBWKD2zr_QA-X8m7PYTV2XyGj0CYbUfiECmXy5A5a21UGGXqZPB5P3jbg80uuMWisQkpqLxiDBS_YaAHLzjwBZNHtbTetncg6CFsw1XsaKpvJbsK9mCjC3zRskpZ_Ir6-r-Xn8HNvaOPo2K0Pz54DLckCbGmAXEDVqvlBT6BG_5rNS2XT2sACzi5aoz8AHYjMAs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCEuQPkQgQJ7KAIOVpxdO909IFRaAlFDZFGQysnsJ4rUJiF2Qf1r_Dpm7DUfEuLWA-eVbK337Zs369k3ADsZRrngNbVvFwETFIM8mEmR4OYwqVfCSdeYuE53ZzN5fKyKDfje3YWhssqOExuidktLZ-QDMeSIRonRdhBiWURxMH6x-pJQByn609q102ghcujPv2H6Vj2fHOBaP-Z8_Or9_pskdhhILFd5jVQQUH4biyLCCq4Ft1qNnMh8sD4EGaR2VuYqdWSbh8MGR4zIzdCrXHk5EvjcS7CJkjzjPdgsJm-Ljz9PeKhHXDZK20uBQqh0UJ2fosAihxv-Rxj8ezBoItz4-v_8bW7Atair2V67EbZgwy9uwlZkroo9jfbaz27BuyN_Ok-OzlbEkpV3LFrMfmZ0Js32T5aVT8Yo5dlUG3_CivUSSbcBMGsKLJhmL-cr2nK1Z6_J8Ps2fLiQud2B3mK58HeBqV2DstFjlOcuM1rrIHzgqeHO5kNndR92uoUuV62BSImJF-Gh_A0PfXhCICiJVuq1tjrejsCXkEFXuScx8-XkN9iH7Q4EZeSbqvyFgHv_Hn4EVxAa5XQyO7wPVzkqtLYycRt69frMP4DL9ms9r9YPI5oZfLpokPwAH0A6QQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Supervised+Learning+with+Close-Form+Label+Propagation+Using+a+Bipartite+Graph&rft.jtitle=Symmetry+%28Basel%29&rft.au=Peng%2C+Zhongxing&rft.au=Zheng%2C+Gengzhong&rft.au=Huang%2C+Wei&rft.date=2024-10-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=16&rft.issue=10&rft.spage=1312&rft_id=info:doi/10.3390%2Fsym16101312&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym16101312
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon